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NUCLEON-QUARK PHASE TRANSITION IN HEAVY ION
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Although the details of such a phase transition are not fully understood, the thermodynam-
ical data of-the transition can be calculated from known parts of the equation of state in
a self-consistent way. The result is that at moderate temperatures the transition begins at
n = 5-6n, and the necessary density is lower for temperatures between 120 and 200 MeV.
Some possibilities for observation are also discussed, with the conclusion that clear
evidence has not been found until now.

PACS numbers: 12.40.-y

1. Introduction

The topic of this School is “Application of the Gauge Theory”. This lecture, maybe,
consists of more application and, consequently, less gauge theory than the average one.
Namely, Quantum Chromodynamics is a gauge theory. To calculate the pressure of a quark-
-gluon plasma is then an application, and to calculate the data of the phase transition
from the pressure function is an application of an application of a gauge theory. Never-
theless, in contrast to some axioms of the contemporary higher mathematics, an application
of an application is again an application, thus this lecture satisfies the conditions of the
School.

From the dawn of the quark theory everybody was very interested, how the quarks.
can build up hadrons, and how they could be released. The nucleon-quark phase transition
runs through such steps, and it would be very important to describe them. Nevertheless
the author does not think himself to be the proper person to investigate these individual
processes. It seems more useful to choose a restricted goal: to obtain the (thermodynamical)
data of the corresponding states between which the phase transition happens. Possessing
such data one will be able to decide if free quarks occur in hot stages of heavy ion col-
lisions or in neutron stars, and if they occur, one will be able to take them into account.

* Presented at the VI Autumn School of Theoretical Physics, Szczyrk, Poland, September 22-29,
1981, organized by the Silesian University, Katowice..
** Address: Central Research Institute for Physics, Budapest, Hungary, H~1525, Bp. 114. Pf. 49.
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The situation seems to be slightly paradoxical: if the structural differences between the
nuclear matter and the quark-gluon plasma are great, then one can expect first order phase
transition, but in first order transitions the system generally avoids the most “complicated”
states (by taking a Maxwellian short cut). That is, in many cases, if the structural change
is too great and one cannot calculate the intermediate states, one does not have to do it.

In this lecture it will be shown (or tried to be shown) that this program can be realized
for a nucleon-quark transition. In fact, the author belonged to a group calculating this
phase transition. He must confess that he is an outsider in QCD, and, although he learnt
some elementary QCD from the other members of the group, all possible deficiencies in
those parts of the presentation have to be attributed solely to him.

In this scheme of calculation one cannot prove that individual assumptions are true,
but it is possible to verify their self-consistency, and this will be done. In Sects. 2 and
3 the general thermodynamical formulation of first order phase transitions is given, Sect. 4
contains the dynamical equations for mixed systems, Sect. 5 discusses the general features
of the transition, Sect. 6 gives the equation of state for nuclear matter, while Sect. 7 gives
it for quark-gluon plasma, and Sect. 8 is focused on the value of the “bag constant™. The
results of the calculations can be found in Sect. 9. Sect. 10 contains some considerations
for possible observable effects, and, finally, Sect. 11 is a brief conclusion.

2. First order phase transitions and thermodynamics

Consider a thermodynamical system whose (thermodynamical) state is determined by
the complete set of independent extensives {X'}. In the entropic convention this set does
not contain the entropy 8, while the form of the entropy function

S=8X9%i=0,..,0; X°=V Q@1

characterizes the behaviour of the system. Since S is also an extensive parameter (i.e. it
is additive in a fictitious process when one divides and reunites a system in equilibrium),
it is homogeneous and linear in X°, that is

Q

S = YX"Y—as Q2
= r * i—aXi’ )

i=0

(where we introduced the intensive data Y¥;). On the other hand, from Eq. (2.1),
Q
as =Y YdXx". .3
i=0

Now consider a closed system. (Here the term *“closed” means that the extensive
data are fixed.) According to the Second Law, the system is evolving toward the state of
maximal entropy, thus this final state must be the equilibrium. Dividing the system into
two fictitious subsystems one can write:

: . Q
Si(XD+S:(X)+ Y, (X1 +X5—X") = max 2.4
r=0
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and hence
Yli = Y2i (2'5)

is obtained as a necessary condition of the equilibrium. The intensives must possess homo-
geneous distributions in the system.
Nevertheless, Eq. (2.5) is the condition of the extremum. It is a maximum if and
only if the matrix
oS

M' = — .
T axiox*t (2.6)

is negative definite at the point X*. If Mj, is indefinite, then the equilibrium is (thermody-
namically) unstable. Fixing the extensives at such an unstable point, rapid and unpredic-
table changes can be expected in each volume element of the system.

It is quite possible that these rapid changes lead to a stable equilibrium. Namely,
from Cond. (2.4) we have not obtained anything for the homogeneity of the extensive
densities. Introducing these defsities as

. 1 . 1 .
X= X500, s=— 8 =s), @7
Egs. (2.2), (2.3) yield
(") §Q
ds(x p Os
]]i =7 ; £ 0’ Y = _—= g — e r, 2.8
a7 R ax @8
r=1
.00 _ e
Mik — I:S’aa-x xo s,aqx ] ; o = 1, ceey Q,
=5.p%  Sap

(i.e. the system is stable if [s.,5] is negative definite). If Eq. (2.5) can be satisfied by different
extensive densities {x'} and {x'} and if in these points [s,4] is negative definite, then such
an inhomogeneous (mixed) state of the system is a stable equilibrium.

The simplest example is a cold system of one component. In order to describe it,
first we arrive at the energy convention:

sexe, Yoo YofYy, Yio1]Y), Ygp,e-Y/Y. (2.9)
Thus for a system of one component,
e=¢(s,n), Yy=-—-p=¢g—se,—ne,, Y =T=sc, Y,=p=¢, (2.10)
For T — 0, from the Third Law,
5§20, ¢g,>0. (2.11)

Then, at T = 0, the only possible instability .comes from &, = p, < 0. Let us assume
that

pp>0if n<nyorn>ny, pn,<0ifng<n<n,
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Hence it is seen that between n; and n, y and p decrease, while ¢ increases slower than
linearly.

Since u decreases between ny and ng4, the condition u(ny) = p(n,) can be fulfilled
for density pairs outside of the unstable region (n;, n,), and the situation is similar for p.
There is equilibrium, if the equality is valid for both intensives, whence

gny) = €(nz), &) —e(ny) = ny6(n;)—e(ny), (2.12)

and the geometrical meaning of these conditions is that the tangents of the curve ¢ = &(n)
belonging to the two different densities coincide [1].

Thus, if the average density of the system is between n; and n,, the homogeneous
equilibrium is thermodynamically unstable, there is a separation, and the stable config-
uration consists of domains in which the density is either n, or n,. However, if the aver-
age density is outside of the unstable region but between n; and n,, both the homogeneous
and the inhomogeneous configurations are stable, only the second one has lower energy.

Performing a very slow compression from an initial state-n < n,, first the only possible
equilibrium configuration consists of one phase, however, except for nonphysical ideali-
zations, there are fluctuations in the matter too. If the n = n, configuration is produced
even in a small volume as fluctuation, reaching » = n, it can coexist. Since u, = u, and
Py = p,, there is an indifferent equilibrium between the neighbouring domains n = n,
and n = n,. For n > n, there are two possibilities: either the second phase remains small
and practically the whole matter becomes densey (when the energy density changes accord-
ing to the function &(n)), or the densities remain constant, but the nucleus of the second
phase increases (and ¢ moves along the double tangent). Since the reorganization of the
matter happens only on the surfaces of the domains, the system follows the energetically
preferred second path, if the compression is sufficiently slow, If not, it can remain on the
curve &(n) until n = n,, but after this density the homogeneous state is unstable, there are
rapid changes in the whole volume, and finally the system jumps onto the double tangent.
For further compression the weight of the n = n; domains decreases, and the first phase
vanishes at n = n,, where the phase transformation has finished.

3. Gibbs conditions
For one component system at finite temperature Eq. (2.5) yields:

By = o, PL=py T,=T, 3.1

which are the Gibbs conditions for equilibrium of phases. It is the simplest to evaluate
them when T and p are the independent variables. In order to arrive at such a description,
let us introduce the quantity:

=¢eg—Ts—un = —p. (3.2)
Then
d{ = de—Tds—sdT— pdn—nduy = —dp, 3.3)
whence
dp = ndu+sdT, p = p(T, p). (34
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Thus the function p(7,, p) is equivalent with s(e, n) or &(s, n) for characterizing the behaviour
of the system. The system is stable if the matrix [p,,4] is positive definite. The only non-
trivial Gibbs condition has the unclear form .

P(pos To) = p(uo, To)- 3.5)

Nevertheless, this condition is to be read as not an identity but an equation for (uo, Tp).
E.g. if for a fixed value of T the curve p = p(u) has a loop, then cond. (3.5) is valid in
the point of self-intersection, but the two values of D, = n differ, thus, indeed, there is
a first order phase transition.

For higher order phase transitions there are no loops in the equation of state (3.4).
Nevertheless, as we shall see, if the nucleon-quark phase transition were not of first order,
the transition would cause very poor observable effects.

In some cases One is practically unable to calculate the whole p(i, T) function because
for the two phases different approximations can and have to be used. In this case the loop
cannot be seen. However, if the calculated (and calculable) parts of the function contain
the self-intersection, we can describe the slow processes because, as we have seen, then
the system does not enter into the loop.

4. The dynamical equations

It is well-known that during a first order phase transition the dynamics of the system
is affected by the transition. In order to get the correct equations of motion one has to use
the original balance equations. For thermodynamically simple systems there are two sets
of balance equations, namely the balance equations for the four-momentum and for the
particle numbers. The four-momentum always fulfils a local conservation law

T, =0 4.1)
for closed systems, because Eq. (4.1) is a consequence of the Einstein equation of the
general relativity [2]. (T% is the energy-momentum tensor of the matter.) The particle
numbers may have sources because of chemical processes [3]:

(nu") gy = Vg (4.2)

If the matter is a continuum, i.c. there is everywhere a unique velocity field #', then there
are N+1 unknown thermodynamical quantities, namely s and n, (4 = 1, ..., N for the
independent components), and 3 unknown hydrodynamical quantities (the independent
components of the velocity). On the other hand, the system (4.1-2) contains just N+4
equations. The components orthogonal to #* of Eq. (4.1) yield the equation of motion for
', while the remaining fourth component is the energy (or entropy) equation.

For a one component fluid the energy momentum tensor has the form:

T* = eu'u*+ p(g™® +u'u*) + g'u* + g*u' +- 7%,



38

uu, = —1, gu =1u =0, ' 4.3)

where g, is the metric tensor, g; is the thermal flux and 7y is the viscous part of the stress
tensor. Sufficiently near to the global equilibrium g¢; and 7; generally have the forms:

q; = — K(T:r'i' Tarh'z: )a T = — h;h;[n(ur;s+ us;r)+17’hrsuq;q]s
ha = gatuth,  a = ug' (4.4)

where k, 77 and #” are the coefficients of the irreversible processes, they vanish for perfect
fluids. In this special case we get from Eq. (4.1):

(8 + p)ui;rur + p;r(g;r + uiur) =0,
é+ (e +p', =0, é=eu. “4.5)

(In these formulae ¢ is the density of the total relativistic energy.)

For the more general case when the coefficients of the heat conduction and viscosity
do not vanish, here we do not want to discuss the equations of motionv. The other two
equations have the form [5]

ntnu', =0, E+(et+pu’, =2Z, = —q o+ G’ —T"U . (4.6)
For one phase p fulfils the Eq. (2.10) whence
s+su’, = (nT)"'2. 4.7

For two phases ¢ and »n are the averaged data, thus for them Eq. (2.10) is not valid. The
independent variables are n and the data of the phases ny, n,, s, and s,. According to the
Gibbs conditions p is the same for both phases, (2.10) is valid within a domain, and

&= [(nz—n)31(31’ ny)+(n—nyex(s,, nz)]- 4.8)
h,—ny
The system (2.10), (3.1); (4.6) yields 5 equations for the 5 variables as follows:
n+nu', =0, 4.9)
Ké = w,
where:
ny
¢= se |’ (4.10)
S, '
&g,—¢ £,—&
(n,—n) (u— : ) 5 (n—ny) (u— : ) s (n=mT ; (n—n)T
hy—hy hy—ny

oy s 0 > 1 ;5 =B,

KE["1?1+S1“1 3 —HRYy S0, ;om0 8By —ny0—sf s
Y1 A ) M 51 » —0%
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and

n
|.(”z“”1)2— o T(”lsz—nzsx)]
W o= 0 Y
0
0

oy = (65 Bi=(edas V4= (E,rm)A- 4.11)

If Z = 0 (i.e. for perfect fluid), a straightforward but circuitous calculation shows that
the average specific entropy s/n

with

1

ny—

5= " [(ny—n)s;+(n—n)s,] 4.12)
1

remains constant during the phase transition. Another consequence is that for a cold
perfect fluid w = 0, thus then the effective compressibility is infinite.

3. Some general remarks on the possible types of the transition

As we have seen, the equation of state p = p(T, p) (or its any equivalent) completely
determines the data of the phase transition. However, since our present knowledge on the
equation of state is limited in some extent, it is useful first to discuss the possible qualita-
tively different types of the first order phase transitions. In this Section we restrict ourselves
to one component fluids, and use n and T as independent variables. Then the proper
thermodynamical potential is the free energy density [6]

=T, n). (5.1

The nontrivial Gibbs criteria have the form

(f.n)n;,T = (f,n)nz,Ta nl(f,n)/x,T'"f(nb T) = nZ(f,n)nz,T-f(nZ’ T)3 (52)

thus we have two equations for n,, n, and 7, whence
ny = nT), ny =nyT), n,=>n,. (5.3

We are interested in the qualitative behaviour of these functions.
By taking the total T derivatives of Eqs. (4.2) one gets:

fa(na, T) —f1(ny, T)

M o F T)[

ax,

~F o ;{)] : (54)

Hy—1y

The first factor on the right hand side is always positive because the (n;, T) and (n,, T')
points are in stable regions. Now if we can calculate the free energy density everywhere,
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including the unstable region, then Eq. (5.4) can be written into a more explicit form
in the.variables

—;— ("1 +n2) = ﬁ’

T(n—ny) = 4. (5.5)
Namely, then

: -dn _
Fnltiay T) =2 = &1, T)A~ frams(, TIA +0(A). (5.6)

Assuming that this expansion rapidly converges, i.e. that the 4 terms are negligible,
we get:

TABLE 1
Sign
Dominating term Positive Negative
a) ny,r >0 b) n,r <0
S Ton na,r <0 nz,r >0
C) ni,T <0 d) 71'1,1‘ >0
S, Tnnn n2,r <0 nzr >0

Case (a) means that the density difference is decreasing with the temperature. For
atomic matter fr,, > 0 can be more or less expected because the thermal motion works
against the compressibility, but for other types of matter this inequality is not necessarily
valid.

Eq. (5.6) contains f(T, n) in the unstable region, and we assumed even that it is a suffi-
ciently flat function there. Nevertheless this is a quite moderate requirement. The van
der Waals model system is a good example for this. If the low density limit of such a system
is the ideal gas with ¢ = 5/3, then the equation of state has the form [7, 8]

T 3/2
J= nTln[ " (»—0> :l —an?. .7
ng—n\ T
Hence, for 7 and 4 we get the following (partially transcendent) equations:
niT
A? = _m2._ o ,
(no=1) 2an
fing+ nod + A*— i 2n,T4

0= —4ad+T1 . 5.8
e n(ﬁno—noA+A’—ﬁ2 (ng—Y —4* ©9)

Obviously f exists and is a smooth function everywhere below n,, even in the unstable
region. Eq. (5.8) does not have real solutions (i.e. there is not first order transition) if

T> T, = & o, (5.9)
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At T = T,, there is a second order transition with
e = L ng. (5.10)
Just below T, 4 is small, and

Fam(ees Te) = 3%, f 1wan(Bers To) = 0. (5.10)

Thus expansion (5.6) converges for the van der Waals system near to 7,. According
to Eq. (5.11), the Case (a) in Table I is van der Waals-like, while Type (b) may be referred
to as the anti-van-der-Waals transition. '

It can be seen that even the qualitative features of the phase diagram cannot be pre-
dicted without knowing some fundamental characteristics of the equation of state in the
unstable region. Nevertheless, at least the signs of fr,, and f1,,, can be estimated for
a quark-gluon system from perturbative QCD calculations, and thence for high tempera-
tures fr,, <0, as we shall see, thus one cannot expect van der Waals type transition
for quark systems.

‘6. The nuclear matter

We have seen that the thermodynamical data of the phase transition can be deter-
mined if the function p(T, u) is known everywhere (at least outside of the region of coex-
isting phases). If QCD is a good idea, it should yield the equation of state even for nuclear
matter, but recently this way seems inefficient. Thus there remains the possibility to calcu-
late the two sides of the transition by means of different methods, and to hope that both
approximations remain valid until the corresponding transition density.

First consider the nuclear matter. We are convinced that a normal nucleus is practi-
cally not a quark-gluon plasma, the phase transition happens at higher densities. Thus,
first, intricate models giving interesting details of the existing nuclei are not necessary
here, and some of these models, breaking down at high densities as a causal, even cannot
be wused. Since, in addition, in energetic heavy ion collisions T~ 100 MeV, the safest
candidates for the description are the mean field theories, of which the most obvious is
Walecka’s model {9, 10] containing one scalar and one vector meson. (If need be, pions
could be incorporated too [11}.) In this model the equation of state has the form:

1
T w) =% ein’~ — (1-x)°
2¢

kK*d*k
J(f+(V, T;k)+f-(v, T; k) m 5 (6.1

Y
+ ——
3(2n)?
where

c2 = 2669, ¢ =1957, (6.2)
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are the dimensionless coupling constants, y = 2 for N, = 0, and 4 for N, = N,.f; stand
for the Fermi distributions

-1
fe= {1 +exp [—;; VK +x? ?V):I} (6.3)

while the remaining auxiliary quantities are defined as

v =pu—cin,

n= (2—;—)—3 f L+, T ) =f-(v, T; B)]d’k, (6.4)

b af " .
1 = +(2n)3c’ij[f+(v’ T;k)—f-(v, T; k)]d’k = 0.

It can be scen that # is the difference of the baryon and antibaryon densities.

2 1 . ..
At T =0, p(n— ) =~ % c;n? = — p?, while at low densities p(T' — o0) ~ T* (be-
2 2c;

cause of the dominating “blackbody radiation” of the baryon-antibaryon pairs).

It is difficult to tell if there is some reason (except for the phase transition itself)
because of which this description would break down at a few nuclear densities, and, on
the other hand, only very poor observational checks are available for the nuclear equation
of state at high densities. Even the coupling constants are fitted to the bulk properties
of the usual nuclear matter.

7. The perturbative QCD region

In the QCD the quark-gluon plasma can be handled more and more conveniently
with increasing demsity, because of the asymptotic freedom. Thus one may try a pertur-
bative calculation at high densities. This fact gives us a possibility for a self-consistent
treatment of the phase transition. Namely, from the asymptotic freedom one expects

p~nt gt (7.1)

thus, if the phase transition exists, the quark plasma has the higher density. If the density
gap in the transition is sufficiently wide, then the quark phase can be within the pertur-
bative region. (Of course, there is a possibility that the perturbative treatment is not possible
at all, e.g. because some terms are divergent. Nevertheless, here our point of view is rather
practical; we need some data about the phase transition, thus we do not want to argue
against the only presently open way to calculate these data.)

There are alternative ways to calculate the pressure of the quark-gluon plasma, never-
theless the scheme is more or less general, except some neglections which might be necessary
from technical reasons. Since the author belonged to a group investigating the phase
transition, he feels a strong temptation to follow the steps of their own particular work {12]
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here, and, indeed, this way seems to be the simplest (at least from psychological reasons)
for him. Probably the improvement of the calculation concerning the neglections would
need only extra work, which can be made if needs be.

First, let us remember that we are interested mainly in heavy ion processes. Then
the initial state is nuclear matter with n, ~ n,, and the time scale is ca. 10-23s, i.e. electro-
magnetic and weak interactions are forbidden. Hence, in the quark-gluon plasma

n,=ng; ng=20 (7.2)

(and we fully neglect the heavier quarks). Of course, there may be ss pairs. Nevertheless,
m, ~ 280 MeV [13], thus at moderate températures their contribution is small. Therefore
here we neglect them. (This, of course, means that the neutron star problem, where the
time scale is very long, would need a different approach.)

The second step is to expand p = p(ugy, T) into a power series in the quark-gluon
coupling g2. Recently there are some divergence problems in the g8 terms [14], thus one
has to stop anyway at g*. However, as the final results will show, at moderate temperatures
it is self-consistent to use the g2 terms only, and these terms have already been calculated.
Namely [15].

2 4 2
2 Ho, g
+2(7‘? T+ ﬁ) (1— 27) (7.3)

Here the first term is the blackbody contribution of the gluons, while the second and
third come from the u and d quarks which are massless. Because of the charge symmetry
of the nuclear matter, the quark-gluon plasma is symmetric in the (u <+ d) exchange,
thus

fe = fla=pg=%pn, p=pT, py. (7.4)

The third step is to determine g>, which is not a constant but also a function of g,
and 7. At T = 0 Chapline and Nauenberg suggest [16] that

24n?
~ 33-2N,

2

g [ln (ke/4p)] 7Y, (1.5
where kg is the quark Fermi momentum and Ag is a constant. In the lowest order a similar
result can be obtained for the “screened charge”, with u, instead of kr [13]. Nevertheless,
if the terms above g2 are neglected in p, then it is sufficient to calculate g? itself until g°
terms, and then u, is proportional with kg.

It is a quite different problem, what is the proper formula for g2 if T > 0. Never-
theless, as again the final results will show, for the investigated temperature range. ug
is essentially greater at the transition point than 7, thus

g? = %% n’[In (uo/ D] ™! (7.6)
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seems to be a fair approximation. The scale parameter A should be determined from deep-
inelastic lepton-nucleon scattering measurements, but recently its value is very poorly
known, it is somewhere between 100 and 500 MeV.

The fourth step is to correct p by some terms taking nonperturbative effects into
account. There is at least one such term which is necessary even in the perturbative region,
namely it is the energy gap between the “physical” vacuum and the perturbative Fock
vacuum in the QCD.

Sometimes it is believed that such a term could be ruled out by means of the gravi-
tational theory. Thus first we show that this energy gap is permitted even in the general
relativity. Consider the Einstein equation. Its most general form is

Ry—% guR = gy +xTy, 1.7

where Ry is the Ricci tensor containing g;, and its first and second derivatives, while 4
and x are constants. In order to get the Newtonian gravity as a limit, x = —8n G/c*.
The cosmological constant A is to be determined from large-scale observations. Since
in the usual language T3 = O in vacuo, A is a characteristic date of the vacuum, if it is
not 0, even the vacuum can make the spacetime curved.

Now consider a (perfect) fluid. Its energy-momentum tensor is of the form

1
Iy = pe (e-+ puu+pgy. (7.8)

Thus one can remove A from the Einstein equation by correcting ¢ and p as

e—etlK; p-p—ik. (7.9)

By other words, a combined shift of the energy scale
e—~»¢e+C; p-op—-C; A-A-xkC (7:10)

does not alter even the gravitational effects.

If we choose 4 = 0 by definition, then ¢ and p can be measured for a physical system
via its gravitational effects. For the “usual’” vacuum of the intergalactic space cosmolo-
gical observations give the limit [17]

[P(0)] =~ 10~? erg/cm® ~ 10-36 ¢V/fm3. (7.11)

It would be very difficult, however, to obtain an analogous observational limit for the per-
turbative Fock vacuum of the QCD, because there are probably no gravitational sources
in the perturbative region recently, except for, maybe, the cores of the neutron stars.
Thus there is neither a priori reason, nor direct evidence against an additive constant
term in p:

p— p—B = p—(hc)~343. (7.12)
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There are even some suggestions that, because of nonperturbative instanton effects B
would be to be replaced by a function of u, and T [12, 16, 18], but these corrections are
very sensitive to the choice of the maximal instanton size, thus here we do not incorporate
them into the pressure.

8. The value of Ag

It is easy to see either from Egs. (3.2-4) or from Eq. (7.10) that B = (hc)-3A} is just
the phenomenological bag parameter of the bag model. Since the bag parameter is closely
related to the potential between nonrelativistic quarks, it can be detetmined from heavy
particle spectroscopy. First it was calculated by an MIT group from hadron spectroscopy
including p, A and o, and the result was Az = 145 MeV [19, 20]. Later ‘Chin recalculated
this parameter by using p, 7 and the slope of the Regge trajectory, and obtained Az = 190
MeV [21]. On the other hand, Hasenfratz, Horgan, Kuti and Richard investigated 1
and y excitations with the resplt Az = 235 MeV [22]. Since of all the systems CC and BB
are the simplest (e.g. they are practically nonrelativistic), we believe that the latest result
is the most probable. Anyway, some calculations for the smaller values can be found
in the literature, thus we can concentrate our attention on the case Az = 235 MeV.

Nevertheless, since there exist different candidates for Ay, it is useful to discuss how
the value of the bag constant influences the data of the transition. Of course the correct
answer would need the performation of the correct calculations for different values of Ag,
thus here we choose a simplified model system. Namely, consider the case T = 0. Here
we know the n — oo behaviours of the equations of state (6.1 —4) and (7.3), and thence
we choose

mic
Pmu = 32H3 (B—po)* +(u—po)ng,  Ho = muc*—E, (8.1)

where n, is the nuclear density and Ej, is the binding energy and
_ 1
Pgu = (ho) 3 [m I‘4_A§] . (82)

Although these pressure formulae are oversimplified, their trends are correct: p,, yields
p=0and u = po at n = ny, and it coincides with Walecka’s result when n — oo, while
Pg is the g2 = 0 limit of Chapline and Nauenberg’s approximative formula {16, 23].
The system of equations (8.1-2) is sufficiently simple for investigations, and, in spite of
the neglections the equations of state are quite legal from thermodynamical viewpoints..

Requiring condition (3.5) we get that for too small Ag’s the crossing point is below
u = po. However, in this region p < 0, thus here the matter is hydrodynamically (not
thermodynamically) unstable [S, 24, 25]. Thus in this case one could not expect a phase
transition through equilibrium states. It is interesting that the critical value is very near
to Ap = 145 MeV. With increasing A, both transition densities grow, together with the
density jump. Thus the quark side of the transition moves deeper and deeper into the
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_perturbative region, and the transition is more and more in the asymptotic region of
both systems, i.e. the results become more and more independent of the uncertainties
and neglections. While near to 4 = 145 MeV the two curves have almost common tan-
gents, the crossing point is not very well determined, and strongly changes between differ-
ent calculations because of e.g. the different nuclear models, at Az = 235 MeV the tan-
gents (i.e. the densities) are very different at the transition (Eqgs. (8.1-2) yield #n,, = 3.8 n,
n,, = 10.2 ny), and the intersection is well marked.

Although these conclusions have been obtained from a special and simplified model,
it is well known that different calculations give very different transition densities. For
example, Baym and Chin listed some results for different neutron matter models, and the
transition density on the neutron side varies between 1.2/fm> and 3.7/fm> [1]. Similarly,
Chapline and Nauenberg used three different models for neutron matter, and they got
the following three transition mass densities on the neutron side: 2.7.10'% gfem?; 6.5.10'3
g/cm?; and 13.10'% gfcm?, respectively. These great variations seem to verify the previous
conclusion.

Of course, the true value of Ay is independent of our hopes. Nevertheless, the higher
values would be, as we have seen, more profitable for the calculation, and, although the
evidences are poor, there are good arguments for a high bag constant. In this situation
it would be some kind of masochism not to try to use this high-value. On the other hand,
natufally, the high bag constant makes the task of the experimental physicists more dif-
ficult.

9. The results

Here we enumerate the results of some calculations and at least try to compare them.
Although our main goal was to investigate the (nucleon matter) <+ (quark-gluon plasma)
transition in heavy ion collisions, first we survey the results of the calculations for (neu-
tron) > (quark-gluon plasma) in neutron stars, which is obviously a closely related pro-
blem, and which is more investigated. In Table I we compare 4 calculations which cover 16
different choices of the parameters. The first column identifies the calculation, the second
one shows Ay (the letter “e”” means that Ay is not an original parameter of the calcula-
tion), the third column gives the coupling constant (or, if the calculation uses running g%,
A, and then g2 is determined by Eq. (7.5)). It the next two columns the transition densities
can be seen, or, if it has not been given in the original paper, the mass densities, while the
last column identifies the neutron matter model. Question marks denote that the data
cannot be found in the paper.

Freedman and McLerran’s data seem to suggest second order phase transition, but
this is an artifact of an incorrect condition for the phase transition:

B~

instead of the Gibbs conditions (cf. Eq. (3.1)), thus their results yield only estimations..
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TABLE I

Transition densities in different calculations for the neutron «> quark process at " = 0. Further explanations
can be found in the text

; yl &*larn nafne na/no Neutron matter

Calculation P A, MeV) | (eifeo) | Cesleo) model
Chapline-Nauenberg,
Ref. [23] 145 2.2 (10.8) ? Pandharipande-Smith (3)
Same 125 3.0 (16.0) ? Same
Same 145 2.2 (26.0) ? Bethe-Johnson (I)
Same 125 3.0 (36.0) ? Same
Same 145 2.2 (52.0) ? Bethe-Johnson (VH)
Same 125 3.0 (72.0) ? Same
Baym-Chin, Ref. [1] 145 2.2 7.1 11.8 Mean field
Same 145 2.2 10.0 15.3 Pandharipande-Smith solid
Same 145 2.2 19.4 347 Bethe-Johnson (VN)
Same 145 2.2 21.8 41.8 Reid
Chapline-Nauenberg,
Ref. [16] 212¢ (300) 12.6 21.2 Bethe-Johnson (VH)
Same 283e (400) 15.2 29.8 Same
Same 212e (300) 4.1 - 1.6 Pandharipande-Smith solid
Same 283e (400) 6.5 17.6 Same
Freedman-McLerran,
Ref. [13] 145 (100) 2.0 2.0 Bethe-Johnson (VH)
Same 0 7%) 1.8 1.8 Same

TABLE III

Transition densities for the (nuclear matter ) < (quark-gluon plasma} process at T = 0. The notation is
the same as for the previous table

. g¥4n nyfne nylne Nuclear matter

Calculation A Mev) | (aileo) | (osleo) miodel
Chin, Ref. [21] 145 2.2 5.0 ? Mean field
Same 190 0.68 11 ? Same
Kuti, Lukacs, Polényi,
Szlachanyi, Ref. [12] 235 (100) 5.7 14.8 Same
Same 235 (200) 5.9 17.2 Same
Same 235 (300) 6.7 18.3 Same

Neglecting these results the minimal transition density for neutron matter is 4.1n,,
while the maximal one is 21.8x,. It is difficult to a certain extent to draw definite conclu-
sions from so various results. '

Now, indeed, we are going to discuss some results for the (nuclear matter) <> (quark-
gluon plasma) transition in heavy ion collisions. The first such calculation was made by
Chin [21] in 1978, and we compare those results with the data of a Budapest group (J. Kuti,
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B. Lukdcs, J. Polényi, K. Szlachdnyi, 1980) [12]. As we mentioned, the Budapest calcula-
tion followed the pattern described in Sects. 6-7, and used. 4, = 235 MeV. Chin’s calcu-
lation differed at the points that

a) he used constant g?; and

b) the value of A5 was smaller.
First we compare the results at 7' = 0. The notation is the same as in Table I; Chin’s
paper does not give the densities on the quark side. It can be concluded that the n; values
are more or less concordant, and they are rather low compared to the corresponding
densities of neutron systems.

Nevertheless, the thermal dependences of the densities are different in the different
calculations. In Fig. 1 we compare n,/n, for three sets of parameters, namely, for Chin’s

a
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Fig. 1. The transition densities for the nuclear phase versus temperature. The curves ¢ and b have been

calculated by Chin (Ref. [21)), for a—Ap = 145 MeV, g¥4n = 2.2, while for b—Ap = 190 MeV, and

g%/4x = 0.68. The curve c is a result of a Budapest group (Kuti, Lukdcs, Pol6nyi, Szlachdnyi, Ref. [12]),
Ap = 235 MeV, it used running g2, in which 4 = 100 MeV

two calculations and for one Budapest calculation (with 4 = 100 MeV). The three curves
clearly differ, although there are some similarities between the Budapest results and Chin’s
curve for Ay = 190 MeV below T = 120 MeV. In the Budapest calculations (100 MeV
< A < 500 MeV) n,(T) never reaches 0 (the calculations were extended until 77 = 290 MeV,
and there n,(T) was always increasing), which result seems to be physical. There is no
such a “critical” temperature, where the phase transition automatically takes place, al-
though there is a temperature near to 200 MeV at which n, is minimal. Of course, it is
well known that some calculations predict a “melting point” T, ~ m, [26], but for qq
systems, in which p, = 0 (“zero component fluids™), i.e. in which the density is not an
independent quantity.

In Sect. 6 we promised to show that two approximations were compatible with a self-
consistent description, namely, there we neglected the temperature dependence of the
running g2, and similarly the terms containing g*. In the first point our argument was that
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for moderate temperatures y, is essentially greater than 7. In order to verify this, here
we give some data of the transition points for 4 = 100 MeV:

T, Mev 50 150 200
polm,c? 0.73 0.57 0.37.
p/m,?, fm=* 0.76 0.50 0.28

It can be seen that, indeed, T is small compared to g, even at the transition point for
moderate temperatures (although the ratio increases with T).

Our second guess was that the contribution of the g* terms was negligible. Of course,
one cannot compare the g* and g? terms, if the former has not been calculated. Never-
theless, such a comparison is immediately possible for the terms surviving at T = 0. These
terms are listed in Ref. [13], and the proper combination in them is o /n = g?/16n2, whose
coefficients are in the order of 1. Thus, at least for low temperatures, the calculation is
self-consistent if g?/16r2 is small in the transition point. According to the calculations,
‘for A = 100 MeV, g2,,/16n% starts from 0.02 when T = 0, it remains almost constant
until T = 120 MeV, then the growth accelerates, and the last calculated value at 7" = 290
MeV is 0.06. This result seems to be reassuring.

Having more or less convinced ourselves of the reliability of the calculation, at the
end of this Section we are going to look ‘at the phase diagram (on the p, n plane). First,
consider the isotherms. They are quite regular for both phases below T = 290 MeV, but
at this temperature some strange kind of instability appears in the quark phase. Namely,
there is a turning point on the isotherm where » is minimal, and for smaller pressures
dp/dn < 0, moreover, the transition pressure is lower than the pressure belonging to the
turning point, thus the compressed system meets this unstable region just after the phase
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Fig. 2. The structure of the phase diagram of the nucleon-quark system according to the calculation de-
scribed in Ref. [12]. It can be seen that the type of the transition is definitely different from the usual one
obtained for van der Waals systems. Pure nuclear Phase can exist in the region a, pure quark-gluon phase
can be found in ¢, while b denotes the region where the two phases coexist. Continuous lines denote the
states on the phase transition curve, while the dotted line is the p(n) function for nuclear matter at 7= 0.
The broken lines are some nontrivial consequences of the calculation. The lower part of the diagram is
empty, because the system has a minimal nonvanishing pressure at T = 0. Some regions are doubly re-
presented, but » and p do not necessarily determine the thermodynamical state, because n = NfV, and
P and (—¥) are conjugate quantities
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transition. If this result were physical, there would be “microscopic collapse’ [24] at the
end of the transition, but in order to accept such a behaviour more evidences would be
necessary. Such an effect cannot occur if g2 is-constant, so maybe at this temperature the
T-dependence of g must not be neglected. Nevertheless, it is more honest to confess
that presently we cannot fully interpret this instability.

Finally, Fig. 2 shows the topology of the phase diagram, which is clearly not snmlar
to the van der Waals case. There are three main differences, namely:

a) There is a region on the (n, p) plane which is empty.

b) The left hand side of the phase equilibrium curve is steeper.

¢) There are doubly-occupied regions.

Although these features might seem very peculiar, they have explanations. For (a),
one should observe from Egs. (6.1-4) and (7.3) that both systems have nonvanishing
pressure at n # 0, T = 0. Point (b) is a consequence of the asymptotic freedom, while
point (c) is not a paradox: for fixed particle number » and V are equivalent quantities.
Since p and (— V) are conjugate thermodynamical quantities, they cannot fully charac-
terize the thermodynamical state of the matter. Using n and T, the regions of the phases
would be clearly separated.

10. Possibilities for observation?

Let us assume the best, i.e. that we have been successful to convince the reader of
the existence of the phase transition, and of the reliability of the obtained data. Even
then we ought to mention some ways to check the result. We want to play fairly, but
cannot create new possibilities for experiments. As the results have shown, for the phase
transition some 5-7n, density (or 3—4n, but T ~ 200 MeV) is necessary. As far as we
know, there are only two such situations when one may hope such circumstances (and
there was one more).

a. Cosmology

It is a general opinion that in some past stages of the.evolution the Universe possessed
a density well above n,. In the most obvious models as e.g. Friedmannian dust or radia-
tion-dominated solution there exists a time value when the density is infinite (Big Bang) [2].
Of course in rigorous terms “infinite’’ means “above the validity of the theory” but that
is quite high. Although there are models without singularity, e.g. sometimes viscosity can
prevent the singularity [27-31], there are few doubts about densities higher than nuclear,
and, at least, we have evidences as the He surplus of population I stars, that the Uni-
verse had a density 10%° times higher than the present density [32]. Thus, certainly, the
Universe passed through a phase transition, however, if the confinement is complete at
low densities, there cannot be recent spoors. Observing far regions of the Universe we
get information from the past. Nevertheless, optical observations cannot reach this time,
because it happened before the end of the plasma stage. In principle the primordial neu-
trino background carries some information, but today it is not a serious proposal to
observe this radiation.
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b. Neutron stars

There is a forlorn hope that quark matter can occur in the centre of neutron stars.
Nevertheless, this hope is decaying as the years go by. In order to make the picture clearer,
consider a static, spherically symmetric configuration. Then a consequence of the Ein-
stein equation of the general relativity is the following equation of hydrostatic equilib-

rium [24]:
p p
d_p _ <Q+ c—z)(m+47cr3 ?>
R A
rir—-2—m
c

m(r) = 4n | o(r')r'?dr’.
°

(10.1)

If the matter is cold (which is obvious for final states of the evolutions) and consists of
one component, then

e = ¢(m) = p(n) = ple(n). (10.2)
Of course, the form of the function p(g) is mpdel—depen&ent. Having fixed it, Eq."(10.1)
can be numerically integrated for any ¢(0). However, some solutions are unstable against
radial oscillations. In the classical limit yM/c? < R the stability condition is [33]

4%
ndp dn?
;:i—n— = ———-:dg > 4. (10.3)
n——g¢
dn

In the, relativistic. region special considerations are necessary, however for each in-
vestigated model the result has been that after the neutron peak of the M(g(0)) curve
the decreasing slope is unstable. Thus quark cores cannot exist if the central density of
the configuration of the maximal mass is below the transition density g;.

In the first calculation.g(0, max) was 9.98.10'® g/cm3, which might be enough [24].
Nevertheless, that calculation neglected the nuclear forces. Chin and Baym have com-
pared g, and g(0, max). The result is that the maximal central density is too small by a fac-
tor = 2 {1, 33]. Of course, they used particular models for nuclear forces.

Even if ¢(0) could reach g,, this would happen near to the maximum of the M(g(0))
curve, where some characteristic quantities of the neutron stars are almost constant.
Thus, probably, the phase transition could not cause great changes in the (theoretically)
observable quantities of the stars. Moreover, the quark core could not be too great, so
e.g. the heat capacity could not be strongly affected.

In fact, the heat capacity seems to be a good signal, and there was an attempt in
comparing the model thermal evolutions to observatxons, but the results were not deci-
sive [34].

Generally the adiabatic index defined by (10.3) is lower for quark matter than for
neutron matter, thus there is a tendency for instability anyway.
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c. Heavy ion collisions

Heavy ion processes, at least, are true laboratory experiments, not simply observations,
as the previous ones. However, in these experiments one can detect only the final fragments
of the fireball. Thus a double question arises:

1) Does the density reach n, in the process?

2) Does any surviving signal of the quark phase exist?

We think that the answer for the first question is yes. Namely, the calculations yield
the following maximal densities and temperatures for different bombarding energies:

Eyomp/nucl. (GeV) 0.1 [35] 0.5 [35] 2.1
Roax/No 1.8 2.7 > 5.5 [36]
Tpax (MeV) 15 40 ~ 120 [37]

Compared these numbers with the data of Fig. I one can see that there are good possibil-
ities at 2.1 GeV/nucleon bombarding energies. ‘

If the compression has produced a mixed state above ny, the matter becomes softer.
Namely, Eqs. (4.8-11) show that at 7 = 0 the mixture followsa p = const. path, if there-
are no irreversible processes, so the effective compressibility is inifinite. Of course, the
compressibility is finite for T # 0, and then detailed numerical calculations would be
necessary, nevertheless it does not seem impossible even to reach the quark phase.

The thermodynamical formulation of the phase transition given in Sects. 2 and 3
is an equilibrium formalism. Since the time scale of a heavy ion process is not very long
compared to the time scale of the individual interactions, there are some doubts about
the regularity of the transition. Today it would be very difficult to answer this question,
however, we must emphasize that some “hysteresis’ effects (as for undercooling) are quite
possible, but having reached the unstable regions the matter cannot remain on the original
trajectory. While in the stable region the growth of the surviving phase happens through
surface processes (which can be slow if the surface is small), in the unstable region the
new phase is produced in each volume element by great fluctuations. Of course, nobody
would be very surprised if some moderate fluctuations occur in the experimental results.

Nevertheless, one would need also a signal of the phase transition in the final, obser-
vable stage of the heavy ion collision. Here we are going to discuss three proposed sig-
nals: incomplete shock waves, entropy excesses and “‘abnormal” rates in the particle
production.

A Frankfurt group has investigated the propagation of shock waves in mixed sys-
tems [38]. They conclude that the phase transition is incompatible with the propagations
of sharp shock waves, thus the shock fronts smear out. Unfortunately, viscosity causes
a similar effect [5, 35], thus further investigation would be necessary for distinctive marks.

Siemens and Kapusta found too low deuteron to proton ratios in energetic heavy
ion reactions [39]. Hence they concluded that there was an entropy excess, and proposed
phase transition as one of the possible explanations. Nevertheless, it is necessary to empha-
size that the entropy excess cannot be directly measured, and the finite volume of the
deuteron automatically leads to a lower deuteron to proton ratio. In fact, 10 fm® effective
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volume explains the observed ratios [40]. Maybe, more compact light nuclei, as He3, t
and « would be more appropriate to determine the entropy of the fireball. On the other
hand, as we saw in Sect. 4, the phase transition in itself does not cause any entropy excess.

The third possibility is to measure the strange particle production of the collision.
The K and A production rate is definitely higher in a hot quark-gluon plasma than in
the hadronic phase [41]. In a hadrochemical model calculation the ratio K+/p turned out
to be an almost linear function of the bombarding energy up to 3 GeV/nucleon [42]. If
experiments showed a breaking on this curve, that might be a signal for the quark plasma.
Of course, one cannot expect too great differences, because the existence of the quark
phase is limited both in space and in time.

11. Conclusions

From the data of Refs. [12] and [21] one can draw the conclusion that, if the temper-
ature is not higher than 120 MeV, the nucleon-quark phase: transition starts somewhere
at n = 5-6n,, and the central region of the heavy ion collision just reaches this density
at Ey i /A =~ 2 GeV according to Ref. [36]. For higher energies the necessary density seems
to be even lower because of the higher temperature. The density, at which the transition
ends is ca. 15 ny, and, although the mixed state of the matter is relatively soft, without
dynamical calculations, it cannot be decided if the matter reaches pure quark phase at
reasonable beam energies.

The calculations using running g2 do not confirm Chin’s result for a limiting tem-
perature.

Unfortunately, until now no clear (or even hopeful) evidence for the formation of
a quark phase has been found.
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