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We investigate Euclidean solutions of the vacuum Einstein equations for diagonal
Bianchi types I-IX. Explicit solutions are given for all types which in some cases may be
considered as gravitational instanton solutions.
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1. Introduction

The discovery of pseudoparticle (instanton) solutions to the Euclidean SU(2) Yang-
~Mills theory (Belavin et al. 1975) has suggested the possibility that analogous solutions
might occut in Einstein’s theory of gravitation. Since the Yang-Mills instantons posses
self-dual field strength, one likely possibility is that gravitational instantons are character-
ized by self-dual curvature. However, there are also some gravitational instantons which
ate not characterized by self-dual curvature (Perry 1982).

In general a gravitational instanton can be defined as a complete nonsingular Rie-
mannian manifold (with Euclidean signature) (M, g) of dimension four with finite action
satisfying the Einstein equations R,, = Ag,,, where R,, denotes the Ricci tensor and
A the cosmological constant. One interesting class is compact instantons. These have
to do with the space-time foam description of gravitational physics (Hawking 1978, 1979).
A gravitational instanton with A > 0 is necessarily compact (Boyer 1981). The other
interesting class comprise non-compact instantons. Starting from the idea that since
the Yang-Mills potential is asymptotically a pure gauge (see Actor 1979; Rajamaran 1982
for a detailed description of Yang-Mills instantons), a gravitational instanton should have
an asymptotically flat metric. Four types cf such gravitational instantons have been discov-
ered (for recent reviews see Eguchi et al. 1980; Pope 1981; Perry 1982; Gibbons 1980):
asymptotically Euclidean (AE), asymptotically locally Euclidean (ALE), asymptotically
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flat (AF) and asymptotically locally flat (ALF) (Gibbons and Hawking 1979). The first
two types corresponds to vacuum or zero temperature physics, the second ones to finite
temperature physics (Gibbons 1980).

A variety of solutions of Einstein’s field equations with instanton-like propeities have
been discovered (Eguchi et al. 1980; Pope 1981 ; Perry 1982; Gibbons 1980). The correspond-
ing metrics of many of these solutions may be cast into the Euclidean equivalent of the
Bianchi type-1X space-time (see Ryan and Shepley 1975; MacCallum 1979; Kramer et al.
1980 for a detailed description of the Bianchi classification scheme). Thus one is forced
to consider the compiete set of Bianchi types I-1X. The Bianchi type-IX solution has
been first discovered by Belinskii et al. (1978) (see also Gibbons and Pope 1979). It includes
as special cases the Eguchi-Hanson metrics (Eguchi and Hanson 1978) and the self-dual
solution given by Hawking (1977).

In this paper we consider (anti)-self-dual Euclidean spacetimes for diagonal Bianchi
types I-IX. Explicit solutions are given for all types including non-self-dual vacuum solu-
tions (with and without) A-term. In Section 2 we set up the general Bianchi formalism and
give a brief outline of the method for obtaining (anti)-self-dual solutions. In Section 3 we
present new exact (anti)-self-dual solutions as well as pure non-self-dual vacuum solutions
which in some cases may be considered as gravitational instanton solutions.

2. Derivation of the curvature

Let (M, g,0) be a four-dimensional Riemannian manifold {(signature + + + +)
with a metric tensor g and a linear connection ¢ compatible with g. In choosing a local
orthonormal basis ¢, we can put the metric of Euclidean space-time in the form

ds? = 1,,0"0", ¢))
where 7,, = (1, 1, 1, 1) is the Euclidean metric tensor. We take

6% =’ =dt, ¢ = Ro' (no sum), 2

where o' are time-independent differential one-forms and where the R; are functions
of t only (here and henceforth Latin indices will assume the values 1, 2, 3, whereas Greek
indices will assume the values 0, 1, 2, 3). The one-forms obey the relations

do' = =3 Cy'o* A o), da' = —Ly.,6" A 3)

where Ck,i are the structure constants, y,,,i the connection coefficients, and A denotes
the exterior product. The structure constants for the Bianchi types I-IX are:

I

I: Cf =0,Vijk
II: C231 = 1,
IV. Cy,' = Cy3t = Gyt =1,

Vi Gy ' =Cyt =1
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VI:Cyl = C32 =1,C3 = G52 =a,a: = (=W

VI, VUL, IX: C;)* = —& i+ (81613 + 0ubia)a, a 1= h'/2, 4
where ¢;;, is the totally antisymmetric Levi-Civita pseudotensor and Jy is the Kronecker
symbol. We have:

n, n, n; a

1 1 0 a, type-Vl,
1 1 —1 0, type-VII1
1 1 1 0, type-IX.

The invariant parameter s is required to subclassify types VI and VII. Bianchi type III
is the same as VI_,. The Bianchi classification gives two broad classes, class A for which
C,' = 0, and class B (C;/ # 0). In type VI,, Bianchi’s ¢ is such that A = —[(1+¢)/(1—¢)]
while in VII, we have h = ¢*/(4—g¢?). Using the Ellis-MacCallum (1969) decomposition
Cijk = 8lijnkl+25k[jai] = —‘Cjik, (5)
where
a; =3¢ V=1, (6)
we obtain from the Jacobi identities
C[ijkcl]km = 0‘ (7)
nila; = 0. ®)
The restriction imposed by n’; = 0 can apply only in Bianchi types I, V, VI, and VIII
and allows simplified field equations especially fo1 type VI,.

The exterior derivatives of the orthonormal basis one-forms ¢* are readily found
by us of Eqs. (2) and substitution of the first of Eqgs. (3). Comparison of these equations
with the second of Egs. (3) provides immediately the connection coefficients y,s". These
quantities enter into the formula

Ouy = % (?uva—*—'))uav—'))vau)aa (9)

to provide six affine connection one-forms o,,.
The curvature two-forms

Oy = 0, A 0,+doy, (10)
can readily be computed by use of (9) and the compatibility equation
0=dn,, =o0,+0,, (11)

Out of this calculation, one reads the individual components R*,, of the curvature tensor
by using the second Cartan equation

0" = L R™ 0% A o’ (12)

as an identification scheme. Thus we can easily calculate the Ricci tensor R,, = — R*,,.
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Since we are only interested in vacuum solutions of Einstein’s field equations we have

R,, = 0. (13)

By requiring that the connection forms o,, be (anti) self-dual, i.e.

€1vor0 0 14)

[\ R -1

Oy = 0G,, =
it follows that the Riemann tensor R, is (anti) self-dual (o1 half-flat)
RE . — SR* . = 0 . R VO
vaf T OR vaf — Ebaﬂyﬁ v oo (15)

where & = 1 for self-dual and § = —1 for anti self-dual solutions. Taking the trace of
this equation, we find that the Ricci tensor vanishes; hence the (anti)-self-dual space-times
automatically satisfy the vacuum Einstein equations (13).

The condition (14) reduces the field equations to a system of first-order differential
equations. Imposing only the self-dual curvature condition (15) we obtain second-order
differential equations and thus a richer spectrum of possible solutions. However, any self-
-dual R",,; can be considered to come from a self-dual connection if a “self-dual gauge”
is chosen (Eguchi et al. 1980; Eguchi and Hanson 1979b), There are several reasons why
the self-dual condition is overly restrictive and why one might want to construct space-
-times which are non-self-dual (neither self-dual nor anti-self-dual). Since all self-dual
space-times satisfy the vacuum Einstein equations (with A4 = 0), they cannot contain
any source fields (besides sclf-dual electromagnetic fields with vanishing energy-momentum
tensor). This limits their use in quantum interaction physics. Recent constructions of non-
-self-dual “nonlinear gravitons™ has been given by Yasskin and Isenberg (1982). However,
since the problem of finding all self-dual solutions to Euclidean gravity has not arrived
at the same degree of completeness as for the Yang-Mills theory (for recent progress see
Hitchin (1979)), we are encouraged to construct further explicit (anti)-self-dual solutions.

3. Self-dual Bianchi solutions
Type-1
The (anti) self-duality condition (15) gives
(In R}) = 24,R;R,, (16)

where () = dldy, dt = R, R,R;dy, i,j,k are in cyclic order and 24; are constants
obeying
L ;=0 {amn
The case 4; = 0 may be obtained directly from (14) without integration. The possible
solutions are
Ri=a, 4=0, (18a)
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Ri = ai, RJ = b_p eXp (Clﬂ), aj’ }“J -_;é 0, i ?éj, (18b)

where a;, b;, ¢; are constants of integration.
The vacuum field equations R,, = 0 are

(InR¥)” =0, (InR,)(nR,R;)+(InR,)(InR;) =0 (19)
from which we obtain the Euclidean Kasner (1921) solution
R; = c;exp(ay), aia;+a,a3+aa; =0, (20)
¢; = const. By setting a,+a,+a; =1 and cycc5 = 1 it follows that
R, = cit*, at+ai+adl=1. @D

Eq. (21) represents the Euclidean Kasner solution in its usual form.
The generalization to non-zero A obeying R,, = Ag,, can be obtained from the
reduced field equations

(In R,)(In R,R3) +(In R,)'(In Ry)' = — 4, (222)
(In R)"+3(In Ry(In R} = —4, (22b)
where R® = R R,R, and () := d/dt. 1t follows that

(InR) = (InR) +A4;R™? (23a)
and

+1a’R78, (23b)

(In R)? = 4
¢ -3

3 3
where ) A; =0 and 34> = ) A}. The field equations can now be integrated to give the
i=1 i=1

most general Euclidean Bianchi type-I solutions with A # 0:

w Aifbo
R; = (sin wt)!/? (tan > t) , A>0, (24a)

) Aijbw
R; = (sinh w)*/? <tanh > t) , A4<0, (24b)

where w? = 3|A] and b*> = 34?%/2|4].

The corresponding non-Fuclidean version of these solutions has been first given by
Saunders (1969) (see also Kramer et al. 1980). The locally rotationally symmetric Euclidean
solution with 4 # 0 and R, = R, has been found by us recently (Lorenz 1983b).

Type-I1
The (anti) self-dual equations to be considered are

(In R?)' = n,R2—2A;n.R;R,, (252)
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where n, = —n, = —n3; = 1 and
Ay = —Ads,  Ady = Ah3 = 0. (25b)

It follows that A, = 0. Introducing the new variable r by dr = (R}/r3)dn the solution
with 4; = 0 is given by

r# a\*
R*=3 ?[1— <—) } R3 = RZ = bR;?, (25¢)

r

where a, b are constants. In addition we find as special solutions the following Eguchi-
-Hanson types

I: Ri=rg=br-', R,=Ry=r, fg=25, (26a)
IL: Ri=r, Ry=Ry=rg=>0br", f[= -20¢° (26b)

where b = const and dt = fdr.
In case of 4, # 0, A; = 0 we obtain the solution

R} =[=6(n—no)]™', Rj = —d(n—no)exp [24:b(n—n,)],
R = —bd(n—10), 27)

where b, 1; are constants. This is the first general triaxial Bianchi type-II solution. The
LRS-Euclidean-Taub-Bianchi type-II solution with R, = R; can be obtained from R,, = 0

R} = g[sinh g(n—no)]™",
L,
R} = 5 Sinh a1 —n0) exp a(n—n1). g = const. (28)

(Taub 1951; Lorenz 1980a).

Types-1I1, VI,

The Bianchi type-1I1 model is a special subcase of Bianchi type-VI, with & = —1. There
are two distinct cases that arise: cases n'; = 0 and ', # 0. We first consider the case
n'; = 0. As noted in Chapter 2 this restriction allows simplified field equations. The self-
-dual field equations to be solved are

(In R}’ = 24,R;R,. (29)
In addition we have the constraint equations
(A+1) [In (R/R)) = (4—1) [In (Ry/R3)]' = 0,
Jds = —(A+1)*R,/Ry, 2143 = —(A—1)*R,/R,,

Azhy = —(A*~1)R,R;/R}, A’ = —h. (30)
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The possible solutions are
R, =[—=24b(n—no)] ' =R,, Ry=b, Aj=i=—-4, I3=0, A=1,
(31a)
R2=R}=R:=[-24(n-n)]"", AM=4=1=-1, 4=0 (31b)

Thus only complex self-dual Bianchi types-IIl and VI, solutions are allowed. However,
it has been pointed out by Boutaleb-Joutei et al. (1981) that complex solutions should be
studied systematically.

The Euclidean vacuum equations to be solved are

(In RY' = —4(A*+1)RIRY,

(In R} = —4A4(A+1)R3R},
(In R%)'' = —4A(A-1)R3R3,
(In R,)' (In R,R;) +(In R,) (In Ry) = —(34*+1)R}R3,
24(In R,) —(A+1) (In Ry)' +(1—A4)(In R;) = 0. 32

Introducing the new time variable T by dr = R,R;dn we obtain the general Euclidean
vacuum solutions

R? = (sin 240)“** V4 (tan A4x)"*’,
R2 = (sin 247)“4* V4 (tan A7y"4,
R? = (sin 247)4 ™V 4(tan A7)"™4, A # 0, (33)
where m?>—34%2—1 = 0, m = const and
R} = exp [~ (1/a®) exp 2a(n—1,) —2a(n—n2)],
R? =expa(n—y,) = R3, A =0, a=const. (34)

The corresponding non-Euclidean solutions have been first given by Ellis and MacCallum
(1969). Solution (34) can be reexpressed in 1ts Ellis-MacCallum form

R} =21, R?=R:=1""exp(~7%). (35)
We now consider the case n’; # 0. The self-duality condition (15) leads to the equation
(In R})' = 8[n;R}+nR; —n,R¥]—24R;R,, (36)
where n, = —n, = 1, n; = 0. In addition we have the constraint equations

A[ln (Ry/R3)] = A[ln (Ry/R3)] = 0,
4[(In R, (In R,R3) +(In R,) (In R;)'] = —[(R}+R3)* +124R}R]]. 37

It follows that 4 = 0,i.e. » = Oand A, = 0.Incase of 1, = 4; = 0, which may be obtained



798

directly from (14) without integration, we obtain the solution
R} = 2r°F*2[6(1 - (ay/ri)] 7,
RS = 2r°F2[—5(1—(ay/ry)] 7%,

R} = a3 'r°F'?, (38)

where dr = r-3(R,R,R5)%dn and F'? = r-S(R,R,R;)?, a; = const.
There aie no Eguchi-Hanson Bianchi type-VI; solutions. In case of 23 # 0, 1, =0
we obtain

R}

I

atan [ —ad(n—no)], R} = a’R{?,

R} = sin [~2ad(n—no)] exp [~ A3(n—n1)], (39)

where g, n; are constants.
We finally should like to point out that the general vacuum solution of Bianchi type-VI,
(n'; # 0) in unknown.

Type-1V

The non-Euclidean Bianghi type-IV model has been considered by Harvey and Tsoubelis
(1977), Harvey et al. (1979), Tsoubelis (1976), and Siklos (1978, 1980). The model has
a number of remarkable features. It is first found that it cannot be persistently diagonal
in either the vacuum or perfect fluid case; the simplest non-diagonal case possess a solution
only if the cosmological constant is zero and no matter is present. However, it can be
made compatible with an electromagnetic null field.

The simplest choice of the differential one-forms ¢, which yields a nontrivial model is

o =w’=dt, o =R, %= Rw? ¢=LBRyw+Ry0 (40)
where B = B(t). Even with this rather special choice of the metric the self-dual field

equations to be considered turn out to be very complicated. Assuming R, = R; as in the
Harvey-Tsoubelis approach we obtain the condition

B(3+4B/R,) =0 41)

from which it follows that B = 0 or B = —(3/4)R,. However, it can be shown that both
cases are in contradiction with the remaining field equations.
The Euclidean vacuum field equations to be solved are

. R, .\?
(In R,R,R;) +(In R,)?4+(In Ry)*+(In R;)*+1 (f B> =0, (42a)
2
. ) .2 Ry \?
(In R)"+(In R,)(In R,R,R;) + — ++ =0, (42b)
Ry RiR,

2 R 2 . 2
(In Ry)"+(In Ry)(In RyR,Ry) + —, +3( == ) +3 (52 B} =0, (42¢)
Ry RiR,
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. .2 R; \? R, .\?
(In R3)"+(In R3)(In R{R,R3) + e —%( ) ~%(~ B) =0, (424d)

1 RiR, R,
1 5 . (R
— | (n(RY/RR3)) =3 |-~ | B| =0, (42¢)
R, R,
1 RS . - 3 . 2 » .
+—| B+B(In R3/R;)'+ —5 +B(InR,) | = 0. (421)
R, Ry
In the locally rotationally symmetric case R, = R; we obtain from (42¢) and (42d)
B? = —1/R%. (43)
Substitution of this into Eq. (42f) yields
(InR,) = —1/BR}. (44)
We can now solve (42e) to give
R, = +3it+a, a = const. (45)
It follows that
R, = b(x5it+a)*®, B =In(c(£3it+a))*’. (46)

Thus we have obtained a complex Euclidean vacuum Bianchi type-IV solution.
Type-V
For the Euclidean Bianchi type-V model we obtain the (anti) self-dual field equations
(In R?)Y = 2A,R;R,,
(InRy) = (In Ry’ = (InRy),
(InR) (In Ry’ = —1/R}, 47

from which it follows that R, = R, = R, and 1} = 15 = 1} = —1. Thus equations
(47) cannot be obtained from the (anti) self-dual condition (14). The complex solution
18 given by

R} = [~224(1—n)]7" (48)
The Euclidean vacuum field equations to be considered are
(In R} = —4(R,R,)?,
(In R%/R,R,) =0,
(In R))' (In R,R,;)Y +(In R,) (In R3)' = —3. (49)
Introducing the new time variable 7 by dt = R,R,dn we obtain the real solution
R? = (sin 27) (tan ©)", R2 = (sin27)(tant)”™™, R} =sin2s, (50)

where m = 3'/2, The corresponding non-Euclidean solution has been first given by Joseph
(1969).
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Type-VII,

It is convenient to investigate the Bianchi type-VII, model in a canonical frame with rotating
axis in which the metric is diagonalized (Doroshkevich et al. 1973)

g® = w® =dt, o' = R(cosdn!—sinpn?),
0% = R,(sinpw!+cosdw?), ¢° = R0, (51)

where ¢ = $(¢) is the angle of rotation in the (w', »?) tetrad plane. The self-dual equations

to be solved are
3 R\ [R\ .
HA4+H+e, |3l —) - (=] =214
: ‘”‘[ (R) (Rk) ¢

0 26,5, "R g —amy+ (TR PROY gl
= e s ) E; —_— —— s — -
2 i2 ii ikl RkRz k i i RiRl R;'Rk k H

R R
+ a3 (}EA— bl ?)} N (523)
i k

mny  mn o mn R, R\,
He "’(R? R R?) <eulR "R/

L1 nR; \? N nR; \? ] mR; \? a\?
1o [ (R _ (&
T\ ReR, R:R, 'RiR, R,

0 nR; n.R, nR,
= 2(26,,—8,) {e, - H,—H)+ H+H,—2H
2( 2= ){ ikl [( R.R, RiRl)( ) RRR, ( k )
R, R\,
5 21 , 52b
TR, (Rl R2> ¢} 20)

1 R, R;
T£3ik{[_R_'(3Hk—Hi) _3H;)] (R “R—) }
2
zies.-k{a(HrHa)%[ (R ( ) ] } (520)
R, .
R, R, R,
) 2 R)
L0 1[5 (Re)  (Be)
o fonma G- ()2l e

a(Hy+H, — 2H;)+2¢ sinh? 1‘2— =0, (52€)
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where H; := Iii/R,-, () :=d/dt,n, =n, =1,n, =0and i,j, k are in cyclic order. 6;; de-
notes the Kronecker symbol and ¢;; is the Levi-Civita pseudotensor with &,,; = 1. The
quantity p is defined according to

p=2In(R/Ry). (53)

It seems to be unlikely that the field equations (52) can be integrated in general.
The case p = 0 reduces to the Bianchi type-V model discussed in the previous section.
Assuming a = 0, it follows from (52¢) that ¢ = 0, and by means of a rotation one can
always select ¢ = 0. Introducing the new time variable # by df = R, R,Rady Egs. (52a)
can now be integrated to give

(In R} = —é&[n;R;+nR;—nR}]—24,R;R, (54)
and
Ohy = —lyhs, Ohy = —Aihy,  Ady =0, (55)

which follows from (52b). In case of 4, = 0 we obtain the solution

4 -1
R? = r*(2F)'? [—5(1-— <3) )] , i=12,
;

RY = r°F'%q,, (56)

where dr = r-3(R,R,R;)*dn, F''* = r-5(R,R,R;)? and a; = const.
It follows from (55) that we can have only A; # 0. The corresponding solution may
be given in the form

R? = acoth [—ad(n—ne)], R3 = a®R[?,
R} = sinh [ —2ad(n—no)] exp [~ 23(n—1y)], (57

where a, n; are constants of integration. The solutions (56) and (57) are the first triaxial
Bianchi type-V1l, solutions.

After long manipulations we obtain the Euclidean Bianchi type-VII, vacuum
equations
(RyR;)'+4a*RyR, = 0,
((i)'R,RZ sinh? %) = —2aR,R, sinh? —”2‘— ,
('R R,) —4R,R,(1+¢'?) sinh u = 0,

2 ’ , e 2 H
a(ln R3/R;R,)' = 2¢’ sinh 5

(n R;) (In R,R,)'+(In R,)’ (In R,)’ = —3a*— (1 —¢'?) sinh? —’;—- , (58)

where a®> = h, () = d/d¢ and d¢ = R,R,dn. No general solutions of these complicated
field equations are known. However one may attempt the following “Ansatz” to obtain
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a class of special solutions of Egs (58). One seeks solutions obeying ¢’ = k = const.

This “Ansatz” is called the Lukash ansatz since it has been first used by Lukash (1974;

1976) with success in the non-Euclidean vacuum type-VII, case (see also Jantzen 1980).
For k = i we obtain the complex solution

1 = I [(=i)"/2 cot (ad)),
R;R, = Asin(2a€), R} = B(sin (2a&)) '~ [exp (i¢/a)], (59)
where 4, B = const and a? = 4/11.

Types-VIII, IX

The self-dual condition (15) leads to the equations

(In R}) = —6[n;R}+nR} —mR]—-2,R;R,, (60a)
Odin; = Al (60b)
where n, = n, = —n; = 1 for type-VIIl and n; = n, = n; = 1 for type-IX. It seems

to be impossible to integrate Eqs {(60a) in case of 4, # 0 except when R, = R, which
leads to the self-dual Taub-NUT metrics already obtained by Hawking (1977) (see also
Lorenz (1983a) for type-VIII). Case 4; = 0 may be solved completely to give

411
R? = 2¢%F12 [——5?1,-— (35) ] , (61)
r

where dr = r-3(R,R,R3)*dn, F''* = r-5(R,R,R5)* and a; = const. The Bianchi type-IX
solution (n; = —& = 1) has been first given by Belinskii et al. (1978) (see also Gibbons
and Pope 1979). The solutions (61) are the first triaxial Bianchi types-VIII and IX solutions.

The Eguchi-Hanson types I and II solutions (Eguchi and Hanson 1978; Eguchi and
Hanson 1979a, b; Eguchi et al. 1980) for Bianchi types-VIII and IX can be obtained from
the equations

I: R, =R,=rg, Ry=rr,
28" = —0f2g—ns), 2g(rg'+g) = —onf, (62a)

1I: R, =R, =r, Ry=rg,
= —onyfg, 2rg'+g) = —f(2—nsg?, (62b)

where dt = fdr and ( ) := d/dr. The corresponding solutions are

4\ 1/2
I: g2=ﬁ[1i<1-n3(3)) } (63)
2 r
a 4
1 g = ny+ (—) , (63b)
r

where a = const. The original Eguchi-Hanson solutions are those with n; = —J = 1.
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The vacuum Einstein equations R,, = 0 reduce to the form:

(InR})"" = nfR{—(n;R} —n,RY)* (64)
and
4[(In Ry)’ (In (R,R,)) +(In Ry) (In R,)']

= 2[n,n,R{R;+n nyRIR3 +n,nsRIR3]— [niRT+n3R; +n3R3], (65)

where i, j, k are in cyclic order. (65) is a first integral of (64). Equations (64) and (65) may
be integrated completely if we impose the conditions that two of the R, are equal. For
type-VIII we can equate only R; with R, obtaining a symmetry about the third axis.
This can be seen from the fact that the field equations for type-VIII do not turn into each
other under any permutation of the indices i, j, k. For type-IX the intrinsic geometry
of three-space does not privilege any direction of space. The solutions are given by

R} = R} = § g sinh [g(n—n2)] sech® [ q(n—n,)],

R} = q osch [q(n—ny)], (66a)
R} = R} = £ g sinh [g(n—n2)] esch® [ q(n—np)],

R} = g csch [q(n—15)], (66b)

where g = const. The solution (66a) is new and represents an Euclidean Bianchi-Taub
solution of type-VIII (see also Lorenz (1980)). The solution (66b) has been first given by
Gibbons and Pope (1979). The more familiar forms

u(r)(r* =12 = k(r*+1»-2mr, k= n,4 (67)
can be obtained by transforming (66a, b) to a canonical r system
# = R2+1%, u(r) = R3 (68)

where RIR3dy = u~'*dr, m = const and ! denotes the NUT-parameter (see also Lorenz
(1983b)).

4. Conclusion

We have given a complete discussion of all (anti)-self-dual solutions for diagonal
Euclidean Bianchi types I-1X models. Besides being new exact solutions to Einstein’s
field equations, the solutions are double self-dual solutions of O(4) Yang-Mills equations
(Oleson 1977; Wilczek 1977). The global properties, including the topological invariants
y (Euler characteristic) and 7 (signature), as well as the regularity considerations of the
obtained solutions will be discussed in a forthcoming papet (Lorenz 1983c).

The 1estriction of considering only diagonal (with the one exception of Bianchi type-1V)
metrics is legitimated from the fact that no general exact non-diagonal solution of Einstein’s
field equations has been obtained until now. In addition, it was shown by us in this paper
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that no non-diagonal self-dual Bianchi type-IV solution can exist. We thus conclude that
to best of our knowledge it seems to be very unlikely to construct non-diagonal self-dual
solutions of Bianchi types I-IX. We finally should like to remark that a systematic investi-
gation of the combined Bianchi-Einstein-Maxwell equations, made by us in the past few
years and published in many papers, has shown that rather all integrable cases have now
been found.
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