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In the paper we consider the most simple spherically symmetric and cosmological
solutions to the equations of the gravitational theory with the quadratic Lagrangian
Ly = 0@ A nif+aQ; A + Q400 A « O

PACS numbers: 04.20.Me

1. Introduction

The theory of gravitation with the quadratic Lagrangian L, = ¢Q; A n';+aQ’;
A x Qi +a@" A x O; was considered initially in the paper [1] as the most general model
of the gravitational theory which closely relates the ideas of the General Relativity Theory
(GRT) and the ideas of the gauge field theory.

If we apply the standard Palatini variational procedure to the full action, gravitation
and matter, then we get the following fundamental equations of the theory!:
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From (1) there follow the tensorial equations
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1 The notation here is the same as in [i].

(713)



714

A(ViQs% + Q" Qi+ 5 0 Q%)
. . o5 0% Bty yeee i npr
=(=)zt%+e (R{)h— t,l" R) —a <f Q-S.Qm“Qeri?-)

. O o
_a (Rf’.,;;R; o Zb RY"R; ,) . Q)
If

then the equations of the theory reduce to the vacuum Einstein equations
Ry = 0. 4)

Inside cf matter, even if we put @' = S}/ = 0, the full system of the equations of
the theory does not correspond with the Newtonian gravitational theory (NGT): the
equations with D * 2 which are of the third order destroy this corrcspondence. In the
consequence of these equations, with ©' = 0, we get in the Newtonian limit the equation
A = const which is satisfied by the potential ¢ = kr?/2+C, k = const, C = const
of the elastic force F = (—) grad ¢ = (—)kr instead of the Poisson equation Ay = ¢.
Thus, the full system (1) of the field equations of the theory cannot describe the macroscopic
gravitation.

However, if we choose the constants g, @, a in the following way
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then, in the limit 2 = O we get the theories which for incoherent perfect fluid correspond
with the Newtonian theory as well as GRT does.

In (5) and (6) h is the Planck constant; c is the value of the velocity of light in vacuum,
G is the Newtonian gravitatioral constant and H is the Hubble constant,

Thus, with the above choice of the constants g, a, a, and putting i = 0 into the
field equations (1) or (2) one obtains the macroscopic gravitational theoiy. This theory,
if we choose the constants g, a, « as in (ii), coincides with the Einstein-Cartan theory
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(ECT) of gravitation {2, 3]. On the other hand, the choice of the constants g, @, « given

by (i) leads us in the limit # = 0 to a new macroscopic gravitational theory with the equa-
tions '
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The macroscopic gravitational theory with the equations (7) is based on the La-
grangian

L,=o(@% A ni+0' A x0) 8)
with
c4
¢= i6nG’

and for classical spin and for incoherent perfect fluid it corresponds with NGT as well
as GRT and ECT do.

The dynamical equations of the new macroscopic gravitational theory
L 1 ~Jk @y epr 6lp atr gy -+
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are of the second order and have the form of the equations of a gauge field theory. Moreover,
in vacuum, equations (7) reduce to the vacuum Einstein equations (4). In general, for

spinless matter equations (7), similarly as the ECT equations, reduce to the Einstein
equations

GP o= —1t%. &)

The choice (i) of the constants g, 4, « has some advantages because the constants
0 = «,d, are constructed from the fundamental constants ©, ¢, G only; on the other
hand, the choice (if) of these constants gives the theory with 4 approximately equal to
C (4 ~ 10-%¢ cm?; C & 10-%%) and leads to a simpler macroscopic gravitational theory
(ECT).

The full system of the field equations (1) (or (2)) is of the third order and, in our
opinion, gives a classical, microscopic gravitational theory.

Thus, the full system with g, @, « given by (§) or (i) and its solutions should have
a physical meaning in microphysics and in the singularity problem.
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2. Remarks on the spherically symmetric solutions

The O(3) symmetry admits the following, nonvanishing components of the metric,
g, and the torsion, @, in the “spherical” coordinates x° = ct, x' = r, x2 =9, x3 = ¢:

goo = e, gy = (=), gy, = (=% g3 = (—)rsin® 9,
Q% =11, Qo =h(rr1), . inb = Q%5 = k(r, 1),
0% = Q%5 = g(r, 0. (¥

With the help of (8) we can write down the field equations (2) of the theory. If we do
that, we get a very complicated system of nine nonlinear differential equations of the
third order. The system is too complicated to be presented here.

These equations admit only two nonvanishing components S°;, and S';;, of the
classical spin

Sljk = “'Sjk; S.Ik = (—)Skj‘
However, these components must vanish in the consequence of the conditions
ulS”( =

Therefore, the O(3) symmetry and the field equations of the theory both exclude the
classical spin (in the following we restrict ouiselves to the classical model of spin). In
consequence we can take the energy-momentum tensor of the perfect fluid in the same
form as in GRT, i.e., in the form

t; = (e+p)uu;— poi. (9)
2.1. Remarks on the exterior solutions

Outside of a spherically symmetric distribution of matter, i.e., in the domain where
t/; = 0, we obtain a very complicated system of nine nonlinear differential equations of the
third order on the six unknown functions v(r, t), A(r, 1), f(r, 1), g(r, t), h(r, t), k(r, 1).

With the help of Trautman’s differential identities [2], [4] we can prove that this
system may possess no more than six independent equations. In consequence the system
may possess solutions with dynamical torsion.

Up to now we have not obtained any solution to the system with torsion neither
using traditional methods nor using methods typical for the gauge field theory [5], i.e.;
using a suitable Ansatz for Q’;. (All Ansatzes lead inconsistent sysiems of equations.)
The investigation of this problem is continued.

If we put O = 0, then the equations of the theory reduce to the vacuum Einstein
equations and, as the solution, we get the exterior Schwarzschild solution only.

2.2. Remarks on the interior solutions

Inside of matter we have, in general, the system of nine nonlinear differential equations
of the third order for nine unknown functions: A(r, t), v(r, t), f(r, t), g(r, t), h(r, 1), k(r, t),
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&(r, t), p(r, 1), ul(r, t). The system is too complicated to be presented here. Up to now we
have not been able to obtain a solution to the system with dynamical torsion.

If we confine ourselves to the static sphere (we do this in the following), then we get
the system of nine nonlinear differential equations of the third order on eight unknown
functions: A(r), ¥(r), f(r), g(r), h(r), k(r), &(r), p(r). The system is as complicated as in the
general case and it is very hard to obtain its exact solution with dynamical torsion
if it exists.

However, assuming the static case and putting the torsion equal to zero we simplify
the system of the field equations to a tolerable form:
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In equations (10)-(11)
Iy di 2 ati .
= — N = —— €CIC.
dr dr?

Equations (10)~(11) form a system of five nonlinear differential equations of the third
order on the four unknown functions: A(r), v(r), &(r), p(r). The system surely possesses
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solutions. This is seen because if S; = @' = 0, then the field equations (2) of the theory
reduce to the form

VlRip—ViRlp = 0,
p- 6g 1 4p* - 55 ijrtpeeee ijepeopt
(4] R'b— ‘i“ R =7 t.b‘a ‘4— R"--Rijrt-R"btRij" . (12)
The system (12) is in turn satisfied, e.g., by every solution of the system

Ry = Agy, A = const 13)

with the equatior of state p = (—)e.

We can most easily obtain these solutions in the following way: we look for all spheri-
cally symmetric solutions o equations (11) and select those which simultaneously satisfy
equations (10). If we do that, then we get the following solutions to the system (10)-(11):
®
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ds* = c*di*— (1- »;2> dr’—r?dQ?,

R = const, dQ* = d9*+sin? 3d¢?,

6 + a 2 (a € 40 (14
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This solution may be physically valid only in the following two cases (we assume that
the equation of state cannot depend on R = radius of the sphere):

_ hG
2.p=0, R-= =¢A=\/f—.

03

SRR~

In the first case we get an empty Minkowskian world with p = ¢ = 0 and in the second
case we get a very interesting solution describing a particle with the following parameters

a - [hG
R=[2=yd-= \/»—S—z 1.6 107 cm,
0 4

~ 7
= 120471 = ——,
€ ¢ 4rhG?
e he 2Gm
my = 7R3 z= \/_G_ ~107%, r, = = % =2R. (15)

Particles of that kind, called maximons, were previously considered by Markov [6].
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The maximons have some interesting properties [6]; especially, their gravitational
interaction is able to create bounded states even for electrically charged maximons.

The bounded states of N > 2 maximons may have arbitrarily small rest mass depend-
ing on the mean distance between constituting maximons.

It is interesting that maximons appear in the considered gravitational theory as special
solutions to the field equations.

(i)
2 22 \1
ds* = (1 - F) cdi*— (1— i-z-) dr? —r?dQ?,

20
R = const, ¢ = R’ p = (-)e,

& 2R 2Gm R
my = 2R = = — | ==, 16
0=ITR 2T e T Ta T3 (16)

‘We see that it 1s possible to put ¢ = p = 0 in this case if and only if R = o0, i.e., if the
space-time is Minkowskian.

The solution (16) may be joined smoothly to the exterior Schwarzschild solution
on the sutface of the sphere r = R. It seems to us that the solution (16) may represent
a neutron star because the typical parameters of a neutron star |7] are compatible with
this solution.

3. Remarks on the homogeneous and isotropic cosmology with O(3) isotropy group

Let us study the fundamental equations of the theory for the homogeneous and
isotropic cosmology with the O(3) isotropy group at every point. Taking the Robertson-
-Walker linear element in the form [8, 9]

ds? = dx°2— az(t) [di? + R*(x) (d9* +sin*3dp?)], 17
where
siny if k=1,

R(y) = x if k=0,
shy if k= -1,
and the following nonzero components cf torsion @'
Q% =/ 0, Qlis =h(x1), Q%: = 0%; = (—)k(x: ),
0%; = Q%5 = g(x. 1), (18)

we can explicitly write down the field equations (2).
We get a very complicated system of nine nonlinear differential equations of the third
order. The system is too complicated to be presented here.
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The system admits only one component, S°;,, of the classical spin. However, this
component must vanish in the consequence of the conditions #'Sy = 0. Therefore, the
classical spin is ruled out here from the consideration. In consequence we have a system
of nine nonlinear differential equations of the third order on seven unknown functions
at), k, p@t), et), f(x, 1), gt 1), h(y,t). Probably this system is consistent only in the
case of vanishing torsion. This problem will be examined elsewhere.

In this paper we restrict oursclves to the cosmological equations of the theory in the
case ®' = 0. Then we have the following equations:

The case k =0
.2 — .4
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The case k = 1
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The case k = (—)1
2
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a

The above systems of equations surely possess solutions because, e.g., every suitable
solution to the equations

Ry = Agy  with A = const

satisfies the equations of these systems with p = (—)e.



721

Up to now we have obtained only some special solutions of the systems (19)-(21).
These solutions are:
() In the case k = 1 we have a static maximon solution with the parameters

— hG
a=.A4= \/?3- ~ 1.6x107*3 cm,

3¢?

e=1204""' = ——, =0,
¢ amng?”  F
P he 2Gm,

my = % na® a=\g =g < 2a. (22)
The static solution with

2 = (=)4 1204t = 2 0 (23)

a* =(=)A, &= = =
¢ anng?’ P

exists also in the case k = (—)1. However, in this case, the volume and, therefore, the
mass of the solution are infinite.

The investigation of the non-static solutions of the equations (20} and (21) is con-
tinued.

(i) Inthe case k = O there exists the following solution (in the case there are not admissible
the solutions with a = const; £, p # 0)

30 P
a=const x t'%, eg= 1% = —. 24
2C2 p 3 ( )
This solution is the same as the corresponding cosmological solution obtained in the

framework of GRT (see, e.g., [8]). Moreover, there exists the solution with

a = Be”, B =const, b = const;

b? =const, p=(—)e. (25)

nlc\
N

The solution (25) is the same as the de Sitter solution of the GRT equations with
cosmological constant A [10]. However in the considered gravitational theory we may
put p =& =0 if and only if & = 0, ie., if a = const.

The case k = 0, p = 0 is investigated. Probably we have in this case a cosmological
model without singularity.

4. Conclusions

In our opinion, the considered model of the gravitational theory does have some
interesting features. It seems to be the best model of the gravitational theory which combines
the ideas of GRT and the ideas of gauge field theory. If we construct the constants g, 4, %
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solely from the fundamental constants #, ¢, G then we get, in the limit # = 0, the macro-
scopic theory of gravitation which differs from the ECT.

It seems to us that the full system of the equations of the theory gives some kind of
microscopic gravitational theory.

Note Added in Proof

The equations of the theory have, in the case of O(3) symmetry, only torsionless solutions. The
proof will be given in the paper submitted to Gen. Relativ. Gravitation.
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