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LIMITATION OF THE CONCEPT OF THE CLASSICAL
COLORED PARTICLE

By H. Aropnz
Institute of Physics, Jagellonian University, Cracow*
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We argue that a clot of color charged matter placed in an external nonabelian gauge
field will not, in general, propagate in any definite direction. Instead, it will tend to disperse
all over the space. We also prove that if the position ¥(f) and the color spin vector 7(t) of the
classical colored particle are identified with the expectation values of the corresponding
quantum operators in the state representing a wave packet, then the classical Wong’s equa-
tions give wrong values of I(f) for large time ¢.

PACS numbers: 11.10.Np, 03.50 Kk

1. Introduction

The classical mechanics of color charged particles has been initiated in papet [1]
and developed in a number of other papers, see, €.8., [2]. It represents the very interesting
example of the classical mechanics of point-like particles with internal degrees of freedom,
and it has been considered in this same spirit as the very old classical mechanics of spinning
particles, see, e.g., [3]. The classical mechanics of colored particles has also been consid-
ered for more practical reasons [4]. Namely, it is so simple that it provides the explicitly
calculable examples of interactions with nonabelian gauge fields. Therefore, it can be
a handy tool for investigating effects which are due to interactions with nonabelian gauge
fields.

In the nonrelativistic limit, the equations of motion for a spinless, color charged
particle are, [1],
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where I = (I?), @ = 1,2, 3, is the vector of the classical color spin of the particle, and

Eai = gia Bak = ; kn‘F:n
a . a a g abc 4b
Fj = 0,d} =0, = e AL,

In paper [S] this set of equations was extended to include the spin of the particle.

It is natural to ask whether the classical mechanics ot colored particles represents
a classical limit of the first quantized theory: The rather formal derivation of equations (1),
(2) from Dirac’s equation with an external SU (2) gauge field, presented in paper [1],
could suggest that this is just the case. In paper [5] we have tried to obtain (1), (2) as the
classical limit of the Dirac equation in a more explicit manner. Namely, we have consid-
ered the wave packet of the assumed “particle-like”” form in the Foldy-Wouthuysen

representation for the Dirac equation (we neglect the quantummechanical spreading out
of the wave packet)

Y%, £) = p(x— XD, 1), 3)

where @(x—x(t)) is a locahzed ¢ — number valued wave packet moving along the trajec-

tory x(t) with velocity x(t), and 4*(x, t) slowly changes with X. The index a = 1, 2 refers
to spin, and 7 = 1, 2 refers to color degrees of freedom of the Dirac particle. We have
considered the expectation values of quantum operators in the state (3) and we have
derived classical equations of motion for them. Unexpectedly, the equations, e.g., for
the trajectory x(t), have not come out gauge invariant, in general. Only in the particular
case of sufficiently large velocities x(t) (in the sense made precise in [5]) is it possible to
write approximate equations which are gauge invariant.

The obtained in [5] set of classical equations can be considered as the selfconsistent

basis for the classical mechanics of colored and spinning particles for any velocity x(t)
When one neglects the spin, this set of equations reduces to (1), (2). In our approach the
classicill color spin vector T is identified with the expectation value of the SU(2) gener-
ators T (the color spin operators) in the state (3). However, the relevance of this classical
mechanics for the classical limit of the Dirac equation in our approach is restricted to the
sufficiently large velocities, because only in this case can one neglect the troublesome
gauge noninvariant terms.

In this paper we shall show that the relevance of the classical mechanics is even more
restricted. Namely, in Section 2 of this paper we shall present a very simple example
which shows that the particle-like Ansatz (3) itself has a rather limited region of appli-
cability. This Ansatz approximates the exact solution of the Dirac equation only when
the effects due to the external fields are small, in particular when g is small and when
the time interval is not too large. The Ansatz (3) also works in some other very particular
cases, which are, however, of the trivial type, 1(f) = const. Thus, the difficulty with ob-
taining (1), (2) as the classical limit of Dirac’s equation becomes squared — not only the
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particle-like Ansatz (3) leads to the difficulties with gauge invariance, but also it turns
out that Dirac’s equation does not allow for any particle-like Ansatz which would be
generally correct. This suggests that the concept of the classical, color charged particle
does not follow from the underlying first quantized theory. Another argument supporting
this point of view is presented in Section 4. Thus, the nonabelian case is in sharp distinction
from the abelian one. In the later case, the notion of a classical, electrically charged par-
ticle can easily be extracted from the first quantized theory [6].

In order to simplify the analysis, in the following we neglect the spin of the particle.
Then, the nonrelativistic quantum mechanical Hamiltonian of the Dirac particle in the
Foldy—Wouthuysen representation becomes essentially the Schrédinger Hamiltonian

1/, A .
H=mc?+ — (p— —g-A"T") +gAST", )
2m ¢

where T are the generators of the SU(2) group. In (4) we have also neglected the Darwi-

nian term, and we have restricted our considerations to the positive energy sector of the
theory in order to avoid ¢lassical antiparticles. The particle-like Ansatz now becomes

VI, 1) = pxX—X(OW", 1. )
In the following we assume that
u"(E, t) = ug(t)’ (6)

because the dependence of u on X was introduced in [5] essentially for technical reasons,
and it is not important here.
‘We shall consider the simple case of a color gauge potential of the “abelian” type

Al(x, 1) = B4, (%, 1), )

where f = (A") is a constant vector in the color space, h? = 1.

I1i the next Section we shall describe the true time evolution of a wave function forming
the wave packet (5) at the moment ¢ = #,, placed in the nonabelian gauge field (7). In
Section 3 we compare the time evolution of the position X(f) and the color spin I(f) of the
classical particle, as calculated from the classical equations (1), (2), which were derived
in [5] from the Ansatz (3) equivalent to (5) when one neglects the spin, with the true time
evolution of the expectation values of the quantum operators. The conclusion of Sections 2
and 3 is that the Ansatz (5), as well as the classical equations (1), (2), give definitely wrong
predictions for sufficiently large ¢. The true time evolution of the initial wave packet does
have in general the particle-like form (5) — the initial wave packet dissociates into two
separately moving wave packets with constant and opposite color spins. In Section 4
we present certain general observation concerning the behaviour of color charged matter
in the external nonabelian gauge fields and we present the other argument for the lack
of the particle-like classical limit of the Dirac equation.
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2. The wave packet in the external nonabelian gauge field

Let us now consider the time evolution of a wave function which at the moment
t = t, has the form of the wave packet (5) localized at X = X,

Y%, 10) = p(x—Xo)ud(to)- ®)
In the case of the gauge potential (7), the Hamiltonian (4) can be written as

1 /. A R
H=— (p— —g-Ah"T") + Agh* T, ©)
2m c

where we have neglected the unessential constant mc2. Let ¢, be the normalized eigen-
vectors of the hermitean matrix #°T%, T* = 1 ¢°

(T, = +1e.. (10)

From (9), (10) it follows that the Schrédinger equation

decomposes into two independent scalar equations

ih%'l’i = H;@y4, (11)
where
p:(%, 1) = e49(%, 1),
and
2
H; = zim(-’:t %Z> + —i-Ao
Of course,

P=e,p.te_g_. (12)

From (11), (12) we see that any time dependent wave function can be represented as
the sum of two wave functions, each evolving in time independently of the other, and
according to equations (1 1)'. These equations can be regarded as the Schrédinger
equations for two scalar (i.e., colorless) particles with opposite electric charges +g/2,
placed in the external gauge potential 4,.

In particular, this applies to the initial wave packet (8). Writing

uo(to) = c e, +c e, @13)
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we see that the components
@1(%, fo) = P(X—Xo)cx 14)

will evolve as if they describe the scalar particles with electric charges +g/2 in the external
electromagnetic field 4,. Therefore, the time evolution of ¢, and ¢_ has the standard
form of a wave packet moving in an external electromagnetic field. Hence, if the usual
conditions for the classical limit of quantum mechanics are satisfied, we can write the
approximation

t .
ES

pu(E 1) = cxplGi—F(1)- exp{ ; j dt[ i( Ao+—A)‘ %ﬁ]} )

where x.(t) (x(2)) is the classical trajectory of the particle with electric charge g/2 (—g/2)
placed in the gauge fie)d 4, with the initial data x(t5) = Xo, X(o) = . In (15) the external
field is taken at the point x(f). For simplicity we have neglected the spreading out of the
wave packet.

The form (15) of the wave function can be easily justified within the Feynman path
integral approach to the problem, [7]. Namely, the time evolution of the wave function
can- be written in the form

1%, 1) = [ BXKL(%, 6; %', 10)p2(F', t0), (16)

where the time evolution kernel can be written as
I i .
Ku(x,t;x',80) =N f[dq‘(t)] exp ( 75 i[q(t)]) 7
\

Here N is a normalization constant. The integral is over all paths g(f) such that
a(te) =X,  gt) =%, (18)

S[4(2)] is the classical action for the trajectory g(¢). In our problem

t

o [ (M8 &s
$4[4(0)] —jdt (2 FF 5 Aot o A>- (19)

to

In the classical limit, A — 0, the kernel K can be calculated by the standard method, see [7],
Ch. 3, Sect. 5 and 6, based on the expansion of S[q] around the classical trajectory up to
the quadratic terms,

t

Slq] ~ S[qul+3 Jd £t (g (1) = ga@) (@) —a8('") 7

to

3q'(t )5qk " L qcx 20
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where the classical trajectory go(f) = X +(¢) is determined from the classical equations of
motion

oS

54(1) |73

4=4cl

supplemented with the boundary conditions (18) for g.,(f). Insering (17), (19), (20) in (16)

=0, (59

we see that the phase factor exp (% S[qc,]) appears. The semiclassical approximation

also makes it clear that the time evolution of the wave packet will follow the classical
trajectory X.(z).
From (15) and (12) we obtain that

t

= 32
60 =it ey far[3 (a2 3) 5]

to

t

s 3
+e_c_p(Xx—%_ (t))exp{h jdt [ i(—Ao+ ic:.;i’) + m;']}. 22)

to

Obviously, the r.h.s. of (22) does not have the form of the Ansatz (8), because in general

the trajectories x+(t), X_(z) are different. The fact that the initial positions and velocities

of the corresponding, electrically charged, classical particles are identical does not change

this situation in general. Thus, 9(X, t) dissociates into two separate wave packets.
When

X:(1) & X() = X(1), 23)

which implies also that X.(f) & %(f), the solution (22) can be approximately written in
the form (8). Namely,
:
WX, 1) = p(x—x(1)) exp ( 3 J dt'”) ug(?), (24)
fo
where
t
uo(t) = e,c, exp [—h-fdt (— -%Ao %552)]
to
t

+e_c. expl:hj.dt(2 —-2%552)] (25)

to
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Thus, the Ansatz (8) is justified only in the very particular case when condition (23) is
obeyed. This cond’t'on is approximately obeyed for general external gauge fields only
when the gauge couplng constant g is small and when the time interval ¢—1, is not too
large. Only in this case solutions of Wong’s equations (1), (2) give the correct value of the
expectation values in the true state (22). If the size of the wave packet is of the order of

h
the Compton wave length for the particle, A, = — , then (23) is certainly not true when
mc

glf 1 (¢=10)/2m > h/mc, where g7 is a mean force along the trajectory of the particle.
This gives T~ (h/cg| 7 )"/? as the upper value of the time interval for which (23) has a chance
to be true. Thus, in general, the limit # — 0 has to be associated with the limit g - 0
in order to obtain T finite.

1}3(;, t) has the form (8) also when ¢, = 0 or ¢_ = 0. In this trivial case there is no
color spin dynamics, I = const.

3. The true time evolution of the expectation values

Let us start from the discussion of the time evolution of the expectation value of T
I(1) = <yl Ty
Because @(x—X(7)) is normalized to one, we obtain from (25) and (10) that
1%1) = 3 (les > —le_ 1A

t ;
+2Re l:m"c’ﬂ:c~ exp [—f{— g fdt' <Ao— %— 2):]] , (26)

to

where m = (m) is a constant vector with the following components

1 "‘hlh3_ih2

r;; = _e’zf'“z- = "—“‘_—'2 "'hzh3+ih1
Vi-h3 1-h2
3

It is easy to check that m is orthogonal to k.

From (26) it follows that I°(t) obeys equation (2). This can be easily seen when one
notices that ixm = i m.

However, for sufficiently large 7—1, (23) is not obeyed. Then, the formula (26) for
f(t) is not true, in general. In particular, when the two wave packets in (22) become spa-
tially separated the true color spin becomes constant,

tim 1(1) = 4 (le4 1>~ le- %A, @7

1=+

in contradiction to the solution of Wong’s equation (2) which has the behaviour (26) for
all ¢
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Now, let us consider Wong’s equation (1) for the trajectory. The quantity hi , present
on the r.h.s. of this equation, is equal to

Rl = L(lesl>=lc-|?). (28)

On the other hand, X.(f) obey the equations

mxs(f) = + %(Ih k3 xﬁ). (29)
C
From (28), (29) it follows that
X(1) = le XD+ 1*%_(0) (30)

obeys equation (1) when (23) is obeyed. Thus, in this case Wong’s equation (1) has to be
interpfeted as the equation for the center of mass of the two wave packets. When (23)
is not satisfied, equation (1) does not have any ciear interpretation in terms of the expec-
Eation values in the true state (22), except for particular cases like ¢ - ¢ = 0, or B=0,
E = const.

4. Remarks

From the above considerations it follows that color charged matter placed in an
external nonabelian gauge field will, in general, tend to disperse all over the space. For
example, let us consider the wave packet in the potential 47 = A,,h"(;c),"where R(X) is
piecewise constant i.e., the space can be divided into regions £; such that h(X) is constant
in each ©; and the direction of h in each , is different. It is easy to see that the initial
wave packet will dissociated into many separate wave packets — their number depends
on the number of crossed regions ;.

According to certa'n authors [8], the vacuum in QCD is filled in with nonabelian
gauge fields which have an orientation in color space fluctuating at random. In such a va-
cuum it is impossible to have a localized clot of colored matter propagating in a definite
direction, except for the superficial case of large velocities, when the high velocity will
mask the dissociation for a certain time.

Finally, we would like to present the other argument for the lack of the particle-like
classical limit of the Dirac equation with an external nonabelian gauge field. Let us recall
that in the abelian (i.e., electromagnetic) case the classical limit can be obtained by the
substitution of

v = exp (";{ S)f 1)

in the Dirac equation and letting 4 — 0, [6]. Then, it turns out that the real-number valued
function S obeys the Hamilton-Jacobi equation known from classical mechanics. In the
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nonabelian case the substitution (31) leads to the following equations (in the leading order
in h)

['y“ (a,‘s+ -ii- A f*T“f) + m:l f=0, (32).
and

PAT 4 TTNf = 0. (33)

From (33) it follows that f is an eigenvector of the operator y“_A:TAI"’. In the case of the
SU(2) gauge potentials of the abelian type (7) we can substitute in (32) and (33)

o=,

where a = 1, 2, 3, 4 refers to the usual bispinor components, 7 = 1,2 refers to color.
Then, (33) will be satisfied if

(hDyu = 2.
This equation i< identical in form with (10): in particular A = +1/2. Then; (32) becomes
identical in form with the equation obtained in the electromagnetic case. However, the
“effective’ electric charge takes on two values %g/2. Thus, we again obtain the situation
described in Section 2; there are two independent classical motions going on.
Our considerations can be easily generalized to SU(n) gauge fields. Then, the equa-
tion (10) will have in general n different eigenvalues, and the initial wave packet, when

placed in the gauge field of the abelian type (7), will dissociate into n separate wave packets
after a sufficiently long time.
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