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The model of geometrical scaling is used to predict the evolution of the diffractive
dip-peak structure of pp and pp differential cross sections with increasing energy. Previous
calculation for pp scattering made by Dias de Deus and Kroll is carried out with new data
and their predictions are confirmed.- Recent data on pp scattering are used to make an analo-
gous analysis for this process as well. It turns out that the pp differential cross section behaves
analogously, main difference being that, in the pp case, the dip-peak structure should not
completely disappear with increasing energy.

PACS numbers: 13.85.—t

1. Introduction

It is well known that, at sufficiently high energies, the differential cross section of
proton-proton elastic scattering exhibits a pronounced structure in the interval of the
momentum transfer squared between the values t = —1.3 GeV? and —2.0 GeV2. Around
t = —1.4 GeV?, there is a well-established dip which is followed by a secondary maximum.
This structure gradually develops with increasing energy from a slight corrugation below
the ISR energies till its maximal appearance at a c.m. energy /s of approximately
20-25 GeV. A quantitative description of this effect was recently given, for instance,
by Olsen [1], on the basis of a modified Chou-Yang optical model.

Predictions [2] based on the model of geometrical scaling [3] indicate that, with
a further increase of energy, this dip should be gradually smoothed till it completely dis-
appears at /s = 300 GeV, while it should later develop again at asymptotic energies.

The basic idea of the model of geometrical scaling is that, at sufficiently high energies,
the s- and #-dependences of a hadron-hadron scattering amplitude F(s, ¢) reduce to a de-
pendence on one single kinematic variable, the scaling parameter 7,
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If an amplitude asymptotically saturates the Froissart-Martin bound, i.e. if
F(s,0) ~ sln?s 1.2)

then, as was shown by Auberson, Kinoshita and Martin [4], it follows from the principles
of local field theory that the function ¢(z),

e FG =t In 3 (61s0))
#lo) = lim F(s, 0)

is analytic in 7 and entire of the order 4. In this case, the geometrical scaling model appears
as a consequence of general principles, provided that violently oscillating amplitudes
are excluded. Let us remark in this connection that the systematic analysis of the p-p
scattering data made by Amaldi et al. [5] has led to the result that the total cross section
should behave like In® s with ¢ = 2.14+0.1.

Remarkable progress has been made recently in the experimental investigation of
the proton-antiproton scattering as well. It has turned out that the differential cross section

exhibits a very similar dip-peak structure like in the case of pp scattering. The resemblance
doep

) (1.3)

goes so far that the 7-dependence of

at \/s = 9.8 GeV [6] is experimentally indistin-

dapp
guishable from that of =

at /s = 52.8 GeV. It is therefore worth revising the geometrical

scaling model in relation to the existing pp and also pp high-energy data.

We repeated the calculation made by Dias de Deus and Kroll [2] using recent data
on pp scattering, and obtained a confirmation of their prediction. The diffractive dip-peak
structure of the differential cross section should be gradually smoothed out and it should
completely disappear at a c.m. energy /s of approximately several hundreds of GeV.
At still higher energies, the structure develops again to its full reappearance at asymptotic
energy. The process is controlled by the value of g(s),

o(s) = Re F(s, 0)/Im F(s, 0), 1.4

which rises from zero to some positive value, and tends to zero again when /s tends to
infinity. Then, using the recent data on pp scattering, we made an analogous calculation
for this reaction as well. It turns out that the diffractive structure should also be gradually
smoothed out with increasing energy but, contrary to the pp case, not completely, again
reappearing with a further increase of \/s.

2. The method

Following the standard derivation of geometrical scaling model [3], we introduce
the scaling function ¢(t) such that

Im F(s, 1) = Im F(s)¢(1), 2.1

Re F(s, 1) = Re F(s) % (zg(1)), (2.2)
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where T = —a(s)t and F(s) = F(s, 0), o(s) being the total cross section. The set of quantities

F, o, ¢ and 7 refers either to the pp or to the pp scattering.
Combining the relations (2.1) and (2.2) we obtain the following equation [2]:

d d /d 2
"di (5, =~ (s,0) {wz(r) +2°(s) <7 (w(r))) } / (1+0%(s)). 2.3)
t dt at

This is a differential equation for the scaling function ¢(1), all other quantities being known
from experiment. Once ¢(7) has been determined at some energy value, then, assuming
that the model is valid at all higher energies, one can predict from (2.3) the behaviour
of the differential cross section with increasing energy.

do
In accordance with Ref. [2], we assume that the dip in o is produced by a zero

in @(7),
Pt =149) = 0, 2.4)
where 74 is the position of the dip. Insérting this into Eqg. (2.3) we obtain
do do | . 5 5
i (s, Td)/—d? (5,0) = K 07(s){(L +¢7°(5)) (2.5)

d
where K = 14 had

- is a constant. The left-hand side of (2.5) and the function g(s)
dt

=1
are determined by two independent measurements. We found this relation to be in a very
good agreement with experimental data (see Sec. 3 for details).

Expanding ¢(7) in powers of (1—14)/t4 we have, because of (2.4),

( Tfrd>". (2.6)

T=1g \ T4

oG

g d'p
o= 40
n! dt

a=1

We approximate ¢(z) by taking two, three or four terms of (2.6), and insert the approximant
into Eq. (2.3). In doing so, we also take into account the fact that o(s) does not exceed
the value 0.14, and consider it to be of the same order of magnitude as (r—ty)/7s.

To determine the form of ¢(7) in the given approximation, we used for pp scattering

do -
the data [7] on o at /s > 30 GeV in the intervals

12 GeV? = —1 = 1.7 GeV? @7
and

1.2 GeV? < —1 2.0 GeV2, (2.8)

- d
In the case of pp scattering, we used the data [6] and [9] on w-;; at p = 50 GeV/c and

p =100 GeV/c (e, /s =9.8GeV and 13.8 GeV respectively) in the interval (2.8).
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3. Results and discussion

It turned out that, in fitting the pp data in the interval (2.7), the third and the fourth
derivative of ¢(7) at T = 74 could be fixed at zero value, while in the interval (2.8) all the
four derivatives were important. In the case of pp data, the third and the fourth derivative
of ¢(1) could be put equal to zero in the whole interval (2.8), which might be connected
with relatively larger errors of the input data in this case.

. d
As it was already mentioned, the values of g(s) determined from the fits to d_a are

in a very good agreement with those obtained by a direct measurement of g(s). This is an
interesting fact which speaks in favour of the applicability of this model in this kinematic
region. Details are seen from Table 1.

TABLE 1

Values of ¢PP and Q;P obtained by fitting the data of Refs [6, 7 and 9] in comparison with those directly
measured (Ref. [5] for pp and Ref. [8] for pp)

/s GeV t-range lé;'?o)llnotl:::ig:d o(s) measured
R !
@n 0.023+0.004 |
PP 30.7 2.8) 0.025 £ 0.003 0.042+0.011
Qn 0.062 + p.005
PP 4.7 2.8 0.063 +0.005 0.062:£0.011
Q.7 0.073 £ 0.007
PP 52.8 2.8) 0.072.£0.005 0.078+0.010
@n 0.104+0.032
pp 62.5 28 0.088.£0.018 0.095+0.011
- | 9.8 2.8) 0.024 +0.060
PP ; 115 , 0.010+0.018
P 13.8 2.8 0.050+0.027
15.4 | 0.012+0.020

Results obtained for the pp differential cross section are shown in Fig. 1. The experi-
mental points (corresponding to /s = 52.8 GeV) were used to determine ¢(z), the full
line representing the corresponding fit. The dashed curve plots the predicted behaviour

do
of —

d
0 at ¢ = 0.14. We see that the form of ~£ very strongly depends on the value of

. . do .
g: if g is zero or near to zero, the dip-peak structure of o is very pronounced, while

do
at ¢ sufficiently large the dependence becomes flat. Thus, to predict the form of o at

higher energies, we have to know, or assume, the energy dependence of the corresponding
ratio g(s).
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Fig. 1. The pp differential cross section. The full line represents the fit to the 52.8 GeV data, the dashed
line the model prediction at pPP = 0.14. The dip is smoothed out
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Fig. 2. The pp differential cross section. The full line represents the fit to the 50 GeV/e (equivalent of
4/s = 9.8 GeV) data, the dashed line the model prediction at gPP = 0.14. The dip is still visible
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In the ISR energy range, experiments give both ¢”® and gre positive and increasing.
Their expected behaviour at still higher energies can be deduced from general principles
of local field theory. Indeed, it can be shown. [10] that if at least one of the total cross
sections ¢f® and oPp asymptotically rises and if the amplitude difference Fer(s)— FP?(s)
is asymptotically negligible with respect to the sum Fre(s) + FPP(s), then both gpe(s) and ¢""(s)
must asymptotically tend to zero with increasing energy and, consequently, each of them
will have at least one maximum above the known energy range. The values of grr(s) and
0”"(s) should gradually become closer to each other with increasing energy. Further,
it is expected from phenomenological considerations that the two curves will have a com-
mon, extraordinarily flat maximum with a value of approximately 0.14 and a position
in the CERN collider energy range. This is why we chose ¢ = 0.14 in Fig. 1 and Fig. 2.
It is seen that, in the case of pp scattering, the dip in the differential cross section is comple-
tely smoothed out at this value.

In Fig. 2, the experimental points of i]%:—x-)— at /s = 9.8 GeV and their fit (full line)
are shown which were used to determine the scaling function ¢(t) for pp scattering. The
dashed curve represents the predicted behaviour of _d_g;r’_ at orp = 0.14, which is the expected

maximum value. The dip is still clearly visible; its full vanishing would require a still higher
value of ove.

4. Concluding remarks

General considerations [4] do not tell the range of s and f values at which the scaling
(1.3) should take place. Data on pp scattering suggest that the model of geometrical scaling,
which has its rigorous basis at asymptotic energy, is applicable at presently accessible
energies, even in the region of relatively large momentum transfers. On the other hand,
a similar check of the validity of the model in the case of pp scattering is less reliable,
because of the lack of data on ﬁ% above / s = 20 GeV and, also, because of a low accuracy
of the existing data. We nevertheless made an analogous prediction for pp scattering as
well, although the effects of the medel of gecmetrical scaling may not be very pronounced
at the energy /s = 9.8 GeV, at which the data have been taken.

An interesting argument in favour of the applicability of the model in this kinematic
region follows from Table 1, which was not included in the first report [11] on our work.
The Table shows a remarkable agreement of the values of g(s) obtained from the model
with the measured ones, both for pp and for pp scattering. Other arguments are contained
in the recent Ref. [12], in which similar results have independently been obtained.

We conclude that the model predicts a full and a partial vanishing of the diffractive
dip in the differential cross séctjon of the pp and pp scattering, respectively, in the energy
range of several hundreds of GeV in the centre-of-mass frame. It does not follow from
the results obtained that the model is-able to explain the diffractive dip-peak structure
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in the differential cross section; on the other hand, once such a structure is assumed at
a certain energy, its evolution, vanishing and re-appearing is well described within the
frame of the model.

In a recent paper [13] P. Kroll establishes the validity of geometrical scaling for 7N
and pp elastic scatteting. More accurate N data allow him to check the universality
for the imaginary parts of the N and pp eikonals. Contrary to this, we concentrate on the
evolution of the pp and pp diffractive structure with increasing energy. Measurements
of pp scattering on the CERN collider will be a good test of our prediction and of the model
of geometrical scaling.

Discussions with J. Dias de Deus and P. Kroll at the early stages of the work are
gratefully acknowledged.
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