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A hypothesis of the “relation-continuum” C, is put forward, closely connected with
isolation of physical systems, which extends to finite universal constant ¢ the absolute nature
of the Galileanrelative coordinates and the absolute Newtonian time. Points of C4 continuum
are directly unobservable and the relativistic symmetry L4 of directly observable space-time
events becomes the limiting case of the Cs-symmetry. Consequently, though the possibility
of the hypothesis of Cs~continuum is due to quantum physics, the modifications it implies
come with finite universal constant #/c and concern the description of the internal structure
of bound states only. The C,-symmetry of relations, as weaker than the Lorentz-Poincaré
L,-symmetry of events, makes “more room” for quantum dynamical models. The Feynman
graphs phenomenology with form factors (vertex functions) of non-point particles left
for experimental determination can be connected with the Cs-framework which determines
their analytic structure. The Cs-effects then would reveal themselves only in these processes
in which composite particles participate. Therefore, the “good” quantum electrodynamics
of point-particles is left unmodified. Two off-mass-shell effects are analyzed in the relatively
low-energy processes which are connected with the mass-dependent localization of the
centre-of-mass of composite particle “M”. They seem to be crucial for the hypothesis itself,

PACS numbers: 03.30.+p, 11.10.Qr

1. Relations v. events

Present quantum theory, though going deeper into the nature of the structure of matter
than the classical (h = 0) theory does, maintains the classical continuum of directly ob-
servable events X, = (X, ict) as an elementary background of all physics. Within this
picture there should be no room for the well-known quantum asymmetry between the mo-
mentum “p’” and the *“‘x” languages [1] favourising the “p”” one. Doubtless the Lorentz-
-Poincaré symmetry L, of events must rule the asymptotic zone where any micro-structure
is measured indirectly, i.e. in terms of free four-momenta of scattered particles, because
this symmetry is imposed by the “classical’” measuring devices. However, this is not a com-
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pelling reason why the L,-symmetry is to be extrapolated onto the internal structure of
isolated systems. The uncertainty relations

AP, ~ hjAX, (P, = (P,iElc)) (u,v,...=1,2,3,4) (1.1
themselves show the (quantum) origin of the “x—p” asymmetry and, simultaneously,
provide us with an argument against the elementary character of the L,-symmetry. Indeed,
the better determined the coincidence of events is (4X, — 0), the larger becomes the
uncontrollable distortion of the base (4P, — 00) thus destroying, also in an uncontrollable
way, the “quantum-potential’’ [2] structure “y’” of the isolated object under measurement.
Let us remember that the space-time localization is always accompanied by the “factual”
[2], irreversible process of the “reduction of the wave packet’ [3] which cannot be obtained
from the unitary, time-reversible development of any ‘“‘quantum-potential” staie “y”.
Therefore, any measuring apparatus capable of causing “factual” space-time coincidences
of events cannot be described completely, i.e. by a “pure” quantum state “¢” [4].
On the other hand, it is evident that direct “p”” measurements of the scatlered particles
in the asymptotic region do not conflict with “quantum-potentiality” of e.g. the cigenstates
of energy of isolated sysiems which determine their structure. Thus the “p’’ and not “x”
language is compatible with the state of isolation of the investigated system and its “quan-
tum™ structure.

Within the classical framework (# = 0) the duality of “factual-potential” vanishes
together with the wave-corpuscular duality, because everything is here “actualized” by
means of the energy-momentum-free “classical photons™ [5]. Consequently, the event-
-continuum of direct measurement must remain elementary.

Moreover, in a framework which accounts tor finiteness of both, % and ¢ an exact
determination of the event coincidence, i.e. 4X, ., — 0, is inescapably connected with the
transfer of an infinite amount of inertia .#. In fact,

A = AW [c* ~ (h[c*) (1]4t) ————> o hence A proev el (1.2)

4t—0

One can doubt therefore, if the classical L,-symmetry of events accounts correctly for the
symmetry of internal structure of isolated (‘‘quantum’) system with finite inertia. As
seen from (1.2) this objection would concern neither the classical framework (f = 0)
nor the non-relativistic (NR) one (¢ — o0); it would concern present tramework where
finite 7i/c must be taken into account.

Our aim is to show that the uncertainty principles simultaneously admit the hypo-
thesis of a new continuum C,, called the relation-continuum, which precedes the
event-continuum L,. According to this hypothesis the directly unobservable relations be-
tween two “possible” quantum particles, and not the directly observable “possible” events
of L,, found the first metrical relations. C, means the Euclidean four-dimensional contin-
uum composed of the three-dimensional relation-space C; and the internal-time
continuum 0. Let C; be parametrized by the Cartesian coordinate y denoting the space-
-relation between two “possible’” quantum particles and let t denote the absolute variable
which parametrizes 6 and enumerates the quantum-canonical evolution of the state |y).
The assumed canomical formalism in C, automatically imposes the simultaneity in t,
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much as is the case in the NR framework, where the absolute Newtonian time 7% plays
the role of 7.

The C,-symmetry means the 4-parameter symmetry group of the rotations in Cj,
without translations, and the translations in the internal-time 7 hence C, = C; ® 8 and

Vi=0pwn. T =14+a, (,k ..=1273) (1.3)

O, is the 3 x3 orthogonal matrix and a, the translation parameter.

The unobservable nature of the points in C; allows the fundamental assumption,
namely that all metrical relations established in C, are a priori absolute. Since directly ob-
servable events of L, will get the status of the himit of C,-relations, and not vice-versa,
the C,-absoluteness precedes the L,-absoluteness. In other words, the C,-absoluteness
does not imply the Ls-invariance. For example, the rwo C,-absolute intervals

r = ly| = C4-inv. = Cy-absolute

At = Cy-inv. = C -absolute (1.4)

cannot be a priori expressed by any L,-invariants since L, deals with the only one a priori
L, -absolute four-imterval

X} = (x3,—x;,)> = Lg-inv. = L,-absolute. (L.5)

Simultaneously, this proves that C, and L, geometries are non-isomorphic. For the same
reasons, the L, and G, continua ot events are non-isomorphic either, because in the NR
limit ¢ — o the discontinuity emerges in the number of absolute intervals, from one in
L, to two in G,. Moreover, the NR relation-continuum C§ can be spanned on the Galilean
relative space coordinate y© and 1€ which, up to the translation constant, can be identified
with the absolute Newtonian time €. This proves the isomoiphy between C§ and G,.
Indeed, since

¥¢ = (5 —xDlao =0, 41° = A%, (1.6)

then, in contrast to (1.4), both CS$-absolute intervals become simultaneously the G,-absolute
quantities as

. . CG
G 160 = (Ciny = Gaoiny, = %
r = |y"| = Ci-inv, = G4-inv. {64 absolute (1.7)
CG
A1° = A41° = C§-inv. = G,-inv. = {é“-absolute.
4

This reflects the singular character of the Galilean group [6] with its “neutral element”
alien to the L,-group and shows that all C,-effects must vanish in the NR limit ¢ — 0.
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Let us consider the simplest two-body system, where the relation-coordinate
y (operator) and the canonically conjugate to it relation-momentum g, thus fulfilling
the commutation relations

[j’j, .;/k] = [;11’ &k] =0, [.;ja Zlk] = ihéjk’ (1.8)

parametrize the internal, C,-absolute laws of motion of the system. In the Schroedinger
representation, which will be postulated throughout the paper, the commutation relations
(1.8) are realized by putting y = y and q = —ih grad,. Assume that dynamics is intro-
duced through the C,-absolute internal potential V independent of spins and depending
on the Cy-absolute distance r only, between the constituents. Thus V = V(r)(r = |y))
and the four generators of the Lic algebra in C, are assumed in the following form:

h = c[(mic® +¢*)' > +(mic® +4%) "]+ V(r)

Jk = ensVids+S1x+ 520 .9

where the internal Hamiltonian i means the translation generator in the internal-
-time 1, while J, are three rotation generators in C;, where §,,, are spin matrices of the con-
stituents “1”” and “2”. Thus % enters the C,-framework through the canonical commutation
relations (1.8), while ¢, through the analytic form of /; adjusted to the relativistic kinematics.
We postulate that the C,-framework leaves the L,-kinematics unmodified.

The rotation invariance of i and the analytic form of j, guarantee that the C, Lie
algebra equalities are fulfilled, as

[;l,fk] = 0, [}kafl] = iheklsjs' (1.10)

The action-at-a-distance in C, implied by V(r) does not conflict with the Einsteinian prin-
ciple of relativity or causality {7] because r is directly unobservable whence, F{r) cannot
propagate any signal. The latter always means the propagation of some discontinuity in
the continuum of directly observable events. A direct proof of that ¥(r) remains consistent
with the relativity principle and causality will be given in Section 5.

The thus resulting C,-absolute Schroedinger equation

ihéjot|y) = hiw) (1.1

leads, for the stationary states, to the internal-energy W = Mc? eigenvalue problem
of h. According to the absolute nature of Cy, |) and W are a priori absolute, much as £
itself, i.e.

hlys) = Wipa),  lya) = [M) exp (i¢°) = Cy-abs.
W = Mc? = C,-abs., ¢ = —Wr/h = Cabs.. (1.12)

The meaning of the C,-absoluteness is easy to understand in the NR framework,
although in this limit (I/c = 0) the C,-relationism becomes of no physical relevance.
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Indeed, denoting C§ = lim C, and taking into account that G, = lim L,, the following

c—* o0 Cc=* 0

well-known point- and canonical-transformations
® X = a%§+b%,, y°=xF—xF (a®=1-b% =m,/(m,+m,))
(@ii) P =pi+p; ¢°=a°p3—b°p; (1.13)

establish the isomorphy between CY and G,. After subtracting from h the rest-energy
(my+my)c? and letting ¢ go to infinity we get from (1.11) the CJ-absolute two-body
Schroedinger equation

(ih8/6:%)p°(¥%, 1% = [(@%)* 26+ VC(%)]vC, (1.119)

where g = mm,/(m, +m,) is the reduced mass of “142” and V© the usual NR potential;
Ve =V, ¢ = lyGI.

Let us assume that the C-absolute equation (1.11') is the starting point of the theory
and provides us with the Cg-absolute differential cross-section da/d3¢S, for elastic scattering
of “1” and “2”, where g2 means the asymptotic relation-momentum. The form-in-
variance of the (y©, q€)-coordination of (1.11") under the Galilean group of transforma-
tions implies that no contact exists a priori between the theoretical predictions obtained
in the internal relation-continuum CY and the external event-continuum (here G,), where
any direct measurement takes place. In the NR limit this “contact” between the Cg~inside
and G4-outside is solved by (1.13), however, in the general case of finite ¢ a new dichotomy
of all physical characteristics is called for. It divides them into the classical-like (C-L)
and the quantum-like (Q-L) which will be defined in Section 3. However, in order to
understand why such a dichotomy will appear, let us analyze some essential difference
between the scattering and bound states which is seen already in the NR quantum frame-
work.

In the scattering process the asymptotic momenta pC_ and pS,. of each of the con-
stituents are directly measurable in the asymptotic zone. By resorting to the ¢-number
boundary condition P° = 0 which determines the CM-system S* of “1+2” the c-number
momentum equalities

qf; = pgas = _p(l}as (114)
following from (1.13) solve the “contact” problem. In fact:
CS-abs. = do/d*qS = (do|d*pS,o)s (1.15)

and now the cross-section can be evaluated in any other laboratory “S”.

Suppose that the same system “M = 142 is now in a Cg-absolute bound state
wo(¥%). Thus, in the asymptotic zone we deal with a single particle “M” whose internal
structure wo(y®) is hidden from observation. The singular character of the NR limit [6]
makes that the Fermi relation-momenta q€ of $Z(y®) can be also expressed by the external,
Galilean momenta p(f,z as

q¢ = pi" = —pi". (1.16)
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However, and this will be of first importance, in the general case of finite ¢, from the
experimental point of view the equalities (1.16) are dead, because ¢° is directly unobserv-
able. For example, the disintegration of “M” extracts the constituents on their energy-
-shells, thus making ¢€ directly measurable, but this is a dynamical process and, like any
other, calls for a theory. In consequence, in the general C,-framework (¢ < o0) where
no “‘contact” exists a priori between the external L, and the internal C, parametrizations
like (1.13), we get room for new hypotheses concerning the “contact’” problem. Here,
the aforementioned new dichotomy will come into play.

No matter it ¢ is finite or infinite, the difference between the scattering and bound
states is of “pure” quantum nature. In the classical framework (# = 0) the momenta
“p” become x-local quantities, cf. App. I, and the classical world-line is automatically
“seen” by the “classical photons™ [5]. On the other hand, the classical world-line threatens
to kill any interaction [8]. Nevertheless, apart from the “no-interaction” theorems, there
is no room for a continuum more elementary than the event-continuum, because everything
is automatically “actualized’ in the classical continuum L, of the “classical’’ measuring
devices. However, each real object is “‘quantum’ as independently of its structure it re-
spects the uncertainty relations [9], while # much as 1/c is always different from zero.
Thus the “classical’’ nature of measuring devices cannot be due to the classical framework
(h = 0), as well as the “NR physics” does not result from ¢ — 0. The “classical’” nature
of any measuring device results from its heaviness and, which is more important, from the
instability of its state of isolation. In fact, with increasing number N of the internal (non
“cooled’’) degrees of freedom of heavy systems the energy gaps 4 W between its different
internal states decrease like exp (—N) [10], thus tending to zero with N — oo. With that
respect it reminds the classical framework limit & — 0 [5], where the energy gaps do not
exist at all making an exact isolation of the system a fiction inherent of the Hamiltonian
mechanics.

2. Relation and event continua

Two limiting procedures explain the status of event-continuum L, within the relation-
-continuum C, and hence, they will be called the Lorentz limits I and 1. Let us consider
them subsequently.

I. Assume that the constituent of an isolated system composed of two interacting
particles *‘1 42"’ becomes infinitely heavy. Then, in order to deal with finite internal Hamil-
tonian, we define the renormalized Hamiltonian

“l”

H = lim (h—m,c®) = e(mic+¢*)' "+ V(y). Q2.1

my— oo

“197

Thus the infinitely heavy constituent disappears from the equation of motion (1.11)
creating the notion. of externality for the remaining part of the system — here the par-
ticle “2”°.

Let us change the notation by putting

(y, ict) = (x3, ict3) = x3,, (2.2)
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and let us define the four numbers U} such that
Uk =(0,0,0; (i/)V(y = x3)). (2.3)
Apart from spins, Eq. (1.11) can be rewritten in the form
[(—ihojox3,— UMD+ mic*lp(x3,) = 0
or, omitting the superscript ““*”,
[(—1h3)0x,,— U )+ mic¥]y(x,,) = 0. (2.4

If x,, is identified with the four-coordinate ot “2”” and U, with the external four-vector
field, Eq. (2.4) coincides with the L,-covariant Klein-Gordon equation. From now on the
equalities (2.2) and (2.3) indicate the rest-frame S* of infinitely heavy “1” in L,.

However, though (2.4) is L,-covariant hence consistent with the theory of relativity,
the presence of external field U, makes that the L,-symmetry is not the internal symmetry
group of (2.4). In other words, Eq. (2.4) is not L,-form-invariant and different analytic
forms of the representations of U,(x,) enumerate the 10-parameter variety of the reference
frames S in L,. Thus infinitely heavy source “1” of U, gets the classical world-line
x*(t*) = 0 identified here with the origin of $* and hence, the Lorentz limit I automati-
cally implies that one end of the relation-coordinate y, namely that which indicates in-
finitely heavy “17, gets the classical localization. In this way the Lorentz limit I implies
the fundamental asymmetry between the “classical’” heavy apparatus “1”” at the origin of
x; and the “quantum’ object “2” at the end of x,. Simultaneously, events of the L,-
-continuum become the limits of relations in €, — not vice-versa!

Moreover, Eq. (2.4) shows that in the presence of an external field the L,-covariant
equations of motion coincide with the C,-equations (1.11) with the corresponding internal
dynamics.

I1. The second Lorentz limit 1T is complementary to the first one and it consists in the
transition to the asymptotic zone r — oo in C, assuming that

V() =0 (r = Iy). 2.5)

Much as in the limit I, assume also that m, — oc, but now, when the constituents “1”
and “2” do not interact (+ — o0), this assumption is very weak. It only requires that outside
“2” there exists a world of inertia infinitely larger than m,, which can be called the con-
dition of measurability in microphysics. After the renormalization analogous to that from
(2.1), the Schroedinger equation (1.11) becomes equivalent to the equation

(75— (1/c*)@?]dc* — (mye/ ) Tp(y, 1) = 0 (2:6)
which is of the analytic form of the Klein-Gordon free-equation. Now, the L,-symmetry
becomes the internal symmetry group of Eq. (2.6}, i.e. Eq. (2.6) is L,-form-invariant,
and hence, the heretofore C,-absolute relation-coordinate (y, ict) can be identified with
the Ly-four-coordinate x,, = (x,, ict;) of “2” in any reference frame S in L,. Instead
of a single external field U, from the limit I, the limit II creates the 10-parameter variety
of the infinitely heavy, “classical”” measuring devices ““1”” whose external fields are hidden
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in the asymptotic-kinematic zone of the L,-symmetry. Thus, in the Lorentz limit I the
4-parameter symmetry C, becomes split into the 10-parameter symmetry L, of the event-
-continuum. Let us remember that in the limit I the 10-parameter symmetry group L,
is not the internal symmetry of Eq. (2.4) because of the presence of an external field.

This embranchment of the C, into the L,-symmetry forces one to distinguish between
two meanings, the meaning “4> and “B”, of the L,-absoluteness when one confronts
it with the C,-absoluteness. If the external event-continuum were the Galilean one G,
then, the G,-absoluteness ot r® = |y®| in the meaning “A4” denotes the absoluteness of
the “proper-length” L, = rS of a single measuring rod. In the meaning “B”’ the G,-abso-
luteness of r¢ denotes the common “proper-lengths” L, of all identical, but different
measuring rods of all reference frames S parametrizing G,,. The same concerns the second
absolute interval 4t€ = T, = A7S. In order to distinguish between these two meanings
of the absoluteness we add the letter, 4 or B to the G, or L, absoluteness of the corre-
sponding absolute quantity.

The discontinuity in the number of absolute intervals from one in L, to two in G,
implied by the NR limit ¢ — oo causes that the two “A, B-absoluteness’ of L, and T,
are manifested in a very different mathematical forms. If L, (T,) means the proper-length
of a single rod then the L,-covariant expression of Lq (T,) calls for a single four-vector
n,, such that in the rest-frame $* of this rod (clock) we have n; = (0, 0, 0; i). The necessity
of introducing some external field n, is evident since a priori L, deals with only one L,-ab-
solute four-interval x2 (1.5). Thus, if x, = x,,—x,, then

Lo = |x*| = [x2+(n,x,)*]"/* = L,-A-absolute
Ty = 4t* = ~n,x,/C = L,-A-absolute. 2.7

However, the “B-absoluteness’ of L, (T,) must call for the whole infinite set of exter-
nal four-vectors nff ) where “S” indicates the rest-frame S of the corresponding rod (clock),
such that :

s = (0,0,0; 1), (n, = n). (2.8
Then
Ly = |xlls = |x'|l¢ = ... = L,-B-absolute
Ty = Atlg = At'|g = ... = L,-B-absolute. 2.9)

Of course, much as in (2.7), L, and T, of each of the rods (clocks) can be expressed L,-
-covariantly with the help of the corresponding four-vector n{.

The embranchment of the 4-parameter symmetry C, to the 10-parameter symmetry
L, of the asymptotic-kinematic zone implies that the C,-absoluteness of r = |y| and/or
At corresponds to the L,-B-absoluteness. Here the essential asymmetry reveals itself
between the L,—x and L, —p languages [1], because the L, —x relations must deal with
two four-points x;,, X,,, €.g. x; = (x,,—x,)?, whereas the L,—p relations exist for
a single “four-point’ P, in the L, —p space, e.g. P,f’ = — M?c?. Therefore, we can expect
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the difference between the “x’’ and “p” relations which will establish the contact between
the C,-absolute and the L,-absolute quantities.

Note that the Lorentz limit I creates a single physical entity U, of the external field
which spoils the L,-symmetry of equation (2.4), but not its L,-covariant striscture! There-
fore, in contrast to thelimit I, it results in the standard *“4-absoluteness™, like that from (2.7).
In the limit II the situation is quite different. Here the 10-parameter set of the “classical”
measuring devices becomes hidden in the L,-asymptotic zone, however, their existence
is implicitly manifested in the L,-symmetry of the equation (2.6). Thus the weaker 4-pa-
rameter symmetry group C, with rwo absolute intervals r = |y| and 4t becomes split
into the stronger, 10-parameter symmetry group L, with only one absolute interval xf,.
This discontinuity in the number of absolute intervals, from two to one, automatically
implies that all measuring rods and clocks in L, are of the same units as the corresponding
units of r and Az, respectively. This calls for the new “B’ meaning of the absoluteness
whose mathematical expression requires the infinite set of the L,-four-vectors nf’ implic-
itly characterizing all measuring devices. Thus (r = |[y))

C4"abs. =] = lels = lxll”sl = ... = L4‘B"abs.
C,-abs. = At = Atlg = Al'lg = ... = L,-B-abs. . (2.10)

In the NR limit, C$ and G, deal with the same number of the fundamental absolute
intervals hence, the “B-absoluteness” of L, and T, does not call for external fields nfls’;
they are “contained” in the very structure of the G -symmetry. Since the external fields
n}f’ cannot enter the L,-symmetric equations of motion, the “B-absoluteness” (2.10)

shows that the C,-framework goes beyond the scope of the L -one.

3. Partial relativization of two-body states

We start with laws of motion in C,, but now, unlike the NR framework, C, is not
isomorphic with I, and hence the general question arises of the determination of contact
between the theoretical predictions in C, and the experiment in L;. This problem will
be solved by the a posteriori relativization procedure which consists in the appro-
priate projection of the C,-characteristics obtained from the C,-framework onto the L,
-continuum of events.

For this purpose we must determine the already mentioned new dichotomy of all
physical characteristics. A characteristic of the measured object ““O”’ will be called the classi-
cal-like (C-L), if its exact measurement can be done without the recoil of “O”. Con-
versely, a characteristic will be called the quantum-like (Q-L), if its determination must
be connected with finite recoil of “O”. Of course, in the classical framework (h = 0)
where the “classical photons™ exist [5] all characteristics are C-L. Although quantum
theory has rulled out the “classical photons™ from physical reality, the classical event-
-continuum L, regarded as the first physical continuum implies that even the “quantum-
-potential”” shapes “¢”” must be a priori sunk in L,. This classical element of the present
quantum theory would be eliminated by the C,;-framework, where the ‘““quantum-poten-
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tial” shapes “y’’ remain a priori hidden in Cy. This seems to be consistent with the ex-
periment because, in general, “y’’, much like the forces, is not “visible” from the L,-
“-outside. In consequence, the C-L characteristics, as measurable directly without affecting
“0” must be relativized directly, much like all characteristics of the present L,-
-framework, whereas the Q-L characteristics which are measurable indirectly, i.e. in
the “p’” language, will be relativized indirectly. Below and in Sections 4 and 5 these
two kinds of the a posteriori relativization procedures will be defined and illustrated in
several examples.

Suppose that from the equation (1.11) we have determined the C,-absolute stationary
state of the two-body system

(yIM) exp [~ iWt/l)] = py(p, 1) (3.1)
which is the eigenstate ot & to the eigenvalue W = Mc2,
h(y|M) = W(y|M). (3.2)

In Appendix I we show that the four-momentum P, of a free particle “M”" of mass M is
a C-L characteristic and therefore, the C,-absolute eigenvalue M must be relativized
directly. This consists in attaching to M the four-momentum P, where

P, = (P,iE[c), P.= —M?c* = Lg-inv.. (3.3)

I

As it was to be expected the direct relativization of the “p” scalar M does not require the
“B-absoluteness”. Besides, if |M) is the eigenstate of j* from (1.9) to the eigenvalue
h2[s(s+ 1)] then, the spin s of “M” represents the second C-L characteristic and its direct
relativization consists in attaching to the state !M,s) the corresponding L, -amplitude
A(s) as in the present theory. Let us emphasize that direct relativization of M concerns
a single eigenvalue W = Mc¢? of h. Of course, the internal Hamiltonian A itself cannot
be relativized, because this would mean the isomorphy of the C, and L, continua.

Along with P, we attach to “M” in the eigenstate | M), i.e. also a posteriori, the overall
Jour-coordinate X,

X, = (X, ict), (3.4)
then recognizing XandPasa pair of the quantum-canonical variables (operators) which
fulfil the standard 3-dimensional canonical commutation relations. After determining
the internal state of “M” in C, we can realize the standard canonical representation of

the Poincaré algebra of “M”” as a single free particle [11] if the 10 generators are taken
in the form

A =cM*@+P)'?, Po=P, J, =euXP+5,
K, = (1)2¢%) (HX, + X H(+(H + Mc?) e, P,S,— Pyt. (3.5)

Here S, are finite or infinite representations of spin of the state |M), depending on whether
|M) is or is not the eigenstate of j2, respectively, and

[k, Si] = ihey,S;. (3.6)
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All Q-L characteristics of “M”’ which are directly unobservable, remain hidden in C,
and, consequently, they do not enter the L, generators.

Direct measurability of the C-L characteristic P, implies the direct relativization of
the next C-L quantity, namely the phase ¢* = — Wz/h of the stationary state (3.1). Neg-
lecting the arbitrary constant phase shifts due to the translation group in the internal-
-time T as well as the space-time translation subgroup of L, as unmeasurable, the directly
relativized phase ¢€ takes the L,-inv. form:

¢¢ = Cy-abs. = —Wt/h = P, X, /h = ¢" = L,-abs. . 3.7

Thus we obtain the direct relativization of the external degrees of freedom of “M”’ as a sin-
gle particle and the partially relativized state ot “M” takes the form

(X, y|P, M; M) = A(P) (yIM) exp [i/h(P,X )] (3.8)

or any superposition of the states (3.8) with different P, but P2 = —M?c?. The states
(3.8) are sunk in the configuration space KS"‘(X,,, y) spanned partially on the L, and
partially on the C, continua, which is pointed out by the superscripts “C”, “L”.

Let us emphasize that the question if a particle “M”’ found in the experiment is a point-
-particle or has scme internal structure concerns the first basis [12] which is always referred
to experiment. Indeed, if |M) is a bound state then all experiments where the momentum
transfer “¢” (the Mandelstam variable) is small enough, “M” can be treated as a point-
-particle. However, in high-energy collisions with large “¢’” we always can discover the
internal structure of “M” regarded heretofore as a point particle. The uncertainty relations
together with the energy-mass relation have discovered the “cosmology’ of the “x” point
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in the complementary energy-momentum “‘p” space.

4. Eguivalence of the C, and L, kinematics and bound states

The Lorentz limit II shows that in spite of the non-isomorphy of the C, and L, geo-
metries the C, and L, kinematics are equivalent. Then let us confront these two, L, and
C, frameworks in describing two free particles, assuming that their “trajectories’ are the
cigenstates of the corresponding momenta.

In the standard L,-framework we deal from the very beginning with the fully rela-
tivized two-particle states (‘‘trajectories’)

(xlw XZutpb my, SI; Pz, mj, 52) = AIAZ exp [iﬁl(pluxlu'f'PZuxZ;x)]

with  pi,, = —mi,c? 4.1

sunk in the 8-dimensional configuration-space K'{(xlu, X3p)
On the other hand, the partially relativized states of “M> = “142” take the form
(3.8). Now the internal state (y | M) ot ““M" is the ecigenstate of ¢, hence

(yiM) = (yiq) = exp [i/h(qy)]. 4.2)
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Inserting in (3.8) 4,4, instead of 4 and (4.2), the partially relativized state (3.8) takes

the form
(X, ¥IP, M; q; 5, 5,) = AjA, exp [i/h(P,X ,+qy)]

with  —P; = M?¢* = [(mic*+4%)"> +(m3c® + ¢»)1* . (4.3)
So far, the state (4.3) is sunk in the 7-dimensional configuration space KS'L(X 4 ¥). However,
as the constituents “1”” and *““2” of “M” are free, each of them reaches the asymptotic

zone of L,-symmetry and therefore, the internal structure (y{q) from (4.2) cannot remain
hidden in C,. The direct (a2 posteriori) relativization concerns here the C,-absolute phase

¢€ = (gqy)/h. Since

Pu = plp+p2u = (Ps ZE/C), (4.4)
let us introduce the four-coordinate
X, = ax,,+bx,, = (X, ict), 4.5)

where the, so far undetermined, weights a, b must be Ls-invariants, because X,,, x, w X2y
all parametrize four-points in- L,. Besides, we introduce the variables

X, = Xp,— Xy, = (x, ict), (4.6)
P = dpy,—epy, = (P, ipo)s 4.7y

where the weights d, e, much as a, b, must be L,-invariants.

It is assumed that similarly as P, relativizes a posteriori the C,-absolute mass M,
cf. (3.3), the four-momentum p, relativizes, also a posteriori and directly, the C,-absolute
length of ¢. Thus

C,-abs. = g% = p2 = L,-abs. (4.8)

making p, of the space-like character. In consequence, the “Breit-like” systems *$ exist
where *p, = 0 hence *p? = ¢? and *p*x = p,x, = L-inv. Now the “B-absoluteness’

6.0

must be taken into account as we deal with the “x” intervals, according to which, cf.

(2.10), {*x] |ss = |y| which, together with (4.8), result in the internal phase relativization.
Indeed, since *p*x = qy we end up with
Cyabs. = ¢ = (gy)/h = (p,x,)/h = ¢* = L,-abs. . (4.9)
Thus the total two-body phase becomes directly relativized as
—Wt+qy = C4-abs. = P, X, +p,x, = L,-abs., (4.10):

and the fully relativized C,-““trajectories” (4.3) take the form
(X, x,\P, M p,; 51, 8,) = A A, exp [i/h(P X, +p,x,)] .11

sunk in the 8-dimensional configuration space Kﬁ‘(X,,, x,). The. equivalence of the C,
and L, kinematics then requires the “trajectories” (4.1) and (4.11) to coincide which will
take place if

P1aX1u+DP2p¥2, = P X, +p,x,. 4.12)
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Inserting (4.4), (4.5), (4.6) and (4.7) into the right-side ot (4.12) and making use of (4.8)
(cf. Appendix II) we get a = 1—b = d = 1 —e where

a = a(M) = 3 [1+(m}-m))IM*] = Ly-inv. ——>aC. (4.13)
The NR weight a® = m,/(m,+m,) becomes ~independent of the mass M and equal to
a(M) for M = m, +m,, independent of the internal state of “M”. Thus, the equivalence

of the C, and L, kinematics manifested in the coincidence of the “trajectories” (4.1) and
4.11),

A1A2 exp [l/h(PuXu+puxu)] = A1A2 CXp [i/h(plux1u+p2;;x2u)]’ (414)

implies the following c-number relations between the four-coordinates and four-momenta
which parametrize both “trajectories”:

(i) Xy = a(M)xy,+b(M)x,,, X, = X3,—Xy,
(”) Pﬂ = p1u+p2u’ pu = a(M)pZy—b(M)plu' (415)
X X,
oo
x! y
X, __._.—;hP(xl %,) ¥
/7 ),
AN\
s AN
7/ A
A ' \\\
4 ) —~ Xei
Xef
x .
X X, X,
B

Fig. 1. Non-isomorphy of the configuration spaces (A) K%(X, x) and (B) K{‘(xl, x2) illustrated by two
pairs of the “‘weights” a, b: a; = 2/3, by = 1/3 and a¢ = 3/4, by = 1/4

The M-dependence of the centre-of-mass coordinate X,,, reflects the hierarchic way of
the description of “M”’ implied by the C,-framework. First one must determine the
internal state of ‘“M” in C, which next determines the coordination of “M” as a whole
in L,. Therefore, (4.15{) does not represent a point transformation, except from these
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processes where the absolute mass M of “M”’ remains unchanged. Thus, in general, the iwo
configuration spaces K'{(xlu, x,,) and KX(X, w X,) are not isomorphic which is due to the
non-isomorphy of the C, and L, continua, cf. Fig. 1. Again the singular character of the
NR framework can be observed, as the lack of energy-mass relation implies that (M) — a%,
where a® is M-independent, and the space parts of (4.15) coincide with (1.13) which
establish the isomorphy between CY and G,.

Let us introduce an auxiliary overall coordinate of “M”’,

0 o] 0 0 0 0 (V]
X, = ax,,+bx,, = (X,ict) (b=1-a) (4.16)
with an arbitrary M-independent c';, which together with x, = x,,—x,, establishes the

isomorphy between the configuration spaces K(x,,, X,,) and K%()o( w X,)- The absolute
phase P, Xy, /h can be then rewritten in the form

) 0 0 0
PMXMu = PuXﬂ+(b(M)—b) (Puxu) = P#Xu+ h(bM

with the absolute phase-shift ¢,, equal to

bae = (B(M)—b) (Px,)h = (b—b(M)) (Mc*At*)[h = L,-abs. (4.17)

where At* = ¢}~y is the relative-time coordinate in the rest-frame S* of “M”. Thus

¢y does not affect the C,-absolute shape (y | M) and it vanishes in the single-time formalism
like the NR one.

We make the following ANSATZ I as to the description of bound states suggested
by the aforementioned kinematic considerations. Assume that the internal-potential
V{(r) responsible for a bound state |M,) vanishes for r = |y| — oo. The eigenmass M, of
[M,) can be then expressed in the form

Mn = (mf+q3:as/c2)1/2+(m§+qr2;:as/c2)1/2 < m1+m2' (418)

Here ¢, is pure imaginary asymptotic momentum, as g2, < 0. In order to assure the
stability of “M,” it must be assumed that — g2, < ¢*>min yni, m3) as otherwise, M,
would be complex and “M,” unstable [13]. Therefore M, of stable bound states must
lie in the region

1/2

Im3—mi|V* < M, < m,+m,. (4.19)

Ansatz I says that a(M) from (4.13) is to be analytically continued onto M, < m,+m,,
i.e.

@y = (1} +q2a/cD) M, =} [1+(m}—md)MZ] = a(M,). (4.13)
Thus we maintain the same analytic expression of the centre-of-mass as that from (4.15 i),

Xop = X1y T bpX2y, X, = Xop— Xy (4.15%ii)
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and, consequently, the same analytic expression (4.17) of the phase shifts ¢, = ¢, with
M< M,

by = (by—b) (Px,)ih = (B—b,) (W,At¥)/h = L,-abs.

Py = —Mjc* = —WJjc, @17
The partially relativized states of “M™ in the 7-dimensional configuration space
0
K$Y(X,, y) take the form

(?o(u, yIP, M,; M) = A, exp [i/’l(P,}(u)] exp (ig,) (yIM,,). (4.20)

Again we see that the phase-shifts ¢, do not affect the C,-absoluie states (y|M,), nor
they spoil the orthogonality and closure properties of the states (4.20) in the 6-dimensional
configuration space Kg’L()% , ¥), because (M,|M,) = d,,, while ¢, =¢, if M, = M,.
In the NR framework 4¢S = 0 hence all ¢¢ = 0 and therefore, the C,-phase-shift effects
can be expected only if: 1° finite ¢ is taken into account which calls for multi-time states
and, 2° the process in question is inelastic, as then M, # M, and A¢ = ¢, ~¢, # 0.

Each scattering state (y|M) (M > m,+m,) is a C-L characteristic of “M = 1+2”
and hence, it must be relativized directly which leads to (4.15 i, ii). However, any bound
state (piM,) is a Q-L characteristic of “M”’ and, as pointed out in Section 1, it remains
“hidden” from the external space-time. Consequently, according to ANSATZ 11 we main-
tain the x-relations (4.15'7), as the centre-of-mass X,, parametrizes the directly relativi-
zable (C-L) external motion of “M” as a whole, but we do not maintain the direct relativ-
ization of the internal Fermi relation-momentum ¢ of each of the Q-L bound states
separately as it must be for the C-L scattering states (5.15 ii). For example, if the C,-ab-
solute form factor of “M” is of the form

an'(y) = (Mn’{.v) (y]l"ln) = C4-abs. (421)

then, according to the Ansatz 11, the {(indirect) relativization will concern the whole bilinear
form F,,(y) and not each bound state (y{M,) and (yiM,) separately. In consequence,
besides the phase shift effects due 4¢ # 0 we can also expect the Cy-effects due to the
indirect relativization of the elastic form factor F,,(y) when M, = M, and 4¢ = 0 —
cf. Sec.6.

5. Indirect relativization of Q-L characteristics

Let us consider the elastic scattering of two point-particles without spins (s, = s, = 0)
which interact at-a-C,-distance through the internal-potential ¥(y?). In this simple dynami-
cal process the total mass M is a constant of motion, M; = M; = M, and hence
4¢ = ¢c—¢, = 0. Thus the whole problem concerns the relativization of the Q-L inter-
nal-potential V(p?). Let us emphasize that all matrix elements. My; represent the C-L
characleristics as they determine the directly observable cross-sections, which let us denote
by writting M, = Mp.
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Although the initial and final states of “M = 1+2 as the C-L scattering states
must be directly relativized (p? , = —mj} ,), let us tentatively evaluate the matrix element
M;; with the help of “wrong’ as only partially relativized asymptotic states sunk in the
configuration space KS™(X, y). In the assumed Born approximation they take the form
(4.20) with (yiM) equal to (qu,f) respectively and 4, = 4,;:4;;¢. Since M; = M; = M,
by putting a = a(M) we get X X and ¢;¢; = 0 and thus

(X, yIP;, M; q;) = A1 Az exp [i(Pi X +4q:9)]
(X, y|Pe, M; q) = Aj¢Ays exp [i(PfX+‘IfY)]
with P? = P} = —M?>. (5.1

Of course, M; = M; also implies that g7 = ¢? and hence, the Mandelstam momentum-
-transfer (square) variable “#”” is equal to

t = (q;—¢;)°> = C,-abs. = L,-abs. . (5.2)

According to the ANSATZ III the amplitude M5;" = (f|V|i) provides us with correct
numerical values of the absolute matrix element accounting for the transition between
the initial and final states, where

= [d*X [ @*y(P, M; il X, »)V(®) (X, yIP;, M; q))
= (2”)4 (A1+fA1i) (A;fAzi)5(4)(Pi‘Pf)i,[(‘li—‘If)2 = t] = Cy-abs., (5.3)

and
F(q) = [ d*yF(y) exp (—iqy) (5.4)

which accounts for the canonical commutation relations (1.8).

In spite of the correct numerical value of the amplitude (5.3), (Ansatz III) its analytic
form does not account for the C-L character of any matrix element which requires the
L,-invariant expression of M;;. In order to satisfy this geometrical requirement let us take
instead of (5.1) the correct, fully relativized “trajectories” sunk in K5(X, x), where )0( =X
and x = x,—Xx;. By virtue of (4.11) we get

(X, x|P;, M; p;) = Ay;Az; exp [i(P;X + pix)]
(X, x|Pg, M; p) = AeAys exp [i(PeX + pex)], (5.5)

where, according to (4.15), P; ¢, p;¢ and X, x can be expressed by Piigs pzm and Xx;, x,,
respectively. The manifestly L;-absolute expression of MSY such that MS" = M} requires
the 4-dimensional integrals in K3(X, x) (or Kr(x;, x2)) and consequently, the Ls-invariant
expression of the Cy-absolute interaction ¥(y2). Then let U denotes the appropriately
relativized interaction ¥ which, much as ¥(y?), cannot depend on the boundary conditions

! In Sections 5-7 we put % = ¢ = 1 and omit the relativistic indices g, ¥, ... . Thus a;, = @ and
ayb, = ab = ab—asb,.
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of the collision process. Since x? is the only given a priori L,-invariant interval between
the interacting constituents “1”” and 2’ then U = U(x?) and hence

ME™ = M = [ d*X [ d*x(P;, M; pll X, x)U(x?) (X, x|P;, M; p;)
= (2m)* (A4,;) (A5:45)8 (P, — PYU() = L,-inv., (5.6)
where

t = (pi—po)> Pis = Piig +Paip
hence
C,-abs. = V(1) = U(t) = Ly-abs. 6.7

which determines the indirect relativization of V(y?) to U(x?). More precisely the
situation is as follows.

Assume that the C,-absolute “x-shape” F(y)? represents a Q-L characteristic of
“0”. If the integral (5.4) is convergent we get its momentum representation F(g?) and,
following (4.8) and (5.7) we perform the direct relativization of F(q2) by determining
the L,-invariant “p-shape” G(p?) as equal to

G(p*) = F(p* = 9> > 0). (5.8)

G(pz) for time-like p is determined through the analytic continuation hence, on getting
G(p?) for all p, the L,-x-form-invariant “x-shape” G(x?) which relativizes indirectly F(y?)
is given by

GP(x?) = (2m)™* | d*pG(p?) exp (ipx). (5.9
D
Here D means the suitable contour of integration in the complex po-plane, if that is required
by the singularities of G(p?). We shall say henceforth that F and G represent “the same
shape” (“F = G”’), where F is its representation from the C,-inside, whereas G, from the
L,-outside. In particular, U(x*) and V(y?) represent “the same’ interaction between
“1” and “2”. Thus the action-at-a-C,-distance given by V(y?) as corresponding to the
Ls-x-form-invariant propagator U®(x?) remains consistent with the requirements of
the relativity and, by suitable choice of D, causality [7].
From (5.8) and (5.9) we find that independently of D

+ o
[ dxeGP(x* = x*—x%) = F(x? WF(yZ) (5.10)

which determines the Cj-absolute shape F(y?) from its L,-counterpart G‘®(x?). Thus
if the integrals (5.4), (5.9) and (5.10) are convergent then, apart from the ambiguity due
to D, any absolute x-shape has its two “faces”: the internal F and the external G. Note
that (5.10) clearly shows the L,-B-absoluteness of |y|, because the L,-x-form-invariance
of G(x*) implies that, independently of the reference frame S in L, where the integral
(5.10) is evaluated, we end up with the same analytic form of F(x?). This exactly is what
the “B-absoluteness” means as stated in (2.10).
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The three following examples illustrate the indirect relativization procedure and the
correspondence between “F> and ‘G’ representations.
1. Assume that F = V(r) is the C,-absolute Yukawa static potential

V(r) = (1/4n) exp (—kn)fr (r = |y)). (5.11)

The integral (5.4) is convergent and ¥(¢%) = (k2 + ¢2)~! hence, after analytic continuation,
we obtain U(p?) = (k?*+p?)~! and finally

UP(x) = 2m)* j atp SRR _ o, (5.12)

K°+p
D

In particular, if D is the Feynman contour “F”’, the static Yukawa potential (5.11) has
its external “tace” given by the Feynman propagator U™ = A®(x; k).
2. Suppose now that F(p?) = y? Then the integral (5.4) is divergent and therefore, the
C,-absolute internal-space distance represents a shape which has not its external (“face”)
L,-representation.
3. Conversely, let the Ly-absolute be the shape of the four-interval G(x2?) = x2. Now the
integral (5.10) is divergent and hence, the L,-invariant four-interval has not its internal
(“face”) C,-representation.

6. Inelastic collision

Let us consider now the inelastic collision of a point-particle “3” without spin with
the particle “M” composed of two point-particles “1’* and “2” also without spins, which
results in the excitation of "M from its ground state (p|M;) = w; of the absolute mass
M; to the final bound state (y|M;) = y; of mass M;. For the sake of simplicity we
assume that the composite particles “M; ;" are also spinless which implies that the eigenstates
¥ ¢ of h are spherically symmetric in Cs, ie. y;p = y;¢(y?).

It is assumed that “3” interacts with “M’ through the constituent and, since
“1” does not coincide with the centre-of-mass of “M”’, the corresponding cross-section
will indirectly measure the internal Q-L structure of “M" as well as the very interaction
V3. In consequence, both these shapes must be indirectly relativized.

- In the assumed Born approximation the partially relativized asymptotic states of the
three-body system in question are the ecigenstates of P and p,. The indirectly relativized
interaction V5 to U((xs—x,)?) implies that the matrix element MJ; must be evaluated
in the configuration space KX(x;, x,, x;). Thus, instead of the phase-shifts ¢i¢ let us
parametrize the initial and final asymptotic states by explicitly introducing the centre-of-
-mass X;; = dj¢X; +b_i,fx2 of “M;”, respectively hence:

6619)

¥, = A;A;; exp {i[Pi(a;x; +bix,) + p3ixs Jwi(y),

¥¢ = AgAyc exp {i{ P(agx; + bexy) +P3fx3]}’{’f()’2), (6.1)
with

aif =% [1+(m%—'m§)/Mi2,f] = 1-b;.
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The internal, C,-absolute structure of “M" still remains hidden in C; and, as seen from
(6.1), in the process under consideration. it is given by the Q-L form factor

Fu(y®) = (Mly) (IM) = wF )wi(y), (6.2)

as stated in (4.21). Therefore, from ANSATZ 1I it follows that the indirect relativization
concerns the whole form factor Fi;(y?) and not each of the bound states y, «(y?) separately.
Denoting by Gg((x,—x;)?) the external, L,-representation of the internal form factor
(6.2), the manifestly L,-invariant form of the C-L matrix element in question takes accord-
ing to the ANSATZ 111 the following form

Mg = (Af A (A543 § d*xy § d*x, § d*x; exp {i[(a,P; — agP)x, +(biP;— beP)x, ]}
x exp [i(p3i—Pa)*3]Gei( (2 — %) )HU((x5—x,)")
= n)* (A 4)) (454308 D(Pi+ pyi — Pr— p3)U(DGry(u?), (6.3)
where
A = py;—py = Pe—P;; A% =1
u = b,P,—bP,. (6.4)

This amplitude is illustrated in Fig. 2 (A) and the discontinuity of the *“thick’ line corre-
sponds to the “jump’ of the centre-of-mass of “M” from X; to X;. This “jump” or, in
other words, the phase-shift effect due to ¢; # ¢;, implies that u }y 4 and hence, u? is not
proportional to ¢ as in the standard theory. The corresponding “‘jump-effect” will be
evaluated in Section 8.

Let us evaluate the same amplitude (6.3) by parametrizing all quantities in the variables
Q 0 0

X =ax;+bx,, x = x,~x,; and x; instead of x,, x,, x5. This would correspond to the

O
standard Feynman graphs phenomenology where the same overall coordinate X paramet-
rizes “M;” and “M;”. Then (6.3) can be rewritten in the form

~ 0
Mg = (2m)* (A¢ 4) (A3rA3)0" (P + pas— Pr— pa U() § d*xGR(x) exp (—ibAx)
which determines the corresponding Feynman form factor GE(x) equal to
0 0
Gi(x) = Gei(x?) exp {i[(b—~b)P;—(b—b;)P;]x}. (6.5)
The phase in the exponent of (6.5) is equal to (4.17)
bi— b = (b—bYM, 41D — (B —b)M, 410 = abs.,

where At") denote the relative-time variable in the rest-frames S; and S; of “M;” and
“M;”, respectively. When rewritten L,-covariantly, ¢; —¢; takes the form

0 o
¢i—¢¢ = [(b—b)P;—(b—b;)P;]x = Ly-inv. (6.6)
which coincides with the phase in the exponent of GE(x) from (6.5).
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0 (V]
Because of the arbitrariness of b we can put b = b; and then

Gei(x) = Gri(x?) exp [i(b; = bp)Pix]. (6.5
For elastic collision when b; = b; we obtain
GE(X) = G;,(x?*) = L,-x-form-inv. (6.7)

which means that the C, and the Feynman phenomenological form factors coincide and,
what is important, both are L,-x-form-invariant functions.

Of course, Ansatz 11, according to which we have constructed the L,~-x-form-invariant
form factor Gg;(x?), conflicts with the L,-framework independently if we deal with the
inelastic or elastic collisions, The point is that in the L,-framework all characteristics
are C~L and hence they must be relativized directly. Any shape is a priori sunk in L,
and so there is no room for the dichotomy of the Q-L and C-L characteristics and con-

Fig. 2. Inelastic scattering graphs: (A) in the configuration space X {‘(x,, x2) with the “jump” of Xy
and (B) in K 12,(1‘9, x) which corresponds to the phenomenology of the Feynman graphs
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sequently, for the Ansatz II. Therefore the construction of the “relativistic”’ form factor
Gg(x) must resort to the (directly relativized) “relativistic wave functions” [14]. In our
simple case of spinless constituents and spinless “M;;” the relativistic wave functions
should be of the form

pie(x) = pidx® Pigx), (6.8)

EE]

where the arguments P; ¢x indicate the rest-frames S;¢ of “M;;”, respectively. Conse-
quently, the “relativistic”” form factor G; must bc spanned on three L,-scalars,

GH(x) = Gi(x?, Pix, Px) # L,-x-form-inv., 6.9)

for inelastic as well as for elastic collisions. For elastic collision we have besides
Pl =P} = —M*M = M; = My). Thus the “relativistic”” form factors must be entangled
in the boundary conditions of the collision process which conflicts with the Feynman
(elastic) form factor (6.7). This inconsistency of the L,-framework is, to some extent,
concealed in the momentum representation where we need to know the Fourier compo-
nent of the form factors for 4 = P,—P; only. Thus

§ d*xGgi(x®) exp [i(Pe—P)x] = Gpi(1)
| d*xGfi(x?, Pix, Pex) exp [i(Pe—P)x] = Gi(1), (6.10)

as t = A? is the only Mandelstam variable which parametrizes both L,-absolute integrals
(6.10).

If “M” is of finite mass then it cannot be treated as the source of external L,-field
(cf. Lorentz limit I) and the recoil of “M”" due to finite 7 implies that S; # S;. From the
x-representation of Gr; (6.9) it is easily seen that the “jump” from S to S; affects the
analytic structure of Gf;(x) which means the so-called “relativistic distortions” of the struc-
ture of “M” [15].

Let us introduce the dimensionless parameter f,

[ = t/M?*c?, (6.11)

call it the “Q-L-parameter”” whose magnitude is responsible for the deviation of the
indirect relativization of a Q-L characteristic implied by the C,-framework, from its
direct relativization implied by the standard theory. In the NR framework (¢ — o) we
have f = 0 independently of the magnitude of the recoil-velocity of the measured object
“0” and therefore, we cannot expect any C,-effect. This follows from the isomorphy
of the €¢ and G, continua. Also in the L,-framework f = 0 as M — oo charactegrizes
the Lorentz limit 1 from Section 2. Indeed, all external fields do not suffer from recoil
and hence they must be directly relativized as the C-L characteristics. This shows the
singular character of the L,-framework when dealing with external fields carried by in-
finitely heavy sources. According to the C,-framework f # 0 calls for the indirect relativ-
ization and therefore f is the measure of the Q-L “degree” of the described shape.

The L,-x-form-invariance of the C,;-framework form factors G;; means that the inter-
nal structure of “M™* does not suffer from any ‘“relativistic distortion”’. They would be
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“produced” by the L,-tramework which imposes the C-L character onto the Q-L charac-
teristics. Of course, in the “NR” collisions when f < 1 the “relativistic distortions™ are
negligible, however, the penetration of “M” by means of collisions with f = ¢/M?c? < 1
is restricted to the periphery of “M”, where r > h/Mec.

From the elastic electron-nucleon collisions we know the phenomenological Feyn-
man form factor Gi(t) = Gy(t), cf. (6.7), up to t = 25(GeV/c)* > M2c? = 1(GeV/c)?
[16]. Since f = 28 > 1, the recoil velocities of the nucleon are extremely “relativistic”
and hence, according to the L,-framework, the “relativistic distortions” should dominate.

In the standard procedure the static charge distribution p(x?) of the nucleon is intro-
duced as equal to [17]

o(x?) = eFy(x?) = (2n) e [ PApGE[t = (4p)*] exp (idpx)  (GHO) = 1).  (6.12)

In the L,-framework g(x?) represents a static shape of the nucleon in the CM-system
S* of the colliding electron and nucleon, because S* is the only “Breit-like” system where
Apy = 0. Therefore, ¢t = (4p)* as stated in (6.12), independently of the magnitude of .
However, it is quite obscure why the internal structure of the nucleon. should be static
in the ‘“‘accidental” reference frame S*. Of course, this results in further difficulties if
one tries to explain theoretically the experimentally obtained “dipole’ form of the form
factor Gf; = Gy; [16, 17).

In the C;-framework g(x?) coincides with the C,-absolute form factor g(p?) = eF;(y?)
sunk in C; and hence, all the obscurities disappear. The internal structure of any isolated
(“quantum’) system “O”, in particular the nucleon structure, exists (according to the
Cy-framework) in the relation continuum C,, whereas the event-continuum L, is una-
voidably the continuum where these structures are measured from the outside of “0”.

For example, if y(y?) = 87~ Y*R-3'2 exp (—r/2R) were the nucleon wave function
in C, then, the indirectly relativized form factor G(t) = GL(7) would take the “dipole
fit” form

Gy( = (1+R*)72. (6.13)

From the experiment [16] we get R = 1.19 (GeV/c)™' or R = 2.34x10~'* cm and then,
the mean-square radius R of the nucleon, R = (y?)!/? = /12R = 8.10x 10-'* cm.

We sece then that besides the phase shifts ¢, in the inelastic collisions, the Q-L nature
ot the form factors, even the elastic ones, provides us with another source of C -effects
connected with high-momentum transfer collisions. Both effects are crucial for the hypo-
thesis of the C,-continuum and the Ansatz’s I, II, Il implied by the C,-framework.

7. Spectator distributions in disintegration processes

Let us consider the same physical system as in Section 6 assuming however, that the
impinging particle “3” distintegrates “M™ into its two constituents “1>” and “2”. We
shall neglect the final state interaction between the products of disintegration (Born approxi-
mation) which is well justified if ¢ is much larger than the C,-absolute. Fermi relation-
-momentum square g2 = pg characteristic for the initial bound state y;(y*) of “M” [18),
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Thus the final state y; ~ exp (iq;y) in C,4, as the scattering state-of *“1+2”, must be
directly relativized and, from (4.9) and (4.15 ii) we obtain
Ye ~ exp (iqey) = exp (ipex) (X = X3 —xy),
P = apy—bepye  with  pli = —mi,  pi = —mj. (7.1)

Much as in Section 6, let U((x; —x,)?) be the indirectly relativized interaction between
“3” and “1”°, but now, the initial state, as the unique bound state represents the Q-L
characteristic of “M’’ accounting for its internal structure. Thus

vy = Fi(y) (72)
represents the form factor of “M”. Its indirect determination becomes possible through
the measurement of the momentum distribution of the spectators “2’° which, in con-

sequence of dynamical process of disintegration, become directly observable. Therefore
F,(y?) must be represented from the L,-outside by the L,-x-form-invariant form factor

Fi(y2) - Gi((xz"x1)2)§ “F; = Gy (7.3)

Omitting the form factor G, the dircctly relativized initial and final asymptotic states of
“M” take in the assumed Born approximation the following form in the configuration
space Kr(x, x5, x3):

¥, = A;Ay; exp {i[Pi(a;x; +bx;)+ paixsl)

Ve = A Ase exp {i[ Pe(aexy +bexs) + pe(x2 — %)} A3¢ exp (ipaexs)- (1.4

The interaction between “3” and the constituent “1’” of “M"** implies that, much as in
Section 6, the corresponding transition amplitude Mjf; must be evaluated in the configura-
tion space KX(x,, X,, x3). According to (4.15 ii) the final scattering states ¥; from (7.4) can
be rewritten in the form

Vi = AypdyeAse exp [i(pyexs + PagXs + P3cXs)] (7.5

which shows that the weights a;, by disappear from the parametrization of the scattering
state. Thus the centre-of-mass X,, is of no physical meaning in the scattering states of
“M”. In spite of no “jump” X; — X, the Cy-cffects will emerge because of the off-mass-
-shell states of the constituents “1”’ and “2”° in the initial bound state ;.

Following Ansatz III, the L,-invariant expression of the C-L absolute matrix element
M;; of the disintegration process takes the form '

Mtlk"i = fd4x1 §d4x2 j d4x3'-l’f+(x1, X3, xa)U((xs—xl)z)Gi((xz—sz ‘Ti(xl, X2, X3)
= (2n)* (A;A5A) (43450 (P; + p3;— p1e— Pas— P U(DG(KP), (7.6)
where
k=0bP,—py, P!= =M}, t= (P3i—p3f)2' )

The C,-effect evaluated in Section 9 will be due to the structure of the four-vector %.
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8. “Jump-effect” in inelastic collision

The inelastic collision analyzed in Section 6 will be now illustrated by the electron
collision with the hydrogen-like atom “AM™ which becomes excited from its initial ground
state |1S) (“M;”) to all lowest excited states [2S) and |2P;j) (j = 1, 2, 3) (“M;”).

The internal C,-absolute states y; ((y) will be evaluated from the Schroedinger equa-
tion (1.11") which we call the C$-approximation to C,. One could suspect that the evaluation
of the c-depending C,-effects conflicts with the NR equation (1.11'), however, it is not so,
because of the singular character of the G,-group [6]. The point is that the G,-group deals
simultaneously with fwo subsequent terms of the expansion into powers of 1/¢? parameter.
For example, if M,, is the exact value of the absolute mass of two-body system in the state
|M,) then,

M, = (m,+m,)+w,/c* = abs., 8.1

where w, is the (exact) internal-energy value of “Af*’ in the eigenstate |M,) of h after sub-
tracting M, = m, +m, which means the “neutral element” of the G,-group. On the other
hand, from the NR Schroedinger equation (1.11’), i.e. in the C$-approximation, we obtain
|wE) and the eigenvalues wS and, taking into account the Einsteinian energy-mass relation
we can write

M, = (m,+m,)+wE/c2+0,(1/c*), (8.2)

where 0,(1/c*) accounts for higher-order correction. Thus |wS) and wS account correctly
for the 1/¢? effects and, moreover, if

0, (1/cHc*jw, < 1, (8.3)

which occurs for loosely bound structures like atoms, the CY-approximation accounts
correctly for the c-depending C,-effects up to the accuracy 1/c?. Consequently, if
q%/c? < min (m?, m?) the relation-momentum spectrum obtained from |wS) approximate
well the real spectrum. The above singularity of the G,-group forces one to distinguish
between two “NR limits”’. The first, on the level of masses, when ¢ —» oo implies that
M, — M, thus the inertia of “M” becomes independent of its internal state M, and the
second, on the level of internal-energies, when w, Wwf, but the rest-energy

W, = Myc? —> . By the C$-approximation to C, we mean the second NR limit

maintaining, however, W, finite. The C,-effects evaluated in this and the next Sections
will be based on the CJ-approximation thus accounting for the first-order effects in the
expansion parameter 1/c2.

The “jump effect’” discussed further on is relatively a low-energy process hence the
neglect of spin interaction is justified, while “weak’ electromagnetic interaction justifies
the Born approximation. Moreover, it is assumed that the impinging electron (*‘3”) inter-
acts with the atomic nucleus “A4” (*‘1”’) only which, as will be shown, is justified by large
t’s in the region where the ‘“§ump effect”” should appear. In consequence, we can neglect
all exchange effect [19]. Thus

my = AM, m, = m; = m, 8.4)
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where M and m now denote the nucleon and electron masses, respectively. Under these
assumptions the matrix element (6.3) coincides with the transition amplitude of the inelastic
“e-atom’ collision. Since the lab-energy E, of impinging electron will be of the order
of 1 MeV or even less, while the energy gap J, between the ground and excited states of
the atom is of the order of 10 Z2 ¢V, we shall deal with three energies 8, E,, AMc?* of
different order of magnitude,

§; < E, < AMc? = A GeV, (8.5)

which simplifies further calculations. Thus the “Q-L-parameter” f = t/42M32c?
< EYA2M?c* ~ (m]AM)? < 1 and therefore, the Q-L nature of the atomic form factor
cannot result in any C,-effect. The latter will be due to the ‘“jump” X; — X;. Strong ine-
quality E,/AMc* < 1 also implies that the overal CM-system of the impinging electron and
atom can be identified with the lab-system where the atom is (almost) at rest before and
after the collision. On the other hand, as E, » J;, while the “jump-effect” deals with
t > 8%/c?, the scattering lab-angle 0 of the impinging electron will be very well approxi-
mated by the corresponding elastic scattering angle when

sin (0/2) = t'*/2p.. (8.6)

Here p, is the initial lab-momentum of the electron (E, = c(m?c?+p?)/2 —mc?) and since
E,>» 0, we also can neglect the lab-velocity difference of the scattered electron from
before and afler the collision. Thus, according to (6.3), the ‘inelastic cross-section for
‘“‘e-atom’” collision omitting the “e-e” interaction takes the following form

doldt = (dd/dt)e—A[afi(ui)l2~ 8.7

(da/dt),_ , means the elastic cross-section for the electron-nucleus collision, both regarded
as point particles, while G;; is the global form factor for the transition from the initial
ground state |1S) to all four excited bound states [2S) and |2P; ). In the C$-approxima-
tion all excited states are of the same internal energy wy hence, denoting by w the ground
state internal energy we have

(Me~M)c® =8, = w$—wP = 3 uc®e®Z? = 25 = 102 Z% eV, (8.8)
where p = m/(1+m/AM) = m and « = “1/137”. From (6.4) we have
u, = bP,,—bP;,, Pl = —Mic?

and from (4.13")
big = 3 [1=(A°M*—m*)M}] ——>b® = m/(AM +m) = m[AM (8.9)
hence, taking into account that m/4AM <1 we end up with
ul = (b;b)t—[(A*M* —m*)M?]65/c* = (b°)*t~63[c>. (8.10)

If we assumed an opposite situation, namely that the impinging electron collides with
the atomic electron while heavy nucleus “A4” is the internal spectator then, instead of
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ui, the argument of the same form factor G;; would be equal to (m & AM, a =~ a® ~ 1)

uf‘, = t4d3/c% (8.11)
In the standard theory, instead of (8.10) and (8.11) we have
s *y (8.12)

ui = (b9, Uey = 1.

Since # > 0, uZ, is only shifted towards positive values as compared to 1543‘, by a small
amount §2/c?, which is practically impossible to detect. However, an experimentally much
more optimistic situation occurs when the lighter constituent (electron) is the internal
spectator and exactly this case corresponds to the cross-scction (8.7) where the “e-e”
interaction is neglected. It will be shown below, cf. (8.17), why the ‘“‘e-¢” interaction can
be neglected when investigating the “jump-effect”. By introducing the critical momentum
transfer tg,

to = (b%)7283/c* = A (M[m)*&(c? > &3/, (8.13)
instead of (8.10) we can write

uy = (%)% (t—1t,) (8.19)
which shows that u, changes its character from time-like for ¢ < 1, to space-like for 1 > #,.

The largest deviation of u2 from :tz takes place in the vicinity of ¢ = ¢, when 1’(z,) = 0
and hence, G;;(0) = 0 either, because of the orthogonality of |18) to all four excited states
|2S) and |2P; j). The “jump-effect” (¢, 5 0) then would result in the vanishing of the cross-
-section (8.7) at ¢t = t, and its essential modification in the vicinity of ¢t = #,.

After translating into the scattering angle, the critical value of ¢, results in the corre-
sponding critical scattering angle 6,

sin (60/2) = 15"[2p. = 3 AZ*(M[m) (8/cp.), (87 = Z*0), (8.15)
which shows that G, lies in the physical region (6, < 180°) if
Pe =+ AZ*(Mm) (8/c) = 9.4 AZ*(keV]c) or E,>844%Z%eV.  (8.16)

We see then that the experimentally comfortable scattering angles 6, for low values of
Z, e.g. for helium ion 4 = 2Z = 4, correspond to the energies of the order of 1 MeV,
or even less. Thus the “jump-effect” would be rather a low-energy effect when cach of the
three constituents of our system can be safely treated mechanically. In Fig. 3 the critical
angle 0, is plotted vs x = &/AZZ.
mc

Let us consider now when the neglect of “e—¢” interaction in (8.7) is justified. The
ratio K of the corresponding amplitudes accounting for the “e~A’’ and “‘e—e” interactions,
respectively, is equal to

K= Zéfi[(bG)zt]/Gﬁ(t)’
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where the factor Z is due to Z-times stronger “‘e~4”’ than “e—¢” interactions. In analyzing
the “jump-effect” when 7 = 1o, 1o > g% > 63/c?, and taking G from (IIL. 1) we obtain
K = 0.22Z°54*(t[t,)*">. 8.17)

Except the hydrogen atom, even for helium ion, K takes a very large value K = 3.6 x 10®
(#/t,)%'* which justifies the neglect of the “e—e” amplitude.

A A
9[ Qc X =%%/AZZ
gg&’&s’m ® @ = 2arcsin [32-(%)(&2)}]
20
180°
120°}
10°
9%0°}
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3t
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Fig. 3. Critical angle 0y vs x = fe—/AZZ. For x < 0.0184, 0, lies in the unphysical region (6, > 180°)
me

The difficulty in proving-disproving the “jump-effect”” is due first of all to small
cross-section (8.7) as

|Gu[(B6)%]1% = 4.16 x 107 °Z2(¢/t,). (8.18)
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Thus, from a large background of e—e interactions and y-cascades we must pick out these
events when the leading electron is of almost the same lab-energy E, it had before the
collision, in coincidence with y-quantum of energy J, coming from disexcitation of the
atom. The experimental facility can be the fact that in presence of the “jump-effect”
we should not observe such events for ¢t =1, (0 = 8,). Taking into account that
t = 4p2sin? (0/2) and (do/dt),_, is the Rutherford cross-section, we end up with

d*oldtdy = 4.16 x 107°Z? (ﬁ:/l‘o 1) 2AZe*[v)? (11%). (8.19)
o
y
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y= 2034 (%) :xgq, b
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Fig. 4. Inelastic cross-section (8.7) plotted vs x = #/t, in the vicinity of x = 1. Thick curve corresponds to
the “jump-effect”; Thin curve, to the standard theory

Here dtdp = 2p2dQ and dQ is the element of the spherical angle of the scattered electron,
v, = po/(m+E,/c?) is the lab-velocity of the impinging electron, while the two values
in brackets correspond to the standard theory and the “jump-effect”, respectively. These
two cross-sections (8.19) are plotted in Fig. 4 vs. x = #/t, in the vicinity of x = 1.
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9. C,-off-mass-shell effect in disintegration process

Another C,-effect would concern the momentum distribution of spectators in the
disintegration process analyzed in Sec. 7. Much as in Sec. 8 let “M”’ be the hydrogen-like
atom initially in the ground state (y|1S) = y;(»®) which now becomes disintegrated by
the impinging electron. Let us consider the sample of collisions with > pg, where
Py = Zamc is the characteristic Fermi relation-momentum of the |1S) state, because then
the final-state interaction between the products does not disturb the spectator distribution
[18]. In consequence, the matrix element (7.6) describes with a very good approximation
the transition amplitude for the disintegration process in question, provided that the
“e—e” interaction is neglected. However, if # > pk the investigated sample splits into two
well-separated groups, first when the spectator is the atomic electron and second, when
the nucleus is the spectator while the “e—e’” collision takes place. The investigated cross-
-section will then concern the first group, when the atomic electron is the low-energy spec-
tator particle, while almost the whole value of 7 is transferred onto heavy “4. In con-
sequence, the L,-invariant momentum distribution E,«(do/d>p,;) of the spectatorelectron
becomes proportional to the form factor squared |G~i(kf‘)]2 from (7.6) with k, as given by
(7.7). Thus

Ezr(da/d3P2f) ~ |Gi[(bipin_l’zfy)2]izy .1)
where
Pizu = “‘Mizczs pgfu = ___nlch, bi = %[1—“(AZM2—"12)/M,2]
M; = (AM+m)~—w;/c?,  w; =w’ =1 uc?a?Z? = 13.6Z%eV. (9.2)

Since w;/me® <1 and m € AM we obtain

) AM w; A*M? w
ky =2mT|1-|- MN—=]-
AM +m/ \ mc (AM+m)* ¢

= 2mT(1—w;/mc?)—wijc?, 9.3)

where T = c(m?c?+p?)'/?2—mc? is the lab-kinetic energy of the spectator electron and
hence, p = pyelian-
As seen from (9.3) the constant term —w/c? implies that for very small 7, namely

T < wi2mc® = 1.81x1074Z% eV

k, becomes time-like. However, this effect is practically impossible to observe and we
shall neglect it by putting

ki = 2mT(1 —w;/mc?). (9.3

Moreover, since G; is evaluated in the C5-approximation of C, — cf. Appendix I1I — the
spectator momenta p must be restricted to the “NR’ values when p?/m?c? < 1 and hence,
T = p?/2m. Then

k2 = (1—-wfime?)p’. 9.9
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In the NR limit ¢ - o0 k% — (p©)? as it should be according to the standard theory. The
c-depending C,-off-mass-shell effect reveals itself in that the factor (1—wP/mc?) is less
than 1 and, within the C$-approximation it accounts for the effect in question. The restric-
tion to the “NR’ lab-energies 7 implies that instead of (9.1) we have

do|d®p ~ |9i[(2zp)*]1*  with

iz = 1—wP2mc?  (wo/mc® < 1). 9.5)
Taking into account that (App. (111.3))
piky) = Gkl = 8" p?|(pE+k3)? (9.6)
we end up with
do|d*p ~ (pe+A7p") "% 9.7

The spherically symmetric distribution (9.7) of the spectator in the lab-system, where
the atom is at rest before disintegration, reflects the spherical symmetry of the ground
state (y | 1S) in C;. By introducing the Z-scaled, dimension-free momentum

s =plpr (s =Isi), (9-8)

the normalized to unity distributions P,(s) of s take the form

52

32,
J Pz(s)
1.5
1 //\
0.1 \\\\s‘:‘:
0.0 01 0.5 1 1.5 2 s

Fig. 5. Momentum distributions Pz(s) of spectator electrons (s = p/pp) for four values of Z: 1. Z =0
(Ao =1),2. 2 = 87 (As7 == 0.9), 3. Z == 123 (4123 = 0.8) and 4. Z = 150 (4160 = 0.7)
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These functions exhibit the broadening of the distribution of s increasing with the increase
of Z, when the atomic electron becomes more and more off its mass-shell. The loosely
bound nature of atoms makes the “broadening effect” very weak, as

dy = 1—1.33x107°22 (9.10)

is very close to unity. Of course, for the experimental as well as theoretical reasons Z
must be small. In Fig. 5 the distributions P,(s) are plotted for different values of Z. The
narrowest curve for Z = 0 coincides with the universal one of the standard theory when,
independently of Z, A5 = 1. The other three curves correspond to unrealistically large
Z’s in order to show the effect clearly.

10. Measuring process and final remarks

Any particular measurement provides us with a C-L absolute quantity W) which
characterizes the two-body relation between the measured object “O” and the “classical”
measuring apparatus “A®”. The C-L nature of infinitely heavy “A4®” (the Lorentz
limit) implies that the 10-parameter family of different but identical “A®” emerges, enu-
merated by the superscript “S”” which indicates the rest-frame S of “4®”’ in L,. The
measurement, as such, must account for the fact that al// measuring devices “4®”s” lead
to the determination of the same absolute properties of a single entity “0O’ factored-out
from measuring tools “A®”. The “classical” nature of “A4®’s” implies that W<} are
L,-scalars of the form

Wi = A .0,,. = Lsabs. = Ly-inv., (10.1)

thus “localizing” the properties 0,  of “O” in the space-time continuum L, of “classical”
“A®’s”. In other words, the directly measurable properties of “0” must be directly rela-
tivized which manifests itself in the Ls-tensor structure of O,, . Since all “4®’s” are
identical, the analytic form of the representations of “4®” in S and “4” in $’ are the
same. The external fields n}‘s) from (2.8) represent the particular case of a set of L,-tensor
fields AS) . All L,-scalars which can be constructed from the S-independent, “relative”
properties O,, = thus represent the L,-absolute C-L characteristics of “0” itself.

Let us consider the particularly interesting example when W) means the time-inter-
val indicated in S by the infinitely heavy clock at rest in S: Atls = W$) = L,-inv. The
infinite heaviness of the clock or measuring rod is required if the corresponding inter-
vals are to be determined accurately [5]. From (2.9) we get 0, = x, and hence, 0,0, = xﬁ
is the only Ly-invariant interval generated by (infinitely heavy) clocks and rods, but simul-
taneously factored-out from their reality.

In the classical framework (fi = 0), where everything is sunk in L4, Eq. (10.1) takes
place a priori thus making all properties 0,, of “0” the C-L characteristics. Then,
as rightly pointed out by Einstein, the physical realization of the “‘measuring fields’”
A,“sv) is of no physical matter, and we can start with the L,-tensors 0,,... neglecting the
“relationistic”” nature of any experimental data W). However, in the C,-framework
besides the C-L there exist also the Q-L characteristics which are directly unmeasurable.
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Thus the measurability condition (10.1) represents a constraint imposed onto the proper-
ties O,,. . of “0”, namely that they must be C-L. Therefore, if “0” is a “quantum’ object
of finite inertia then all L,-scalars constructed from O,, must be parametrized by suitable
Mandelstam variables in their physical regions (scattering states). This privileged position
of the L,—p over the L, — x language which reflects the fundamental asymmetry between
the “classical” measuring devices and the “quantum’ measured entities simultaneously
shows why the Q-L characteristics can exist (in C,) without falling in conflict with the
relativity principle which concerns the C-L characteristics only.

The following operationalistic argument strictly connected with what was said above
also inclines to accept the priority of the C,-relationism over the L,-relativism. The point
is that direct measurement of the length L, of a rod or the time-interval 7, of a clock con-
sists in the determination of the appropriate two boundary events which determine two
ends of each of these intervals. In fact, any direct measurement must be reduced to the
determination of the ““actual” coincidences of better or worse localized events. Of course,
the thus determined intervals, as submitted to the L,-symmetry of events, suffer from the
contraction and dilatation effects, respectively. However, such operations do not accom-

pany the determination of e.g. the nucleon radius R or the proper-life-time 7 of short-
-living particles [13]. These C,-absolute intervals are directly unmeasurable hence their
determination is indirect, via the L,-p language. Again the “quantum’ origin of the C,-
-continuum hypothesis can be observed, as there is no room for indirect measurement in
the classical framework (fi = 0) where the momenta “p”” become the ““x-local” quantities,
cf. App. 1. The homogeneous Lorentz transformation of the four-momenta“p”” as opposed
to the inhomogeneous Lorentz transformation of events “x’° clearly shows that the indirect
measurement of R does not (and cannot) consist in the determination of two “boundary
events” between which the nucleon exists. As a matter of fact, the “p”” measurement of
R implies that the nucleon “O” remains entirely unlocalized with respect to the “classical”
measuring rods of the L, reference frames S. If G;;(t) = F;;(t = ¢?) is the experimentally
determined elastic form factor of the nucleon (6.12) then,

R = <.V2>1/2 = [I d3yy2Fii(y2)] Y2 = C,-abs.

= i/ =6F(q" = 0) = h N —6Gj(t = 0) = L,-abs. (10.2)
We see then that the determination of R requires to know only one parameter of the
slope of Gy;(t) at ¢ = 0.
V]
A similar situation occurs in the determination of the proper-life-time t of unstable
particles measured indirectly through the uncertainty relation

0

T = hjAMc? = hJAW = C,-abs. = L,-abs. . (10.3)
Here AM means the width of the C,-absolute mass-level of unstable particle “M”’ where,
a posteriori, M = (—P2)"'?/c = L,-inv. Again it is enough to determine a single param-

. . . 0. .. . .
eter AM which shows that the life-time t is a priori unlocalized with respect to the exter-
nal L,-time determined by the “classical” clocks. The presence of the Planck constant h
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in (10.2) and (10.3) proves the “quantum’ nature of the C,-absolute intervals R and g
and, in consequence, the “quantum’ nature of the very hypothesis of the relation contin-
uum Cy.

It must be remembered that the C,-hypothesis assumes the priority of the isolation
state of the “quantum’ system over its observability from the L,-outside which unavoid-
ably calls for some dissipative process in the observing “medium”. Thus the main idea
of the C,-hypothesis can be summed-up as follows: in the L,-framework the space-time
externality “E” of events precedes the internality “I”” of the relations, whereas in the C,-
-framework this hierarchy is reversed. The internality “I’’ of the C,-relations precedes the
L,-eventysm “E” of the observation,

Lyt “E” = “I”,  Cq: “I” - “E”. (10.4)

The inversion (10.4) is possible and leads to C,-effects because of the “quantum’ energy-
-gaps which protect the inside “I”’ of isolated bound states |M,) from direct observation
from the outside “E”, thus making room for the Q-L characteristics of isolated entities
“0”.

In particular, according to (10.4), the mass M, of “M” as the C,-absolute eigenvalue
of hjc? is first determined from the inside “I”” of the system. Its direct relativization and
hence, the determination from the L,-outside “E” given by the equality M = 1/c(E?/c?
—P?)'/2 takes place a posteriori as stated in (10.4). Accordingly M = (E/c*)|p=o must
resort to the c-number boundary condition P = 0, but the momentum P as well as energy
E are secondary to the C -absolute M. Finally, since the C,-symmetry is weaker than that
L, of the external space-time continuum, the C,-relationism makes “more room” for
dynamical models than the L,-relativism.

APPENDIX A
C-L character of free four-momenta

The Mandelstam parametrization of cross-sections implies that the asymptotic states
of the colliding particles must be (almost) the eigenstates of the momenta. Thus AP, — 0
and since 4X, ~ h/AP, the determination of P calls for a very large (infinite) space-time
region Q. If AX, = a and At = a/V, where V = 0E/0P is the velocity of “M”’, the volume
a*/V of the event Q, which enables us to localize “M”’ in order to determine its momen-
tum P, in principle, must tend to infinity (¢ — c0). Moreover, inside Q, the measured P
must be a constant of motion, as otherwise the very measured characteristic would become
indetermined. The correlation nature of any quantum measurement [20] then implies that
the “p” language of the Mandelstam variables calls for infinite L,-x regions of the asymp-
totic zone ot quantum process. This is consistent with the C4-continuum hypothesis where
the L,-symmetry rules the asymptotic zone of the *“classical” measuring devices. In the
classical tramework (h = 0) Q, = a*/V can be reduced to arbitrarily small value with-
out affecting the momentum P of “M” and hence, the momentum P becomes an x-local
characteristic of “M” attached to each point of the classical world-line of “M” in L.
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In order to prove the C-L character of P, = (P, iE/c) of free “M” let us assume that
its mass M and the electric charge e are known. In Fig. 6 the two events Q" and QP

are drawn of the same volume a*/V where “M” becomes “‘actualized’” by means of some

ct

o
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|
/// a4 L ' o
r mg/////jr

Fig. 6. Direction of the trajectory of “M” indicated by two “actual” events £2{"**) separated by the space
distance b (in S) and the time interval b/ V, which precedes the measurement of the longitudinal momentum
Pz of ‘AMi,

N

inelastic process of interaction of “M”’ with the “medium S’> which can be observed. Of
course, the uncontrollable momentum transfer must obey the uncertainty relations, hence

AP x AP ~ ha, (A.D

and, after crossing both events Q§"'? on the “classical’ trajectory, “M’* gets the momentum
uncertainties AP, of the same order of #i/a. The two events Q{"*?) enable us to draw the
direction of P, but we still assume that the two coincidences of “M” in Q"% do not pro-
vide us with sufficient information about the magnitude of P. If 0 denotes the uncertainty
of the direction of P then, from Fig. 6 we see that

50 ~ (a/b)+(hj(@P)) (P = IP]), (A.2)
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where b is the space distance between Q5" and Q2. Since a and b are arbitrary we can take
(a/b) < (h/aP) and hence,

80 ~ h/(aP). (A.2")

Now we take the rotated reference frame with the z-axis parallel to {P) where the constant
magnetic field B takes the form B = (0, B, 0). Thus before “M’’ entering the spectrometer
we have

(P =(P)y =0, AP, ~ AP, ha. (A.3)

By taking a large enough it is seen from (A.3) that the determination of P is reduced to
the determination of P, = P, where

P, = P = eBRJc, (A.4)

and R is the radius of the trajectory of “M”’ deflected by the external magnetic field B.
Consequently, the uncertainty of P, is proportional to the uncertainty in determining R,

AP, = (eB/c)oR. (A.5)

|
l
SN

Fig. 7. Measurement of P, = P by deflecting “M” in the magnetic field B. The width a of the diaphragm
is large enough, so that 6R =a
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If a is large enough, so that the expansion of the wave packet on its halt-circle path can be
neglected, then, as seen in Fig. 7, R = a and we get

AP, ~ AP, =~ hla, AP, =~ (eB/c)a, (A.6)
and
P = (0,0, eBR/c), E = c(M?*c2+P2)"2, (A.D
From (A.6) we see that the dispersions of P and E become negligible if
a-o, B~al'""—=0, R~a"—>wn (¢>0). (A.8)

If M were unknown, some other particle “m” could be recognized as one of the “unit”
mass (m = 1)and, assuming that “M”’ and “m’ have the same charge e, the above measure-
ment results in

M = Ry/R,. (A.9)

Thus the exact and direct measurement of P, can be performed without penetrating “M”
which proves the C-L character of P, of free “M”. Notice also that the “Q-L-parameter”
f = t}%c? = 0, because here.# denotes the mass of infinitely heavy magnets which create
the external field B, cf. the Lorentz limit I.

APPENDIX B

Determination of the “weights” a, b

The four-momenta p, ,, of free particles “I”” and “2”" take the following form in
their CM-system S*:

P;k,zu =(Fq,iM ), M, = (mf,z +‘12i€2)1/2, (B.1)

where the c-number values ¢ coincide (numerically) with the C,-absolute relation-momen-
tum eigenvalue of . Let us introduce an auxiliary four-momentum n,(«) depending on the
parameter o, whose 4-length determines the L,-invariant function of «. Then

ﬂp(“) = apZu—(l—a)plu and f(x) = [aPZu—(laa)plp]Z = L4-inv. (B.2)
By virtue of (B.1) and denoting M = M, +M,, instead of (B.2) we get
f0) = ¢*—(aM—M,)*c. (B.2)

As known from Section 4, the direct a posteriori relativization of the relation-momentum
q calls for a space-like four-vector p, such that ¢*> = pi. From (B.2') we see that m, will
coincide with p, provided that the negative term in (B.2') vanishes, i.c.

a=a(M) = M,/M = L[1+(m}-m3)M*] = 1=b(M) = Ly-inv. (B.3)
as stated in (4.13), (4.15). Thus

ﬁ”(a(M)) = pp = a(M)piu_'b(M)plu' (B‘4)
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The following discontinuity is worth emphasizing which reflects the fundamental
discontinuity in the number of absolute intervals in L, (one) and C, (two). As seen from
(B.3) in the Lorentz limit m, — o0 a(M) — 1 and hence b(M) — 0. In spite of that p,
from (B.4) cannot be identified with p,, because b(M)p,, remains finite in the limit m; - oo.
Thus, even in the Lorentz limit, p, maintains the space-like character as pi =q2>=0,
whereas pgﬂ = —mic® and P2, is time-like.

On the other hand, in the same Lorentz limit m, — oo performed in the x-represen-
tation we end up with the one-body Klein-Gordon equation (2.6) of the particle “2’ and

I3 3]

In consequence, its “p” representation provides us with time-like p,,. This descrepancy
between the “p” and “x” representations of the Lorentz limit m; — o is due to the fact
that finite momentum transfer ¢ does not result in finite velocity recoil of “1°’ and hence, the
“Q-L-parameter” f = t/m3c® = 0. In the “p” representation, even that m, — oo, the

reality of “I” enters through the term lim &(M)p,, # 0, whereas in the “x” picture

my= oG
the reality of “1”” disappears and we are left with the L,-event continuum with only one
absolute four-interval xi. Thus the mathematical reference frames in L, conceal the second
absolute (but not L,-invariant) property which compels us to distinguish between the
L,-A and L4-B absolutenesses.

APPENDIX C

I. Inelastic global form factor Gy,

The |1S) initial and the |2S), |2P; j) final states of the hydrogen-like atoms take in
the Cg-approximation the form (h = 1)

8 1/2
(yits) = (ﬁ) q'? exp (—% qr)
1/2

]
(y28) = (2—7~) g7’ exp (=% qer) (1 =% qyr)
7{,

1 1/2
(¥I12P;j) = <2—4§[> g’ y; exp (—% qpr),

where r = |yl, ¢ = 3 Ze*u, u = m/(1 +m/AM). One ecasily finds the g-representations
of the corresponding form factors as equal to:

. 64 /2 q
F S: S(q) = q4
= 81 ' (gi+q?)?
- 642 . g
Fopjas(@) = \/ qf—l .

81 (gi+4%°
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The global, spherically symmetric form factor F;;(¢%) which accounts for the transition
to all four excited states is thus determined by

3
Fe(g)N? = |Fpss(@* + ; |F2P;j:ls(q)|2
in

hence,
. 64 /2 ('
Fy, 2y _ v 4 ,
r(q7) 31 QF(q§+q2)5g2
and
. 64 /2 (p2)'?
Geu(pp) = aF —— (C.D)
TR g
which, by virtue of the analytic continuation, is valid for all p,. Finally,
BN N I
GiP(x,) = 2m)™* J | e oxp (iR, (C2)
: ) Pl P

where the contour D must avoid the singularity at p, = +(gZ+ p?)"/2. Moreover, the half-
-integer exponent ““5/2” generates the branching points of the integrand alien to the stan-
dard field-theoretical characteristic tunctions.

II. Disintegration form factor G;

By introducing the Fermi relation-momentum pg = Ze?u characteristic of the bound
state |{1S), the form factor Fy(y?) takes the form

Fi(y?) = (y11S) = =7 2pi/? exp (= per).
Its g-representation is then equal to
Fi(q®) = (qi1S) = 8='*p*(pe+4*)*
and hence, after relativization and analytic extension, one obtains

., 1
Gipy) = ”21)3’2( s (C.3)
u

For the purpose of Section 9 it is enough to know the above L,-p-representation of G,
however, now the x-representation of G; can be expressed by means of the standard “func-
tions”’ (distributions)

exp (lpﬂ X,)

AP (x 1) = 2n)~* j d*p
B’ ) +P;‘



663

Indeed,
G"(x,) = —4xn'p%0]ape[ 4P(x,; pr)], (C4)

which represents the L,-x-form-invariant disintegration torm tactor in the C$-approxi-
mation in which (y | IS) is evaluated.

HI. Point-particle form factor

The internal “structure” of a point-particle “composed” of two constituents has
its form factor in C, equal to the 3-dimensional §-function:

F(y) =¥, Fg =1 (C.5)
The analytic continuation of F to time-like p, results in
G(p) =1 hence G(x,) = 6®(x,), (C.6)

which coincides with the standard form factor of a point-particle.

_ Let us emphasize the singular position of the point-particle form factor 6* (x,)
in L, as it exhibits another aspect of the same discontinuity between C, and L, symmetries.
The point is that §)(x,) is the only Ls-x-form-invariant form factor (in L),

8M(1,x,) = 5¥(x,), (X))

(l,, are the elements of the homogencous Lorentz matrix) which implies the vanishing
of both, the space and the time intervals between two events x,,,. In fact,
X, = X3,—Xx;, = 0 means the coincidence of the two events. However, if x;, # X,,
then, x2 = (x2,—x,,)* is the only a priori given L,-x-form-invariant attached to two
events and theretore, any form factor G independent of the boundary conditions must
depend on x2 only; G = G(x2). The form factor G(x2) remains constant on the Minkowski
“circles” xf, = const. and, because of the indefinite L,-metric x,z, = 0 does not imply the
coincidence of the events x,,, x,,. The equality xf‘ = 0 only means that x,, and x,, are
separated by the light-like intervals. Thus there is no continuous transition from G(xi)
to 5(4)(x") which shows the singular position of the point-particles in the L,-framework.

This discontinuity between 6(4)(x,,) and G(xi) is concealed in the momentum repre-
sentation if the momentum transfers ¢ are too small to detect the internal structure G
of “M”. From the considerations in Sections 5,6 and 7 we know that the L -x-form-in-
variant functions like G(x,z,) describe properly the Q-L characteristics of the ‘“quantum”
systems “O”’. However, according to the C,-hypothesis which revers the priority of “E”
and “I”” as stated in (10.4), the dynamical explanation of the form factor of “M”* must
take place in C,. The two C,-absolute intervals r and 4t together with the definite metric
of Cs-internal-space make that, much as in the NR framework, the C,-continuum provides
us with the proper “first medium’ of quantum entities. The translation of the C,-internal
into the Ls-external Q-L shapes (“F = G”) is necessary if the corresponding absolute
shape becomes (indirectly) detectable experimentally.
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APPENDIX D

New singularity

The non-local structure of the C4-operators like h implies a new singularity alien to
the Lorentz limit I (m, — oo) similarly as to the NR limit (¢ — o0). The simplest example
which leads to this singularity is the S-state radial Schroedinger equation (1.12). By

putting u(r) = rR(r), where R(r) is the radial wave function, we obtain
d*u 1 N2 a2 2,02 o2 282 6 10 N12
= T [(W —V(#)*[e*=2(mT + m3)c* + (mi—m3) c® [ (W — V() Ju(). (D.1)

If my # m, and if the structure of Eq. (D.1) admits r = r, such that
Vir) =W (D.2)

then, besides the ““old” singularities at r = 0 and r = oo, we get the third one at r = r,
determined implicitly by (D.2).

In the case of the C;-absolute Coulomb interaction ¥V = —é€3/r (r = |y|) responsible
for the hydrogen-atom structure, the value of r, can be well estimated because of small
binding energy. Indeed,

re = —&* W = —e*/((M+m)c* = —1.5x107"° cm, (D.3)

where the negative value of r_ is due to the attractive force. We see that r, tends to zero
in the Lorentz limit I (M — o0) as well as in the NR limit (¢ — o) and so, r, would charac-
terize the C-framework. However, the W-dependence of the localization of r. deserves
a separate mathematical treatment.
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