Vol, B14 (1983) ACTA PHYSICA POLONICA No 10

AN ALGORITHM FOR CALCULATING MASSLESS FEYNMAN
DIAGRAMS

By V. V. BELOKUROV AND N. I. USSYUKINA
Institute of Nuclear Physics, Moscow State University*

( Received March 4, 1983)

A simple method for calculating multiloop massless Feynman diagrams is presented.
PACS numbers: 11.10.Gh

Perturbation theory calculations in quantum chromodynamics have stimulated
a considerable interest concerning methods for calculating multiloop Feynman diagrams.
Calculations of renormalization group (RG) functions in various quantum field models
{1-5], critical exponents in quantum statistics {6, 7] and some other important quantities
necessitated the developing of methods for multiloop diagrams calculations.

The method developed in the above mentioned papers made possible calcﬁlating of
the RG quantities up to the 3- or 4-loop level. At the same time a great numbe:r of higher-
-order diagrams defies calculating with use of these methods.

Some simple arguments essentially enlarging modern calculational abilities are
suggested. In this paper, we describe an algorithm and illustrate it by some examples.
More complicated examples will be published elsewhere including calculation of some
non-trivial diagrams in arbitrary order as well as calculation of RG quantities.

In order to calculate a Feynman diagram it is necessary at first to carry out algebraic
manipulations with nominaters, Computers are very helpful for these purposes in the case
of multiloop diagrams [8]. After that the problem is reduced to the calculation of some
scalar integrals.

In this paper we consider massless scalar integrals. Calculation of massless diagrams
is more simple because of quite a simple form of Fourier-transformation:
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D being the space-time dimension. That is why a free massless propagator in momentum
and coordinate spaces has a power-like behavior.

Moreover, massless diagrams play a particular role in calculations of RG functions.
This results from polynomial dependence of counterterms on masses in minimal subtraction
(MS) schemes The problem of calculatmg the counterterm of an arbitrary L-loop diagram
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with arbitrary masses and an arbitrary number of external momenta within MS-scheme
can be reduced to the problem of calculating some (L—1)-loop massless integrals with
only one external momentum [10, 1].

We work in coordinate space. Each line of a diagram carries a power-like factor
1/(x*—i0)", pictured as . In this case the line is said to have an index a. To avoid
complicating the formulae we omit henceforth the factors that ate powers of 2, n, i. These
factors can be easily restored in the final results.

The product and the convolution of lines with indices @; and a, in coordinate space
have indices a,+a, and a, +a,— D/2, respectively.

The idea of the method consists in reduction of a diagram mto a linear combination
of some other diagrams whose calculation is to a great extent simpler than that of the
original one.

If a diagram contains a three-line vertex or a triangle with lines satisfying Eq. (2), (4)
(see below) the diagram is reduced to a more simple one. The reduction can be done thanks
to the following equation [11]. If

Y a; =D, (2)
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Note that mCIdentally
3 b, = Dj2. )

The three-line vertex and the triangle having such lines are called the unique ones.
Unfortunately it happens very often that diagrams have no unique object. Normally
every line of a diagram has an index 1+a. Here « is a parameter of some regularization
that tends to zero with regularization being removed. So Eqs (2), (4) are not fulfilled.
However, even in that case, there is a possibility of a reduction of a diagram, It can
be done with the help of the following equations [12]. If

Y a,=D—1, (5)
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Eqgs. (6), (8) can be obtained from Feynman parametrization of the corresponding graphs.
In Eqgs. (6), (8) indices of some lines change by a unit. In such a way one can construct
a unique object inside a diagram.
Before formulating the algorithm let us calculate one of the simplest nontrivial diagrams
shown in Fig. la.

1 1
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Fig. 1

It is convenient to set D = 4—2¢ and then to take a limit € — 0. From the formula (1)
we see that every line has an index 1--&. Let us introduce an auxiliary analytic regulari-
zation, i.e. set an index of i-th line equal to 1+«;. We choose parameters «; as shown in
Fig. 1b. Introduction of parameters «; provides the fulfiliment of Egs. (5), (7) as well as
regularization of all diagrams emerging during the calculation.

Now because of Eq. (6) the diagram of Fig. 1b can be reduced into the linear combi-
nations of diagrams a, b, ¢ of Fig 2 with coefficients —(1 4o, —&)fos; —(1+ o, —€)jos;
I'(—a)l(—a)F(1 —e—os)/T (1 —e+a ) (1—e+o,)I(1 +a3), respectively.

Calculation of these diagrams is trivial as there are unique objects there. The result is
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Fig. 2
where

3
T =[] Tt —e)/I(1+oy).
i~

To obtain the final result let ¢ and « tend to zero. Note that there are poles in param-
eters of regularization in separate addends but they cancel in the sum. That yields

1 1
K2 (=39"(1) = 61(3) 1= (10)

{ is Riman {-function.

This example clarifies the algorithm for calculating an arbitrary diagram. We describe
it for diagrams where every line has an index 1+o. For other cases the procedure is similar
or even simpler.

1. To calculate a given diagram introduce an auxiliary analytic regularization, i.e. set
an index of i-th line equal to 1+ «;. Because of the regularization all quantities obtained
further on are well defined.

2. Choose a vertex (or a triangle) and get the indices of its lines to fulfill Eq. (5)
(or Eq.(7)).

3. With the help of Eqs (6), (8) reduce the diagram into a linear combination of three
other diagrams. Now consider each obtained diagram one by one. As indices of some
lines change by a unit the reduction makes it possible to construct unique objects inside
diagrams.

4. Have some parameters o; fulfilling certain conditions to obtain unique vertices or
unique tiiangles. If it is not possible go back to item 2.

5. Reduce the diagram with the help of Eq. (3). Further calculating is an iteration
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of items 2- 5. A system of linear algebraic equations for parameters a; is obtained as a result
of this procedure. Suppose this system to have a solution that does not reduce to zero the
argument of any emerging I'-function (henceforth we call such solutions permitted ones).
We obtain the result by substituting this solution and removing the regularization.

As an example of applying the algorithm let us consider calculation of nonplanar
diagram pictured in Fig. 3a. For the first time this diagram was calculated in Ref. [1]
by a method which was rather complicated. It is convenient to set D = 4—2¢ and use
an analytic regularization as shown in Fig. 3b.

1+ag
T+ay 1*«7
1’“2 T+ag
T+a,
a b
Fig. 3
If the indices of lines of the vertex A4 satisfy equation a, -+, +ag = —2¢, then with

the help of Eq. (6) the diagram can be reduced into the linear combination of diagrams
a, b, ¢ of Fig. 4. Reductions of these diagrams are showp in Figs. 5, 6, 7. The following
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Fig. 7
equations are necessary for that:
Ay tas+og = —28,  agtas+og = —2&,  oztogta; = —2e,
ay—agt+o,—ast+og =0, o +a,—ag =0, aj+taz—oa, =0, (1D

as—og+og—oyto, =0, o +ou,—a; =0.

It is evident that some of these equations are consequences of the other ones. A solution
of the system (11) can be chosen in the form

oy = —0t, =0, d3= —6—0—f, oy= —&—pf,
o5 = —e+f, og= —etat+f, a,=uz=0 12)

a, B being arbitrary parameters.
Taking into account all the factors appearing during the reduction account we obtain
the following expression:

1-¢ 1+a+f3
1o )
ﬁ da 1~g 7'U-ﬁ £:d=ﬁ=0

The diagram entering Eq. (13) can be calculated as shown above. Eq. (13) leads to

L(_”im_a) (=5 @' (D)— " (1-)+( ’(1)—w'(1—e))2‘) (14)
(K2)2 r2—2e) 1TE\Y ¥ yp . 5] ?=0’
that with £ — 0 yields

1

. % w(4)(1) (K2)2

~ 204(5) (15)

Note that the obtained system of linear algebraic equations for parameters of an
auxiliary regularization depends on the way of performing the reduction. If a system having
no permitted solutions is obtained it does not mean that the diagram cannot be calculated
by the described method. It might result from an unsuccessful choice of the way of reduction.
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As the ways of reduction are unnumerous for multiloop diagrams there will be an element
of art in choosing a most convenient way of reduction until it is done with the help of
a computer.

We have considered so far only convergent diagrams. If there are ultraviolet or infrared
divergences in a diagram they manifest themselves as poles in parameters of regularization
in the final expression. Note that in the case of convergent diagrams all poles appearing
during the reduction are cancelled in the final results (see Egs. (9), (10)).

As an example of calculating of divergent diagrams let us consider calculation of
scalar “Mercedes” diagram (Fig. 8a). There is an infrared divergence due to the integration
at large x.

Fig. 8

Let D = 4—2¢ One of possible choices of an auxiliary regularization parameters
(i.e. a permitted solution of a system of linear algebraic equations) is shown in Fig. 8b.
It is convenient to begin reduction from the vertex x. Reducing the diagram and taking
a limit « — 0 one can obtain the result

L (4O,
(7\;2)2{ - +0(e )}. (16)

The pole term corresponds to the infrared divergency. The coefficient does not depend
on the choice of parameters of regularization.

We have only considered above the calculation of propagator diagrams. However
the methed is literally applicable as well to calculating diagrams with an arbitrary number
of external momenta. For instance arbitrary-order ladder vertex diagrams can be reduced
by this method to a one-loop vertex.

The authors are grateful to K. G. Chetyrkin, D. I. Kazakov, D. V. Shirkov, V. A. Smir-
nov, F. V. Tkachov and A. N. Vassiliev for useful discussions.
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