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A new class of gravitational instanton solutions with {and without) /-term is given.
The solutions are Euclidean generalizations of various Bianchi types and the Kantowski-
-Sachs model.

PACS numbers: 04.20. Jb

1. Introduction

There has recently been considerable interest in gravitational instantons (Eguchi
et al. 1980; Pope 1981; Perry 1982). These may be defined as complete positive metrics
which are solutions of Einstein’s field equations

R,, = Ag,,. 1)
There are many well known mathematical results which have applications to gravitational
instantons (Boyer 1981; Catenacci and Reina 1982, Pope 1982). For example, a gravi-
tational instanton with A4 > 0 is necessarily compact (Milnor 1963). Compact gravita-
tional instantons are of much interest in the space-time foam description of gravitational
physics on very small scales (Hawking 1978; 1979a, b). If A < 0 there are many implicit
compact examples given by the Calabi-Aubin-Yau theorem (Boyer 1981; Catenacci and
Reina 1982) recently proven by Yau (1977, 1978). However, only a few are known explic-
itly. If A4 = 0, then only two explicit examples are known (Pope 1981; Perry 1982).
Thus we are encouraged to consiruct further exact instanton solutions.

2. Metrics, field equations and solutions
In this paper we consider the Euclidean metrics
ds?* = dt*+ R}[dx +2Ih(y)dz]* + R3[dy® + h'2(y)dz?], )

where R; = R{(¢) and A(y) is cos y, ¥, cosh y, respectively, when k¥ = 1,0, —1. If I =0
one obtains the Euclidean Bianchi types I (k = 0), III (k = —1) and the Kantowski-Sachs
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space-time in case of k = 1. With / £ 0 (NUT-parameter), the metrics (2) are the Euclidean
versions of the Taub-NUT-de Sitter space-times of Bianchi types II (k = 0), VIII (k = —1)
and IX (k = 1). The corresponding field equations (1) can be reduced to

2RS+ R2+12 SY_k_ A 3
RS \R R?) R (3a)
2R+ R2+312 SY ko A 3b
R ' \R R? R* (35)
R + S + kS (2 S A 3
R"5"RS ) -7 (32)

where S := R;, R := R, and () = d/dt. With the aid of the “Ansatz”

S = Rf(R), R®= -[*‘i%% %18—1»], @

we obtain the uncoupled system for f and g

3 2
f=r (11‘;) =0, g -3 (%) =0, (%)

where ()’ := d/dR and which has the exact solutions

l\Z -1/2 1 2713/2 14
f=[1+(§)] g=2m|:1+<E>] +kF

, 12 1\ AL 2,12 2 2 *
~3KK[1+(§>]_F[(R +1%) (R*+31%)— ?], (6)

where 2m = const. By transforming (2) to a canonical r system
r2=R2+12, u(r) =82 @)

we can express (2) and (6) in closed form

2

u(r)

ds® = +u(r) [dx+2lh(y)dz]* +(* = 17) [dy* + 1’ *(y)dz*], (8a)

where
r4
u(r) (P> =17 = k(r* + 1) —2mr+ 4 (l4+212r2— §>. (8b)

The case I # 0, k = 1 has been already obtained by Gibbons and Pope (1978a),
Tseytlin (1980) and Boutaleb-Joutei (1980) by completely different methods. By taking



725

appropriate limits one obtains also the solutions of Eguchi and Hanson (1978), Hawking
(1977) and the Fubini-Study metric (see Gibbons and Pope 1978a). The Weyl curvature
tensor for metrics (8) is of algebraic type D and has two invariants, which may be combined
into the form

v, = (m+kD/(r+1)>%. )

These invariants and the scalars formed from the Riemann tensor are regular functions
throughout the coordinate region (—o0 < r < o). It follows that the Euclidean Taub-
-NUT-de Sitter metrics with [ # 0 have no local singularities, although with / = O there
is a r = 0 singularity. In the limit / = 0, the metiics (8) converts into the Euclidean “A-
-metrics” (Krame: et al. 1980), which includes the Kottler metric (k = 1) (see Gibbons
and Pope 1978a), Schwarzschild (k = 1, A = 0), de Sitter (k = 1, m = 0) and the cor-
responding analog with planar (k = 0) and pseudospherical (k = —1) symmetries. The
most general type D solution has been found by Lapedes and Perry (1981).

We now derive (anti)-self-dual solutions of (1). By requiring that the Riemann tensor
R*,,p is (anti)-self-dual

é
R”vaﬂ = isaﬂng”v‘m: (10)
where 6 = 1 for self-dual and 6 = —1 for anti-self-dual solutions, we obtain the following
vacuum (A = 0) field equations
S = 26l S(S_R 2 R 11
s T R\s R/ TR’ (1)

Introducing the new time variable n by dt := SR?dn we obtain after a single integration
(In S?) = 2[R*(1—2,)+1657], (12a)
(In R?Y = —2S[I6S+ 4, R], (12b)

where { ) := d/dy. The A, are constants obeying
Ay = Athg, A3 =2(1=2)IS+E. (13)

The corresponding (anti)-self-dual solutions are classified according to the values of the
parameters (I, k, 44, 13):
) 0,0,1,0

(N (0,0,4, #1,0)
R=b.S = exp[b(1~i1) (1—n0)}
@iy 0, k, 1, k)
S=a,  R=[aLbo-n)l", k=1,
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@v) (1,0,1,0)
82 = [=216(—no)I™*,  §? = —2bl6(n—1,),
@) =(Uk,0,0)

2 rt 2 rt 2
(SR)? = = +a, R =k—+b K =1

(i) (L k, A, # 1,0)

k
(SR)? =~ —2—1—514+b, R? = In[a(kt*+8)]"%*, k*> =1 (14)

i) Lk, 1, k)
SR = [l(n—nodl™, S =[-26(—n)}", k*=1 (14)

where a, b, n; are constants of integration, dr = r~3(SR?)?dn and dtr = v 3RSS*dy.

The solutions (i), (ii) give flat Euclidean space. Solutions (iii) with k¥ = 1 has been
obtained by us recently in a somewhat different form (Lorenz 1983) and represents a Kan-
towski-Sachs gravitational instanton. The case (v) has been first given by Eguchi and
Hanson (1978) with k = 1. If k = 1 solution (vii) can be transformed into the gravitational
instanton first given by Hawking (1977) (see also Gibbons and Pope 1978b). The remaining
solutions are new.

We finally would like to point out that in general it is possible to include self-dual
electromagnetic fields into the Bianchi space-times, since such fields have vanishing energy-
momentum tensor.
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