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KANTOWSKI-SACHS GRAVITATIONAL INSTANTON
SOLUTION
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We present a new self-dual solution to Euclidean gravity which is of the Kantowski
-Sachs group type and may be considered as a gravitational instanton.

PACS numbers: 04.20.Jb

1. Introduction

The discovery of pseudoparticle (instanton) solutions to the Euclidean SU(2) Yang-
-Mills theory (Belavin et al. 1975; Rajamaran 1982) has suggested the possibility that
analogous solutions might occur in Einstein’s theory of gravitation. Since the Yang-Mills
pseudoparticles posses self-dual field strength, one likely possibility is that gravitational
pseudoparticles are characterized by self-dual curvature.

Starting from the idea that the Yang-Mills potential is asymptotically a pure gauge
(see Actor 1979 for a detailed description of Yang-Mills solutions), a gravitational
instanton should have an asymptotically flat metric. Four types of non-compact instantons
(a gravitational instanton with a cosmological constant A > 0 is necessarily compact)
have been discovered (for recent reviews see Eguchi et al. 1980; Pope 1981; Perry 1982):
asymptotically Euclidean (AE), asymptotically locally Euclidean (ALE), asymptotically
flat (AF) and asymptotically locally flat (ALF). In general a gravitational instanton can
be defined as a complete Riemannian manifold (with Euclidean signature) (M, g) of dimen-
sion four with finite action satisfying the Einstein Equations R,, = Ag,,, where R, is the
Ricci tensor.

A variety of solutions of Einstein’s field equations with instanton-like propetties
have been discovered. The corresponding metrics of many of these solutions may be cast
into the Euclidean equivalent of the Bianchi type-IX space-time. Thus one is forced to
consider the complete set of Bianchi types I-1X.
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In papers published previously (Lorenz 1983a, b, ¢) we presented new self-dual solutions
for the Bianchi types I-IX. In this paper we consider the Euclidean Kantowski-Sachs
space-time (Kantowski 1966; Kantowski and Sachs 1966), which is closely related to the
Bianchi type-III model.

2. Metric, field equations and solutions
The Kantowski-Sachs metric is a special case of the metrics
ds? = dt?+S%(t)dr*+ R?(t) (d0? +f*(0)dop?), (1)

where f(0) is sinh 8, 0 or sin 6, respectively, for Bianchi type-11I, type-I or Kantowski-
-Sachs. By requiring that the Riemann tensor R,,; is self-dual we obtain the following
field equations

S=R=SR=0, R®=—f"f, )

where ( ) = d/dtand ( )’ = d/df. Wehave k = f”[f = 1,0, —1 in case of Bianchi type-1II,
type-1 or K-S. The case k = 0 gives flat space solutions. According to the Positive Action
Theorem (Hawking 1979 ; Schoen and Yau 1979) the only asymptotically Euclidean instanton
is flat space. The case k = 1 has been already discussed by us (Lorenz 1983c) and gives
only complex solutions. However, in the Euclidean Kantowski-Sachs space-time considered
here we obtain the following real solution of Equations (2):

S=a, R=bit-t), 3

where a, b, t; are constants of integration obeying b> = 1.
Our solution possesses the interesting feature that the components of the curvature
two-forms
0", = 5 R*,40" A o* “4)
all vanish whereas the curvature
R* = —f"[(fR?) 3)
of the two-dimensional surfaces (¢, r = const) is always positive in a finite region but
falls off as 1/¢2 at infinity.
Defining the new coordinates (X, Y, Z, W) by

X =(t—t)sinfcos¢p, Y =(t—t))sin0sing, Z=(t—t,)cosl, W =ar, (6

the metric (1) can be transformed into flat space-time. In these new coordinates our solution
turns out to be identical with the flat space solution obeying the Positive Action Theorem.
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