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THE PERTURBED SINE-GORDON EQUATION II: ANALYTIC
BUILD-UP OF THE ONE-KINK SECTOR FOR THE MULTIPLE
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We show that for a class of the multiple sine-Gordon equations, the form of the low
lying excitations of a kink coincides with the recently introduced matrix generalization for
the Gauss hypergeometric function.

PACS numbers: 03.50.-z

1. Introduction

The multiple sine-Gordon (MSG) equations

P
—Olplx, D+ 8e(x, 1) = 3 gesin ko(x, ) a.n

were introduced in the nonlinear optics context [i]. We may also contemplate them as
a class of the field-theoretical models with the attractive features of:

— Lorentz covariance;

— coincidence with the standard Klein-Gordon equation in the small-amplitude limit;
— universality of the large-amplitude Fourier-type nonlinearity &(g);

— periodic vacuum degeneracy implying the existence of the kink (soliton-like) solutions;
— various physical pretensions, e.g., to describe the phenomena of the type of the pion
condensate.

The best known example is the famous sine-Gordon (SGyone (p = 1) solvable in
terms of the elementary functions. Unfortunately, it is rather exceptional in this respect —
the overall properties of the next (p > 1) members of the MSG family (e.g., the presence
of the annihilation component in the double SG (DSG) breather etc.) are known mostly
from the numerically oriented studies. Qur present purpose is to show that, rather sur-
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prisingly, an important class of exact solutions may be obtained by the purely analytic
means in the vicinity of the one-kink state for an arbitrary muitiplicity index p.

The material is organized as follows. In Section 2 we summarize some elementary
propertigs of the kink (soliton-like) solutions and give their explicit form for a broad
class of the MSG equations. In Section 3 we consider the lowest excitations of these kinks
and show that the linearized form of the considered MSG equations coincides with the
Gauss hypergeometric equation when generalized in-the sense of Ref. [2]. In Section 4
we discuss some examples in more detail and emphasize the various physical aspects of
the MSG dynamical picture, especially the SG-like interpretation of some limiting cases,
the 4-body binding role of the sin 4 term in Eq. (1.1) and also the possible mass-spectrum
generation mechanism connected with the nonlinearities of the strongly non-SG type.

2. Kink solutions and their vicinity

In the Klein-Gordon Lagrangian of the nonlinear type, the mass term 1 ¢? is in gen-
eral being replaced by a function 3 f%(¢) = § ¢*+ O(¢*) with the minima % f?(¢) = C at
the constant vacyum values ¢ = ¢®*. Although the corresponding differential equation

~%p+ie =flQf (@, 1@ =08,/(9 2.1

is of course independent of C, cerain technical complications appear in the C # 0 cases
(an important DSG example is discussed in Ref. [3]). We'shall therefore consider the C = 0
cases only.

The one-kink solution may be considered time-independent in the appropriate Lo-
rentz frame, ¢(x, 1) = y(x). By definition, it connects the neighbouring vacua — let us
put

lim y(x) = ¢{*? =0 < lim y(x) = {*. 22)
x= =00 X+
In accord with these boundary conditions, Eq. (2.1) multiplied by the integration factor
0.y gives an identity

0 ¥(x) = f(¥(x)). 23)
Hence, the shape (energy distribution) and the finite complete energy
® y(+ o)
m= [ dxt@y)?+if ) = ( § )dy 1) (2.4)
e 2o

of a kink are determined by the appropriate choice of f(»).

The bell-shaped f’s (cf. the SG choice of f(¢) = 2sin § @) enable us to interprete
kinks as the particle-type (localised) states. Their number should not be restricted —
hence, we shall use the periodic f’s, fixing their periodicity, ¢ = ¢+, by an appropriate
transformation ¢ — u@, t2 — ut2, x> — ux2. For simplicity, we put 7 = o™ +7n = ¢{*?,
M =1, and factor out the corresponding zero of 2 in the form of ansatz

Jp) = sin pQ(cos p), 2.5)
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where Q(+1) # 0 (otherwise, the field near ¢§™® would be massless). Then, the second
integration of Eq. (2.1) gives the implicit definition of the function y(x),

T(y(x)) = €,

u cosu

T(u) = expy 2.6)

ex J‘ dx
f(t) P77 a=hex;
oS0
where cos u, is an appropriate integration constant corresponding to the choice of x = x,.

Obviously, for any polynomial Q(z), the function T'(u) may be represented by the
elementary functions — the complete digcussion of the corresponding integration (partial-
-fraction technique) may be found in any standard text-book [4]. Between any pair of
the neighbouring vacua, the inversion of T also exists and defines y(x) in a unique way.
Moreover, the polynomial choice of Q (of degree gq) leads always to the MSG nonlinearity
in Eq. (2.1). Since p = 2g+2 in this case, some functional shapes of &(¢) are lost corre-
sponding to the more complicated forms of Q(z). For example, the DSG shape of o(¢)
gives the square-root form of Q — this will not be considered here.

For the excitations of a kink, we get the MSG equation in the form

—87z(x, )+ 87 z(x, 1) = B(y+2)—B(),

k
D(y+2)—P(y) =2 z 2 sinzz cos k(y+ g),

2(x, 1) = @(x, 1)— y(x). 2.7
In the linear approximation, i.e., in the vicinity of a kink, it simplifies considerably,

2

d
T e () +W(x)0(x) = k2 x(),

s

W(x) = fO)f "M +f'(y) = Y. ng,cos ny(x),

n=1
Jmax . @ .
20, 1) = Y (e’ + [ deyx)e™. (2.8)
i=1 Ko

From Eq. (2.6), the shape of the potential W(x) is known in principle. Our intention
is to specify the analytic form of the solutions y(x) as well.

3. Exact solvability of the linearized MSG equations

At zero energy, the explicit form of yo(x) = f(3(x)) is known. By its definition, it
has no nodes on the real axis so that all the energies k2 in Eq. (2.8) must indeed be. posi-
tive (nonnegative). This implies that the one-kink state is stable. Reverting the argument,
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the appearance of an additional zero ¢{"*” € (0, n) in Q(z) would force the halves of the
nonstable configuration y(x) = ¢(x, #,) to move apart.

Concerning the non-zero energies, the analytic form of the complete set of solutions
(%) may be useful, e.g., in solving the class of the MSG initial value problems, etc. In
the SG or DSG cases [3], x.(x) coincide respectively with the Gauss form, or the matrix
generalization, of the hypergeometric functions [2]. In the present context, the DSG
construction will be extended to any multiplicity p.

We start by specifying the poles of the polynomial Q(z),

Q(z) = ﬁ (1—a?z?) ﬁ (1+[312-zz), Si+s; = 5. (3.1)
i=1 i=1

(Of course, the more general (zero mass (of = o} or B} = B?), or parity-violating (Q(—z2)
# (Q(2)) cases could be considered along the same lines, although they seem to be physically
less interesting.) As a consequence, we get

T(u) = exp [— Arth cos u—Z(cos u)], (3.2)
where y = Q(1) and

Z(cos u) = z e 1-aj 1+ﬂk Arthoz cos u
I Ioc —a I I

S2

1—o} 1+
Z [ Fal ﬁ +o;i A ﬁkz arctg f; cos u. (3.3)

k#i

Considering further the SG-type limit o -0, 7 - 0 as a guide, we get the two
alternative exact formulas

sin y(x) = 1/ch &, cos y(Sc) = ~th¢,
¢ = &(x) = yx+Z(cos y(x)) B4

for the kink shape, with the iterative interpretation of the “distorted coordinate” £. In
the non-SG-type regions, we may simply interprete Eqs (3.4) and

x = %(é‘ —Z(—th?)) (3.5)

as the ¢-parametric definitions of the dependent and independent variables y and x, re-
spectively. The main idea of our paper is to transfer this parametric formulation to the
linearized MSG Eq. (2.8) as well.

In the first step, we introduce the set of functions (£{X(p, q)),

XD = th?’¢/ch’¢, (3.6)
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of the variable & defined by Eq. (3.5). Obviously, the kinetic' energy part of the Hamiltonian
= —d?/dx*4+ W(x) may be transformed to the operator

d* 2 d*

L e —O0¥~th&) — ¢ ——

dx? 2 2 dg? + ch?¢

Its action on the functions {£|X)> = X(p,r) of Eq. (3.6)

d
Q(—th §)Q'(~th &) - 3.7

2

d
T3 X, ) = Q*(—th &) [p(p—1)X(p—2, r+4)—(2pr+2p+r)

x X(p, r4+2)+r’X(p+2, 1)] - Q(—th O)Q'(~th &)
x[pX(p—1,r+4)—rX(p+1,r+2)]
does not change their form provided that we fix p = 0 or p = 1, and enhances merely the
value of the exponent r since th?¢ = 1—ch~2{. The multiplication by the polynomial
Q or its derivative Q' contributes in the same direction.
In the second step, we conclude that the differential Eq. (2.8) has the form of the

generalized hypergeometric equation Hy = Ey as described in Ref. [2}, since also the
potential term

2 th & 1
W={1-——)Q%+5 "+ ——(0Q"'+Q" 3.8
( chzé)Q g 00 Gy 027+ (3.8)
acts on X(p, r) in the same way. We may therefore introduce the generalized Gauss series
w M, i
(IF) = 21 Y <&IX3HDi,
n=1 j=1
. M" M"—l . o .
D,=-Y ¥ DI_Bj" (A", i=12.,M, n=23.. (3.9)
m=1 j=1

where the M, x M, matrices 4, and M, x M, matrices B, are defined by the operator

identity
M, Mns 1

H|X[> = Z |X£>A:'j+ Z |X£+1>B:j,
j=1 j=1
m=1,2.,M, n=12 .. (3.10)

In principle, we would get various forms of Eq. (3.9) when starting from the various
initial choices |X7), m = 1,2, ..., M, of the functions X in the recurrent Lanczos-type
formula (3.10) specifying the values of M,, 4,, B, and |X, 4, forn = 1,2, ... For each
of these choices, the increase of the number of exponents r is at most N = 2g+2 in each
step. For Q defined as an even polynomial, we get N = g+ 1 since the parity of the indi-
ces p and r is preserved in this case.

In the third step, we may show that the indexation

CEIXTY = th? E[chNe =D mexg,
p=01,.., N=M, n=12.. (3.11
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with an arbitrary parameter x is particularly suitable since the partition dimensions
M, = N become minimized and constant. Furthermore, the series (3.9) appears to be
convergent, at least in some vicinity of £ — —oo, since the powers of 1/ch & decrease
quickly with the increasing exponent.

The rigorous mathematical discussion of the analytic continuation of Eq. (3.9) de-
pends on the singularity structure of the polynomials Q. Recalling Ref. [2] as a methodical
guide to the general cases, we shall stress here only the following two most important points.

Remark 1. In accord with the known asymptotic behaviour of the potential
W(x) = Q*(F1)(1+0(1/ch &), € - F o0, the correct physical asymptotic behaviour of
the series (3.9)

CEIFY ~ CEIX () ~ e*™ (3.12)

is specified by the value of the parameter x. Depending on the value of energy E = k2,
it may be either real or purely imaginary. For example, in the asymptotic region £ » —oo
we get the physical consistency requirement

Kk = +(Q*(1)—E)'2. (3.13)

In the cases without singularities and ¢ e (— o0, ), the direct extension of the DSG case
analysis as performed in Ref. [2] is possible so that the analytic continuation becomes
equivalent to the matching of the logarithmic derivatives at & = 0.

Remark 2. The detailed comparison of Eqs (3.9) and (3.10) shows that (¢|F) satisfies
in general only the nonhomogeneous equation

M; .
H{EIFY - EQEFy = — ”gl <X AYD. (3.14)

Nevertheless, in full analogy with Ref. [2], we find that A’f” = 0 as a consequence of our
choice of k. Hence, the normalization D} ~ 8,y gives indeed the correct zero right-hand
side in Eq. (3.14). In fact, Eq. (3.13) is given by the requirement D, # 0, 4, D, = 0 rather
than by the above argument. As a consequence, the generalized Gauss series Eq. (3.9)
represents the general solution of the linearized MSG Eq. (2.8) which may be used with
any type of the physical boundary conditions imposed on the general superposition of the
+x and —x components {&|F>.

4. Example — triple sine-Gordon equations

A. Perturbed sine-Gordon equations

The small-amplitude perturbations of the trivial vacuum ¢ = const. are described
by the ordinary Klein-Gordon equation. Physically, they may be interpreted as free
“pions”. This interpretation ceases to be consistent when we switch on a sufficiently strong
external field. To stop an unlimited colaps — pionic condensation — we should use the
nonlinearity, e.g., of the MSG type. The resulting stable and localized condensate could
then be described by a kink solution y(x) of the preceding sections, with the remaining
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free pions z(x, t) interpreted as moving over or in the “natural relativistic’ shallow potential
well W(x) of Eq. (2.8).

The “experimental” fit of the pion-condensate scattering of the free pions z(x, 1)
may be achieved by the phenomenological choice of the appropriate MSG forces. Using
one free parameter, we get the triple sine-Gordon (TSG) nonlinearities

f(u) =asinu+bsin3u, Q(z) =d+4bz’>, d=a—b,
a’ : , 3b?
D(p) = 5 —ab |sin ¢p+2ab sin 2¢ + —-sin 39, @ =2u @.1)

which generalize the pure SG case b = 0. Its vicinity (with any fixed b > 0 and variable
difference d) may be characterized either as a domain D1(8b < d) or D5(d < —4b) — the
pionic functions y;(x) become modified but the shape of y(x) is only insignificantly defor-
med. In accord with the formulas of Section 3 we get the function Z(cos y) as a small
O(4b/d) perturbation -with either s, = 0,5, =1 and B2 =p2 =4b/d< 3 or s; = 1,
s; = 0and o} = 4b/|d| < 1in D1 or D5, respectively, so that £ is more or less proportional
to the original 8G coordinate x.

B. The deuteron-type configurations

In SG case, an interaction of the kink pairs is repulsive — we cannot obtain any
bound particle-particle system. In the TSG model, such a system represented by the kink
localized at the two separate points with the maximal energy density f2(3(x,))

1 8b—d
Xxg = + — (Parctg fo+Arthéd), &= TS “.2)
Y

exists in the domain of parameters D2(0 < d < 8b). Obviously, the two centers move
apart as % — co — we are permitted to fix phenomenologically the strength of binding
or the magnitude-2x, of the two-body bound system y(x). Its low-lying excitations are to be
described by the correction term z(x,t) and Eq. (2.8).

Similar picture was obtained in Ref. [3] for DSG system which decays in the limit § - o
into two exact SG solitons, Here, the decay is not symmetric — the peculiar TSG space
asymmetry characterizes also the TSG solutions in the limiting domain D3 (d = 0). As
well as in the DSG case, the transition d — 0 is singular since the range of the auxiliary
parameter

€ = yx—1/cos y(x) 4.3)

becomes restricted to the half-interval & = & e (—o0, 0) while x moves along the whole
real axis.

An interesting phenomenon is also the x <> —x asymmetry of the corresponding
pionic potential Wy(x): The lowest excitations z(x, t) are allowed to radiate in one direc-
tion only since W(—o) = 166> > 0 while W,(+0) = 0.
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The reversed situation corresponds to the second, nonequivalent kink yu(x) para-
metrized by & € (0, c0). The possible physical interpretation of such exceptional oriented
states with d = 0, M = 2 and ¢{*® = /2 is not clear at present because of the character
of the “domain™ D3 (= one point only).

C. Model of the dynamically generated mass spectrum

In the remaining domain D4(—4b < d < 0) of the TSG parameters, we get M = 3

. . . n n
with the two additional vacua ¢{*® = 5 —e= V_ and ¢§*9 = o +¢& =V, where

cos Vy = F(—d/4b)*'*. Formally, we get three possible ranges of the parameter &,
&e(—,¢.), &ne¢-,¢y) and {ue(ly,0) with th, = —cos ¥y, correspondig
to the three different ““one-particle” kinks y, yy and yp, respectively. The mass of the

second one is different — this is a new phenomenon not encountered in the simple DSG
s

model. We may extend simply the discussion to any ansatz Q(z) = ), a,Z* with the zeros
£=0

z;€(—1, 1) which corresponds to the admitted additional vacuum states @™ lying in
the interval (0, ), and found that the masses

@i+11vac) _
mp=1 [ fO)y =10G )0, 0<i<M-1
¢i vac

0(z) = Z k‘_’:l A1 (4.4)

k=0

form a multiplet generated dynamically by the mere choice of the functions f(u) in the
Lagrangian. Of course, the practical use of this procedure is again strongly restricted by
the oversimplified one-dimensional character of our model.

5. Conclusions

There is a natural hierarchy in the relativistic particle models:
— The group-theoretical and linear field equations are able to substantiate or explain
the existence of the quantum numbers like spin but fail to suppress the dispersion of the
wave packets.
— The soliton-possessing nonlinear equations provide the localized and stable solutions
but suffer from the technical oversimplifications: On the physical grounds, both the ab-
sence of singularities and elimination of the radiative components seeém to be the too re-
strictive and superfluous mathematical rather than physical assumptions.
— The simplest “non-solvable” MSG models provide the far more flexible dynamics
(masses, interactions, etc.). Moreover, they may become a useful technical and methodical
laboratory for the transition to the more realistic models the structure of which is even
far less transparent, especially in more dimensions. In this spirit, the present paper tried
to present the MSG class of models as. enabling us to
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1) investigate the general dynamical assumptions (shape of nonlinearity and its various
physical consequences) in a systematic way, via the Fourier-series approximations;

2) work. out new methods adequate to the nonlinear equations (perturbation treatment
preceded by the algebraic, correctly formulated linearization);

3) visualize the possible qualitative features of the models via the nonnumerical methods
(linearized description of the ‘“‘wobbling” motion of the many-body-like kinks, analytic
fit of masses, understanding the character of singular cases etc.);

4) investigate the open problems, (let us emphasize that our construction of the one-
kink sector (space spanned by the solutions of the linearized MSG equation) represents
one of the technicalities essential in the Feynman path-integral quantization procedure [5]).

I would like to thank Prof. R. K. Bullough and Dr R. Sasaki for the inspiration
and valuable comments on the manuscript.
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