LETTERS TO THE EDITOR

V THE NONCONVECTIVE PLASMA BUNCHING IN PULSARS

By J. GIL

Institute of Physics, Pedagogical University, Rzeszów*

(Received September 8, 1982)

It was argued in the Summary of Ref. [1] that the nonconvective plasma bunching cannot be responsible for coherence of single-particle curvature radiation in pulsars. This conclusion was based on the radius-to-frequency map $r \propto v_c^{-2}$ (see e.g. [2]), where $v_c = (3/2)\gamma^3 c/\varrho$ is the critical frequency of curvature radiation and $\varrho = 4/3$ ($r/\sin \vartheta$) is the radius of curvature of dipolar magnetic field lines. Such a dependence can be obtained for each field line because $\sin \vartheta \propto r^{1/2}$ along it. Since $r(v) \propto v^{-2p_2}$ and $v = v_c$ then $p_2 = 1$ and the separation index $p = p_1 \cdot p_2 \geqslant 1$, ($p_1 \geqslant 1$), in conflict with observations. This leads to the statement from the beginning of this note. However, this conclusion is not correct. For a given phase of the observed pulsar emission the angle ϑ is fixed and the radiation is emitted from different field lines (see e.g. [1]). Thus $\varrho \propto r$ and the radius-to-frequency map in the form $r \propto v_c^{-1}$ should be used. Hence it follows that $p_2 = 1/2$ and $p \geqslant 1/2$. This means that the nonconvective bunching is not excluded as a source of the observed pulsar emission.

REFERENCES

- [1] J. Gil, Acta Phys. Pol. B12, 1081 (1981).
- [2] B J. Rickett, J. M. Cordes, Proc. IAU Symp. 95, Pulsars, D. Reidel Publ. 1981.

^{*} Address: Instytut Fizyki WSP, Rejtana 16A, 35-311 Rzeszów, Poland.