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Introduction

During the last several years quantum chromodynamics (QCD) has become the most
promising candidate for the theory of strong interactions. In favour of it one could cite,
e.g. the fact that it puts the phenomenologically correct old quark model in a consistent
dynamical context, or experimental confirmation of the perturbative calculations of
cross sections for deep inelastic scattering.

Nevertheless, QCD is not fully understood yet. There are fundamental problems within
it for which no satisfactory solutions are known, e.g., the problem of explaining the spec-
trum of hadrons and related problem of quark confinement. There are good reasons to
believe that these and other difficult problems can be made easier after gaining a detailed
knowledge about properties of the corresponding unquantized theory, i.e. about classical
chromodynamics (CCD). This is the main motivation for the widespread studying of CCD.

That unquantized theory is obtained by replacing the quantum fields of QCD by
classical ones. In this way we obtain an extremely complicated set of intercoupled Dirac
and Yang-Mills equations. Even in the much simpler Abelian case (intercoupled Maxwell
and Dirac equations) it is difficult to extract information from such a set of equations.
Therefore, it is natural to simplify the problem further, namely to consider color charged
matter in external Nonabelian gauge fields, and vice versa, Nonabelian gauge fields gener-
ated by external color currents. Thus, in this way we would like to imitate the traditional
scheme of electrodynamics.

The main stream of investigations of CCD has always been devoted to pure Yang-
-Mills sector, i.e. the quark fields have been put to zero, for references see [1]*. Actually, we
are aware only of a single paper on CCD with quarks published before 1978: the paper
by Mandula [2] on Yang-Mills fields generated by a fixed point-like quark source. The
fact that very little was known about classical Yang-Mills fields generated by a fixed distri-
bution of quarks was realized independently by several authors [3-6]. Since then the in-
terest in the subject has been constantly growing, see e.g. [7-28]. Nevertheless, the problem
is still far from being explored.

Much more extensively was investigated the complementary problem of motion of
colored particles placed in an external Yang-Mills fields, see e.g. [29-46].

We would like to cover these two subjects, i.e. classical Yang-Mills fields generated
by external sources and classical motion of color charged matter in external Yang-Mills
field with the term classical chromodynamics of external charges and fields.

! The vast literature on monopoles and vortices deals with Higgs fields which are regarded as dynamical
variables — they are not externally fixed. Coupling of the scalar Higgs fields to Yang-Mills fields is different
from that of fermions because of spin of fermions and because of the fact that the color current of the Higgs
fields contains the term A2}@!* mixing Yang-Mills field and the Higgs’s. This term is absent in the color
curtent of fermions. Moreover, it is well-known [1] that in most problems the Higgs’s in the Prasad-
-Sommerfield limit can be reinterpreted as the zeroth component of Euclidean Yang-Mills field, i.e. the
problem is then essentially the pure Yang-Mills problem. All these facts cause that the numerous results
obtained for Yang-Mills theory in the presence of Higgs fields are not relevant for Yang-Mills fields in the
presence of spin 1 quarks.
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This paper is a review of our work on classical chromodynamics of external charges
and fields. The content of the paper is divided into two parts.

In the first part we consider color charged matter in the external SU(2) gauge
field. Specifically, we investigate the particle-like classical limit of the Dirac equation
with the external Yang-Mills field. We find that such a limit does not exist in general.
When this limit exists, there is an interesting mixing between spin and color degrees of
freedom of the particle.

In the second part we investigate classical Yang-Mills fields generated by external
sources. We discuss the problem of gauge invariance of energy in the presence of an ex-
ternal current and we present certain topological characteristics of the external charge
distribution. Next, we describe the exact Abelian Coulomb solution for a set of spatially
separated color charges, we discuss a perturbative approach to solving Yang-Mills equations
with weak external sources, and we construct within this perturbative approach a Nona-
belian Coulomb solution for the external color charge characterized by Hopf index +1.
We also consider certain modification of CCD in which the Yang-Mills potentials are
coupled to gauge invariant external sources.

Part I: Color Charged Particle in an External Nonabelian Gauge Field

L1. The equations of motion for classical particle with spin and color spin

Classical mechanics of colored particles {29-46] is the very interesting example of clas-
sical mechanics with internal degrees of freedom, even though one should not expect to
observe colored particles in any experiment, according to the color confinement hypothesis.

Here we would like to propose a set of classical equations of motion for a colored
and spinning particle interacting with an external SU(2) Nonabelian gauge field. We find
that because of mixing between color and spin, it is necessary to introduce a new classical
dynamical variable [J®), a, b = 1, 2, 3. The constraint relations between [J*'], the classical
spin S, and the classical color spin T are also found. The full presentation of our results
is published elsewhere [37].

The classical equations of motion for a spinless, colored particle were extracted by
Wong [29] from the Heisenberg equations for the momentum and color spin operators
derived from Dirac equation with external SU(2) gauge field. The replacement of the
operators by c-number classical quantities in the Heisenberg equations led to the classical
equations of motion. In the non-relativistic limit these equations are

m3 = gl'Be+ £ 3x B, ¢))
[

ja = _g‘ Egbe (Az'_‘zbi) Ic’ (2)
h ¢
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where T = I, a = 1,2, 3 is the color spin vector of the particle, the dots denote differen-
tiations with respect to time. The color electric and magnetic fields are defined as

ai __ e ak __ 1 a
E* = Ois B —""iekrtFrn (3)

where F),, is the SU(2) field strength tensor, see formula (3) in Ch. 1, §1 of Part IL

Our derivation also starts from the Heisenberg equations, however we make two essen-
tial improvements. First, we use the Foldy-Wouthuysen representation for the Dirac
equation with SU(2) gauge external field. This allows us to avoid the well-known. problem
[47] with interpretation of the & = 7°y matrices as the classical velocity (this problem is
present in Ref. [29]). Second, we identify the classical quantities as the expectation values
of operators, assuming the quantum state of a wave packet form. We avoid the ambiguous
and formal procedure consisting of replacing quantum operators by ¢-number quantities
used in Ref. [29]. This allows us to observe mixing between spin and color spin. Moreover,
in our approach from the knowledge of classical quantities one can gain an information
about quantum mechanical wave function of the particle, while in Ref. [29] the wave function
is completely abandoned.

Our results were obtained with the approximate Hamiltonian H, in the Foldy-Wou-
thuysen representation. The obtained classical theory is a nonrelativistic one. Moreover,
the equations (21), (23), (24) below for the internal degrees of freedom can not be rewritten
in the relativistic form by merely introducing the proper time by yd/dt = d/dr. The equations
have truly nonrelativistic form.

The Dirac Hamiltonian in the Foldy-Wouthuysen representation calculated up to the
order (mc)-2 is [37]

1 . 2\? n I N
H = m02ﬁ+ '2—n‘1ﬁ(17— "f‘ A) +gA0+ zg—msiksSsFik

2
gh asl mifl « &8 e 8 oa) A gh ~
LI Y S S -2 |- _DE 4
am?c2 i [ (p c ) + (p c 8m?c? ' “)

pi - o . . aa a’
where D,E' is the covariant derivative of the color electric field, 4, = A, T, T® = > are

the SU(2) generators in the fundamental representation. § = y° is taken here to be diagonal

_fo, O
b= (0 —00)’
¢ 0

i
0 a‘) is the spin operator.

From the Hamiltonian (4) we obtain the following Heisenberg equations of motion.
We introduce the mechanical momenta,

and §‘=%(

7= pr__ - Ar, (5)
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then
d< 1 . gh noa
T o - 2 el S 6
t mﬁn Imic (6)
LA YOS WS LN W
e B e ri g i &
dt 2¢ dt = dt B or™ ame he® U
gh s dxE dxt gh? .
+4'  BeasS* | DE'" -+ 2 DE | + s DADE. %)

We consider also spin S* and color spin T“ operators,
P

dS‘ g » Ldx? o dxt dxP . dX 4
— = Fu S+ — —EP— + — E'—- —E?), 8
dr me Fu 4mc ﬁ ( dt dt * di dt ) ®
d'f"' g ax' . idxi e g fg b Ave
= g e [A” (dt A¥+ A lﬁ)] T4 S egetiesd FT
g . idx" dx? . . gh e
+ Zl‘;l;i Eipsebac (bb Tit— 7 Eb BS T 8m202 Sbac(DiE )bT . (9)

Now let us turn to the expectation values. In this Section we assume the following
““particle-like” form of the Dirac bispinor  in the Schrédinger picture in the positive

energy sector [47]
w(E’ t} - (um(X, t)@()(x'*x(t))) , (10)

where o = 1, 2 refers to spin, n = 1, 2 refers to color. Here X(f) is the trajectory of the
corresponding classical particle, <p(5c'—5c'(t)) is the c-number valued wave packet localized
at %(t), with the average momentum

(olPlgpy = mx(1). (11)

We neglect the quantum mechanical spreading out of the wave packet. We find it convenient
to assume that for X close to x(t)

u(E, ) = (14 -2 4G @), dx = L 8,44Gi(1), HAx'Ax*
he 2he

+~(;—i) AG), DG, :)Axmxk) o), (12)

where Ax' = x'—x(t). Furthermore, while calculating the expectation values we assume
that due to the localizability

{plax'|p) = {plax'dx*4x’|g) = O (13)
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(in fact, the spherical symmetry of qJ(SE —X(1)) with x(¢) as the center will do this), and that
(plAdx'ax*|py = {plAX Ax*Ax*AxP|p) = 0. (14)

Then we have the following formulae:

(ylngly) = mi (1),  (ylngnsly) = m>X'%, (15)
1°(6) £ <ol Telyy = ug (D Tuo(n), (16)

N OERCINIHESNONIROY a7

3 <ol [T, 754 ly) = mI*x(0), (18)

3 <CPISA TS 78] 1p) = mug (DSETLus (%", (19)

where the subscript S denotes the Schrodinger picture operators, |y) is the Schrodinger
wave function (10).
Let us now calculate

r

dn
<wlnslw> = H<wl iw>u

= {y| (the r.his. of (7) taken to the Schrodinger picture) jy)
= - iy (1), DD + gF(X(8), DI,
C

where in. the last step we have used (15) and the definition (16) of the classical color spin
vector 1. Moreover, because we neglect the guantum mechanical spreading out of the
wave packet, which gives the contribution of the order  to d|y)/dt we neglect all other
terms of the same or higher order in fi for consistency. Thus, we have obtained the following
classical equation for the trajectory

mE(1) = — £ XFI 4 oF2 e, (20)
[4

Similarly, for the classical color, spin vector we obtain

it g %!
R S LS L
At fi “bc( o ¢

1 )
+ %c EibEcad [ —F5+ % (EC*;‘:‘—E“;:')] J(1), 3))

where we have to introduce the new classical quantity

I L i TeSilyy = ug(0T8S3uo(t). (2)
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For the classical spin vector

ds’ g 1
— = = | —Ff+ — (E“%P—E*%') | J*(1). 2
— W[W2Jx xﬂ() @3
In order to have a closed set of equations we have to add the equation for J*?(z).

In the case where spin and color decouple, ug'() = ¢*(t)x"(t), we have J*(t)
= I°(t)S?(t). However, in the general case J?(¢) is an independent quantity, see next Sec-
tion. The equation for J*(¢) follows from

v, a8 i

Y L
dt dt dt

dJab —_ g Eped (Ac l}lc‘i) Jdb

namely

dt N

1 .
-+§%emaw[—Fa+5;@%W~fEﬂ]ﬂ

1
+ Z?i_c [ ot 5 (B0 E‘"’x")] s, (24)
The equations (20), (21), (23), and (24) are the classical equations of motion for the particle
with spin and with color spin. The equation (20) coincides with the Wong’s equation (1),
others do not. Observe that from these equations it does not follow that 32 and 12 in general
are constants of motion. They can under special circumstances become constants of motion,
e.g. when J? = [‘S".

1.2. The constraint equations and the determination of the wave function uy(t)

The equations (20), (21), (23), (24) have to be completed with constraint equations. The
reason is that the fifteen numbers-1%, S, J*® are expectation values in the single state u,(t).
Therefore, these expectation values depend on 6 independent, real numbers forming ()
(because u, is normalized to 1 and because the overall phase factor of u, does not change
the expectation values). Thus, the constraints are necessary if the classical mechanics
based on the cquations (20), (21), (23), (24) is to be related to the quantum mechanical
Dirac particle. We find these constraint equations in this Section. We also shall show how
to calculate uy(t) from known I°(z), S°(z), J*(t), and we shall find the time evolution equation
for uo(z), [37].

First, let us show that knowledge of the classical quantities 7, S, J% determines the
wave function u,(¢) up to an arbitrary timé dependent phase factor. This fact we shall
regard as proof that the above set of classical dynamical variables describing the internal
motion of the particle is complete, in the sense that any other classical, internal dynamlcal
variable, i.e., the expectation value of an operator in the state u,, is a function of 7, S, ).
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To this end we shall regard the spinor [4§"] as 2 x 2 matrix #,. Then, the normalization

condition uf*uy' = 1 takes the form

Truguy = 1. (25)
Furthermore,
I = Cugl T*ug) = § Tr (430%i5) = § Tr (100"ug), (26)
S' = L Tr (ud o'uty), @7
J?® = L Tr (uf 6®uy0"), (28)

where the star denotes the complex conjugation, and T denotes the transposition of the
matrix. It is clear that we cannot determine the overall phase factor of u,.
From (25)-(27) it follows that

ugtg = 1 0%+ 357, (29)
agiy =1 6°+1o". (30)

Equations (29), (30) imply that

ldet tig)? = +—1> = 132, (31)
Thus, we see that for SU(2)-colored particle
=3 <4 (32

It is easy to see that this fact is consistent with the equations (21), (23) only if
ebacIaJcs = slkrsk‘]br' (33)

Utilising (26)-(30) it is easy to prove that the condition (33) is satisfied. Relations (32),
(33) are examples of the constraint equations.

From (31) it follows that i, is a singular matrix only when S2 = 2 = 1/4. It is easy
to prove that det #, = 0 is equivalent to

ug' = &%, (34

i.e., in this case the spin and color spin decouple. In this degenerate case knowledge of I
and S, together with the normalization conditions

Ere=1, ytyx=1,

determines £, y up to the arbitrary time-dependent phase factor. For example, when
P % -12,

1, 73
x = exp [1a(®)] G+ (;ﬁ_;’i,z), (35)
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and if I* = —1)2
% = exp [ia()] (?) -

Analogous formulae hold for ¢.

Let us remark here that the above relation between I(S) and the 2-spinor (&) can be
refined by utilising the coherent states for the SU(2) group, [39].

In the degenecrate case (34) we have J = I°S®. The constraint (33) becomes trivialized
to 0 = 0. However, [J°] does not cease to be an independent dynamical variable for
the particle, as we shall argue below. This means that the relation det #, = 0 is not
conserved in time.

Now, let us consider the general case, which also includes det #, = 0. In order to
determine 4, we recall that any 2x2 matrix can be written in the form

o = HV, (36)
where

H=H" = Jaug (37)

is a positive definite, hermitean matrix, and ¥ is a unitary matrix determined from (36).
If #, is not singular, the matrix ¥ is determined uniquely, namely

V = H u,. (38)
From (29), (37) we obtain

1 .
H = —— (46°+ So), 39
\/2/1( o’ +So) (39)
where
A=1+11-482 (40)

and ¢° is the 2 x 2, unit matrix. Furthermore, because

1
O gt |
0_3
we obtain from (29), (30), (39) that
v+3ev = Is, (41)

i.e., V represents a rotation which rotates S into I, where
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For instance, when S# -1 we may take

. S+1
Vo = ic ——3 . (42)
IS+1i
Obviously, (41) docs not determine V completely. Namely, we can take
V = VoC,
where C is any unitary matrix commuting with 16. Any such C has the form
1) I
C = exp [if(1)] exp I:i }:(52 I:I:'] . 43)

Thus, we see that in the general case #, is not determined by the knowledge of 7(:) and
§(t)—— apart from the unessential phase factor exp [if(¢)] we do not know the function
2(2).

Therefore [J*] is the new dynamical variable for the classical particle, independent
of (I°, (S). Observe that if at certain instant 7,

up'(te) = E%(to)x"(t0), (44)
then

J®(te) = I(t6)S"(to). (45)

However, it is easy to check from (36), (38), (40) that the quantity Q*° = J*—I°S® is not
a constant of motion. Therefore, in general (41), (42) do not hold for 7 # ¢, and therefore
J does not cease to be the independent dynamical variable.

From (39), (42), (43) we obtain

1 1 . y Ay
= e ~— €X t cos — +1 —sin —
* V201547 p LAt )]( 2T 2)

L 15+712+@E x Do+ 4G5 +1o)]. (46)

In the degenerate case . = I = S = 1/2, and therefore in this case all dependence on
7(t) takes the form of the undeterminable phase factor exp [iy(f)/2]. It can be shown that
in this case (46) can be written in the form (34) with &, 5 given by (35).

In the general case however, the function y(¢) does not appear in the form of a phase
factor, so it has to be determined. This determination is possible if in addition to T, S we
also know the matrix [J®]. From (46) we obtain

1°s?
J? =1 = +sin yA® + cos yB®, 47)



where

P 232[ T2, I‘S‘(S”+I")]

= - 48
4] IS+ 71 @)
N st A=28 S? . , . A 2e cab
B = — - + — (S“+I") S’+1 )+ ¥ [2S I"—(4L—28%)6""].
a1 245 +11 44

In these formulae the barred indices g, b, etc., denote the change of sign of the vector or
the tensor when the value of the index equals to two, e.g.,

1 00
[6*]=|0 —1 0.
0 0 i

The presence of the barred indices is due to the fact that " = g4, From (47) we can dcter-
mine y if we know I, S, [J*].

Thus, we have proved that I, §, [J9°] form the complete set of classical dynamical
variables for the internal motion of the particle. Now, we shall find the constraints. For
15 real number valued quantities (I°), (S%), [J?*] we have to find 9 independent equations,
in order to be left with 6 independent quantities.

In order to find the constraints, we consider the matrix M”’,, defined by

M, = L Tr (4§ 0°y0*). (49)

Comparing (49) with definitions of I°, S°, J*, we see that

M% = 7
M, =S", MO, =1% M’ =2J% (50)
The matrix M’, obeys the relation
M, g, M = |det do|%g,,, (51)

where (g,,) = (I, —1. —1, — 1) is the Minkowski space-time metrics. In the degenerate
case this relation can be easily verified by a direct calculation. In the nondegenerate casc,
det i, # 0, this identity comes simply from the fact that L*, = M”, /|det 4] is a Lorentz
transformation, because the matrix #iy/(det #)'/? is an element of the SL(2, C) group.
Here we use the well-known relation between SL(2, C) and the proper, orthochronous
Lorentz group, [48]. The Lorentz transformations obey the relation

L",ugv(rl‘ga = guc'

This relation leads to (51).
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Let us recall that |det 4,] is determined by T or S via (31).
From (50), (51) we obtain that

F— 5 = |det 4/, (52)
1r-J%s? =0, (53)
47°0J P11 = det io| 6" (54)

Another set of relations is obtained from the fact that if L”, is a Lorentz transformation,
then (L"), is a Lorentz transformation too. The difference between L and LT is equiv-
alent to the interchange of S and I, and to the replacement of J4 by Jte, Thus, we obtain

1_7? = |det 4%, (55)
180 —gtr* =0, (56)
4J% g% — §PS° = |det d1y]%6™. (57

In the degenerate case these relations can be easily verified by a direct calculation.

The equations (52), (55) are equivalent to (31). The equations (53), (54) are the nine
constraint equations. The equations (56), (57) are equivalent to (53), (54) because (53),
(54) together form the sufficient condition for L', to be the Lorentz transformation. The
previously found relations (32), (33) also follow from (52)-(54).

The next problem to be investigated is the question whether the classical equations
of motion (21), (23), (24) respect the constraints, i.e., whether the above relations are
conserved in time if I, S, [J®)] evolve in time according to the equations of motion.

It seems that the most illuminating way to find the answer to this question is to observe
that those three classical equations of motion can be derived from a single equation for
d5(1). Then, the solutions to (21}, (23), (24) can be regarded as the expectation values
(26)-(28) in the state i,(¢) for all #— this would guarantee that together they form the
matrix (49) for all #,1e., that the constraints are conserved.

Such an equation for #, can be derived in the following manner. From the Schrédin-
ger equation

J
ih— vy =Hyy
ot
we obtain for the wave packet (10) that
it f’:Qf) Ug+ihe ;? u, = Hyqu, (58)
ol cl
WX, 1) = u(X, Dp(x—x(1) = ¢(X, ug(?).

Here we regard u, as the 2-spinor, not as a 2x 2 matrix.
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Now we assume that

+ 0 <
Ug 5 uy = Q. (39)

In fact, this assumption does not restrict the generality of our arguments, because if a cer-
tain i, does not obey (59), then

t
p 0\ -
uglt) = exp| -~ | { 4, 5;110 dt’ Yiig(t)
0

obeys it. Because iig ilo = I, the above exponential is a time-dependent phase factor (the
integrand is imaginary). Therefore, (59) is merely a restriction on the overall phase of u,,
which has no effect on I, S, [J*", as is clear from (16), (17, (22).

From (58), (59) we obtain that

0
[4

and therefore

-

L, U — + 7 .
lh Tt Ug = quo“'(uo quo)uo, (6])
c
where

_ . ig . ig . o o
H = | % (1= & diax)H, (14 -L A"Ax"> o— L Zivip & g (62)
he fic ¢ c

is the “‘effective” Hamiltonian for spin and color degrees of freedom. It is easy to check
that H, has the form (we neglect the terms of order 712 because we neglect the spreading out
of the wave packet which gives the contribution of order h to d¢/dt):

g

H,=1% miz- & At gdo+ = AT
c 4
gh A gh A
oS Fa— EnsX*S°E, (63)

where we have used (15). Of course, H, is a hermitian matrix.

Thus, the time evolution of u, is governed by the nonlinear equation (61). In fact,
the nonlinear term in (61) is superficial. The s'mple change of phase of u,, performed by
passing to

t

w(t) = exp [%J (llgH—thO)dt’jI uy(t) (64)
(Y
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removes this term. Namely, w(¢) obeys the linear equation
ih — = H,w. (65)

The nonlinear term in (61) is necessary in order to ensure (59). Of course, w(t) does not obey
(59) in general.
From (64), (65) we see that
1

5 ug [H,, Plu,, (66)

%(“g P Uuo) =
where P denotes T, $® or J*. It is easy to check that this equation leads to the equations
(21), (23), (24) for I, S°, J*.

Now we can prove that the constraints are conserved in time. The proof is based on
the plausible assumption that the equations (21), (23), (24) for the fixed trajectory x()
have a unique solution determined by the initial data (1), S(zo), [J?(t)]. If the initial
data are specified in such a way that the constraints are satisfied, then there exists uy(7;)
such that (26-28) are true for ¢ = #,. Next, we solve (61) for u,(¢) with the uy(t,) as the
initial data. Applying (26-28) again with the calculated u,(r) we obtain the solution 1 @),
S(@), [J(1)] of the equations (21), (23), (24) with the chosen initial values. As for this
solution (26-28) are true for all ¢, the constraints are conserved in time.

Finally, let us state onice more the most interesting result of this Section: the internal
degrees of freedom for the classical particle with spin and SU(2) color spin are described
by a 4 x4 matrix [M",], which is closely related to an element of the SO(3,1) group, due
to the constraint equations.

Finally let us note that we do in fact not take the classical limit for spin and color
degrees of freedom. We just consider the expectation values of quantum spin and color
operators for spin 4 and color } particle.

I1.3. Limitation of the concept of the classical colored particle

The derivation of the classical equations presented above relies on the “particle-like”
Ansatz (10) and the assumptions (13) and (14). If they are true, the classical equations
form a classical approximation to the Dirac equation with the external SU(2) gauge field.
If they are not true, the classical equations can still be considered as a selfconsistent basis
for a classical mechanics of a spinning, colored particle. However, in this case the classical
mechanics ceases to be a classical approximation to the quantum mechanics based on the
Dirac equation. o

In fact we would like to present a simple example which suggests that the relevance
of the classical mechanics for the classical limit of quantum mechanics of a particle in
the external Yang-Mills field seems to be restricted, [38]. The point is that we find examples
in which the wave equation, here for simplicity we consider the Schrédinger equation, does
not allow for a satisfactory notion of a classical trajectory of a single point-like particle
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even in the limit # — 0. However, in the particular circumstances where such a trajectory
can be defined, Eqs. (1) and (2) can be derived, e.g. by the semiclassical method as we will
show in this Section. In the other case, the Egs. (1) and (2) can still be considered as a self-
consistent basis for the very interesting example of classical mechanics with internal de-
grees of freedom, however without correspondence to quantum mechanics of a point-like
particle in the external Yang-Mills field.

We consider the Schrodinger equation for a spinless particle with the Hamiltonian

2
H=—"- (5— EX“T“) +gA%T" (67
[

where T¢ = fz— are the generators of the SU(2) gauge group. We shall consider the simple
case of a gauge potential of the “Abelian” type
A%, ) = h°A,, 1), (68)

where ki = (h") is a constant vector in the color space, and h? = 1.

Our argument for the lack of a satisfactory notion of the classical trajectory is based
on the investigation of time evolution of a wave function which at the moment ¢ = £,
has the form of the localized at x = X, wave packet

Y%, 1) = ud(DP(X—Xo), (69)

where the index 5 describes color degrees of freedom. We assume also that the wave packet
is localized in the momentum space, the average momentum being muv,.

A
3

Let ¢, be the normalized eigenvectors of the Hermitean matrix A*T*

(WTe, = +1e,. (70)
The Schrédinger equation
0 -
h—y=H
Tt

can be projected one Zi , yielding

J
! 5t P +Px (71)
where
P(%, 1) = €4 P(X, 1), (72)
";(5‘.’ )= ey ‘P+(5€.a t)+_e'__<p_,(5c., 1), (73)
and

2
Hy = — (p+ —A) + %Ao. (74)
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From Egs. (71)-(74) we see that any time dependent wave function can be represented
as the sum of two wave functions, each evolving in time independently of the other. The
equations (71) can be regarded as the Schrodinger equations for two scalar (i.e., colorless)
particles with the opposite electric charges +g/2, placed in the external electromagnetic
field 4,. Applying these observations to the initial wave packet (69) we obtain that

‘l’:t(;, o) = Ci‘P(;—;o),

where
i;o(lo) = C+E+ +C-z_

evolve as the independent wave packets. Hence, if the usual conditions for the classical
limit of quantum mechanics are satisfied, we can approximately write that

t

. i X A
pi(x, 1) = c; exp {‘ﬁ‘jdt' [i %‘(—Ao"i' ‘%")

to

nm s

+ 23 | o700, 5

where X (t) (x_(2)) is the classical trajectory of the particle with the electric charge +g/2
(—g/2). placed in the gauge field 4, with the initial data x(f,) = Xo, X(ty) = Do. The ex-
ternal field 4, is taken at the point X = X.(t), respectively.

The form (75) of the wave function can easily be justified within the framework of the
Feynman path integrals [49]. In particular, the phase factor in Eq. (75) is just exp (i/hS[x+1)
where S[x,] is the classical action for the classical trajectory x.(f) — it is the common
overall factor in any semiclassical approximation.

In general the trajectories x,(¢), X_(t) are of course different, although the initial
positions and velocities are identical. This means that the time dependent wave function
¥(X, t) does not in general have the form of a single wave packet. The initial wave packet
(69) has dissociated in two separate wave packets. Observe that the difference between
X .(t) and X_(¢) does not vanish even in the limit & — 0 because x . (¢) obey different classical
Newton equations which do not contain #. In this sense, the dissociation of the wave
packets in the Nonabelian gauge field is a macroscopic phenomenon.

In the Abelian case one could also have a dissociation of the initial wave packet,
e.g., in experiments of the Stern-Gerlach type. However, in this case the separation is
due to the coupling of spin to the external field. Because spin couplings are proportional
to f, the separation between wave packets vanishes in the limit # — 0 — therefore in the
Abelian case the satisfactory notion of classical trajectory for a single classical particle
in the external field can be introduced in that limit.

When

x4t = X_(1) = x(1), (76)
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what implies also that x,(f) & x_(¢), we can write that

t

P(X, 1) = exp (%j '*2) (% —X(t))uo(1), (n

to
where

t

uglt) = ¢, exp[f fdt (— — Ao+ i—g—iﬁ):l

to

t
j g 2=\~
d - =XxA 78
+c_ expl:f f 1(2 o ):I (78)
10

In this case it is easy to show that

a 4 Ta
1* = ol i) (79)
obeys the Wong’s equation (2) using the formula

t .
3

I°(H) = L (le. 1P ={c_1®)h"+2 Re {m"cic_ exp [7[1—' g{(AO—— x Z) dt']} , (80)
¢
to

where m & EI%E_ obeys the relation i x m = im. Eq. (80) follows from Eqs. (77), (78),
and (79). The Wong’s equation (1) can also be obtained in this case. Namely, x4 (2) obey the
equations

= - 1 - -
mxi(t) = i %(E"i’“_xixB). (81)
4

Then it is easy to see that the center of mass,
xX(1) = les X4 (0 +le_1°X_(2)

obeys Eq. (1), because A = L (lc,|2—]|c_|?) as it follows from Eq. (80).

The condition (76) is obeyed for sufficiently small ¢ because of the equality of initial
positions and velocities. However, for larger ¢ it is not satisfied in general because of the
influence of the external field. Then there is no satisfactory notion of a classical trajectory
of a pointlike particle. Also, Wong’s equation (2) then gives wrong prediction for (.
For the potential (68), namely, it predicts in general a rotation around i for all ¢, while
Egs. (79), (73) and (75) give

1) = L (e 2 =le_|Hh = const (32)

when the two wave packets ¢, become spatially separated.
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Now we would like to present another argument for the lack of the point-particle-like
classical limit. As is well-known, in the Abelian case the classical limit can be obtained by

the substitution
i
== € om— S

into the Schrédinger equation and letting i — 0. The real number valued function S turn
out to satisfy the classical Hamilton-Jacob equation. In the Nonabelian case we can sub

stitute
y) = exp ( > S

in the leading order in h we obtain

) 1 T+ oS afa a f+Sap
== (o - L AT Freas T, (83)
ot 2m ox
and
o8 =\ [=./08S A I
(7:—§A“T”>f=|:f+(—:—£A“T“> f]f. (84)
ox c ox c

The last equation implies that f is an eigenvector of A°T* because A? has the form (68)-
This means that / = ¢, as calculated in Eq. (70). Thus, from (83) we obtain two Hamil-
ton-Jacobi equations, one with electric charge +g/2, the other one with —g/2. Thus we
again find the two independent classical motions.

Let us also consider the gauge potential of a more Nonabelian type that Eq. (68)
namely

80, A= A5 (85)

A — constant. Such a potential gives E* = 0, B* = ()‘" It is easy to check that the

“he
spectrum of the Hamiltonian (67) has two branches

. (86)

Therefore, the initial wave packet (69) will have two components, each moving with different
group velocity

- CE(p) L. _,gdp
Dgroup = —| . = — PoFE o o= (87)
P |p=p, ™M me ]pO{

where p, is the center of the wave packet (6) in the momentum space®.

2 Let us note m passing that in this case the Wong’s equations (1) and (2) have interesting integral

of motion, namely mx+ #1, which resembles the well-known example of the Nonabelian monopole field
[34]. [35] where L+ H is an integral of motion, L— angular momentum of the particle.
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The example (85) can be easily generalized to arbitrary constant potentials, 4; = const.

In both the considered cases, Eqs. (68) and (85), the splitting of the initial wave packet
is due to the presence of the color operators 7. Therefore we think that this phenomenon
is typical for most of Nonabelian gauge potentials, although we cannot exclude a possibility
of the existing of particular gauge potentials in which the initial wave packet will not
disperse on the macroscopic scale. On the whole we are led to the general conclusion that
the relevancy of the classical mechanics of colored particles for the description of the classi-
cal limit of quantum mechanics of colored particles is restricted. Nevertheless, such a classi-
cal mechanics remains to be the very interesting example of selfconsistent classical mechan-
ics of a particle with internal degrees of freedom for any external Nonabelian gauge field.

Our considerations can easily be generalized to SU(n) fields. Then, the equation (70)
will have n different eigenvalues, and the initial wave packet will in general dissociate
into n separate wave packets.

Let us end this Section with the following remark connected with the real, physical
theory, i.e. QCD. The above presented considerations suggest that the color charged mat-
ter, i.e. the quark matter, placed in an external classical Nonabelian gauge field in general
will tend to disperse all over the space. For example, one can consider the potential of the
form Aﬁ(f) = A,(X)°(x), where h"(x) is constant in each of regions Q; covering the whole
space, however the direction of R changes from region to region. Then the initial wave
packet will dissociate into many separate wave packets, the number of them depends on
the number of the crossed regions Q;. According to e.g. Ref. [50] the QCD vacuum is
filled with randomly fluctuating Nonabelian gauge fields. In such a vacuum, in order to
have a localized clot of color charged matter propagating in a definite direction it
is necessary to have a strong force binding the matter together in order to prevent it from
dispersing over the space. The commonly conjectured confinement force could be such
a force. Without this force all matter would disperse all over the space!

1.4. Final remarks

The formal aspects of classical mechanics of colored spinless particle were investigated
in a number of papers — see [30, 32, 33, 46] and references therein. In particular, the
Lagrangian and Hamiltonian formulations of the classical mechanics were constructed,
and usefulness of Giassmann variables was advocated. The classical mechanics of particles
with spin also was considered in numerous papers, see [51, 52] and references therein.
Particles bearing both spin and color spin were considered earlier in [30, 33], and recently
in [44], however within an entirely different framework. Our work indicates the possibility
of nontrivial mixing between spin and color, resulting in the new classical observable [J aby,

Much less investigated was the problem of correspondence between the classical
mechanics and quantum mechanics of colored particles. The treatment in the pioneering
paper [29] was not satisfactory. We find that such a relation is very limited — it is difficult
to extract the notion of classical trajectory of the colored particle from quantum mechanics.
This fact corresponds rather well with the commonly believed confinement of colored
particles.
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Finally, let us mention that even though classical particle with color spin is not a phys-
ical object, the classical mechanics of colored particles can be a useful theoretical model.
For example, it helps to formulate hypotheses about properties of color interactions,
see e.g. [31, 35, 36]. Also it can be applied directly in quantum calculations within the

framework of the proper time method [53], see e.g. [54-56].

Part 1I: Nonabelian Gauge Fields Generated by External Sources

I1.1. Rudiments of the theory of Nonabelian gauge fields in the presence of external sources

11.1.1. Energy of the system of Nomnabelian gauge fields and external

sources

In the following we consider SU(2) gauge fields. We frequently use matrix notation

A, = AT,
where 7% = ¢%2 are the generators of SU(2) gauge group,
[T° T*] = iey T°.

The field strength tensor is

~

F, = 0,4,~0,4,+igld, 4,].°

Y
In the presence of an external source Yang-Mills equations have the form
D F* =7,
where j° is the external source, and
D F* = ¢, F* +ig[A,, F*']
is the covariant derivative of the field strength tensor. From (4) it follows that

D,j* =0,
where

D,j* = 0,j"+ig[A,.j"].

(1)

ey

3

Q)

(5)

©

This condition is a consistency condition. If .x.f,, does not obey (6), then it can not solve

(4). Observe that because (6) involves 4,, it can not be regarded as a simple condition on

* In this part we use the units ¢ = ;1 = 1.
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f,‘. This is in contrast to the Abelian case, in which we have d,j* = 0 what can be obeyed
just by an appropriate choice of j,. In practice (6) is the fifth (matrix) equation for 4 -
The Nonabelian gauge transformations have the form

- PO i _
4, = 0d o '+ — 007", ©)
g
I:“;,,, = mﬁ,‘vw_‘, ®)
Ju=0j,07 ©)

where @ = w(x, 1) € SU(2). The Yang-Mills equations (4) are covariant under these trans-
formations.
The equation following from (4) for v = 0 is the Nonabelian Gauss law

DF° = j°. (10

It is easy to check that it is sufficient to impose (10) at certain instant ¢ = ¢, — due to
the other Yang-Mills equations it will be obeyed for all r. This follows from the equation

Do(Diﬁm _]‘?0) = 0.

Thus, (10) is in fact a constraint on the initial data for time-dependent Yang-Mills equations.

Now we shall consider the energy of the system of external sources and gauge fields.
The energy-momentum tensor for Yang-Mills fields is (for a pedagogical derivation see,
e.g. [57)

T = —F™F®+5 g F™PF,. (11)
It is easy to check that from (4) it follows that
8,T* = —jF*". (12)

Thus, T°° is not conserved in general. However, in the particular case when ji = 0 we
have

0,T*® =0, 13)
and therefore
E = Id3§]~!‘30 — %j(EaiEai-i-BaiBai)d:);, (14)
where
E% = a BY = __;_eiksFaka 15)

are the color electric and magnetic fields respectively, can be adopted as the conserved
energy of the system of Yang-Mills fields and external color charge Jj,.

The physical meaning of the formula (14) becomes a little bit more transparent when
one decomposes the electric field into longitudinal and transverse components, [7]. The
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longitudinal component is not an independent variable because it can be calculated from
the Gauss law (10).
In the Abelian case, we have
E = Ex+Ey,
where
div ET =0, rot EL =0, EL = —grad y,

and from the Abelian Gauss law
4y = —o,

where ¢ = j,. Then, the energy can be written as

o(X)e(x")

X —X']

= %Jd3§(ﬁz+§2) = —jd:‘x(ET-{-BZH— —-j d3Xd3x" (16)
The first term on the r.h.s. of (16) gives the energy stored in the degrees of freedom which
are intrinsic to the gauge field, while the second term is the energy due to the presence
of the external charge. It is also clear that EL is not a dynamical variable because it is fixed
completely by the Gauss law constraint.

In the Nonabelian case such a simple interpretation of (14) is not possible. Namely,
from the Nonabelian Gauss law (10) we obtain

1 j’(E )2d3" _ (“"'1 tot)A(‘—l tot)dS (17)
where

0, 1) = Fo(0)+ig[ A, 1, Ex(E 0], (18)

and § is the operator with matrix elements
8% = §opd — 4, ASO; (19)

where &, is the Kronecker delta, 4 is the laplacian. The operator § becomes symmetric
when A7 obeys the Coulomb gauge condition 6,47 = 0. In (18) we have noted that the gauge
fields can in principle depend on time, although the external charge 7o is static. From (17)
we obtain

E = 1 jdax!_(E ) +(Ba 2] zj‘d:ix(é 1 tot)A(é 1 tot) (20)

The formula (20) differs from the Abelian formula (16) in two important respects.
First, both terms on the r.h.s. of (20) contain A, fields. Thus, the separation on pure gauge
field part and pure external charge part does not happen in this case. Secondly, the s
operator in some cases is not invertible. This problem is closely related to the existence
of so called infinitesimal Gribov copies in the Coulomb gauge. The meaning of this fact
is that E® still contains certain degrees of freedom which should be regarded as dynamical
ones becausef‘!" is not determined uniquely by the external charge and A, E% via the Gauss
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law constraint. To our best knowledge, up to now no one was able to succeed in separating
those degrees of freedom from Ec.

Now, let us consider the general case, in which j{ can be different from zero. It is not
difficult to check that the quantity

EO - %jd3;[(Eai)2+(Bai)2]— j‘d33c’jaiAai (21)
is constant in time if A} obeys (4). However, it is easy to check that the term
j dSSC’jaiAai

is not gauge invariant [21], [58). Therefore, (21) is not a satisfactory expression for the
energy. We propose two possible ways to solve this difficulty.

The first possibility [27] is to add to (21) another gauge noninvariant contribution
describing the internal energy of the external color currents, chosen in such a way that
the total expression becomes gauge invariant. For example, we can do this by reinter-
preting ;' as a quark current

JH) = gPEW T (), (22)

where the bispinor () transforms under fundamental representation of SU(2). We assume
that y(x) does not depend on time in order to have time-independent j**. Then, we can
add to the r.h.s. of (21) the term

Ein = —i [ B0 0p(X)d*% +m | P(X)p(x)d°X. (23)
It is easy to see that
E = Ey+Ey, 24)

is gauge invariant and constant in time. Observe also that when f,- = 0, then E,,, becomes
gauge invariant. Therefore, E,,, cant be included into E also when fi = 0. This rather natural
solution to the problem of gauge invariance of the energy has the following important
consequence : it is not enough to specify fM(J'E) in order to calculate the energy of the system.
One should know rather the external field y(X) instead of the external source j,(x) in order
to have the full specification of the system.

The second possible way to avoid the difficulty is to change the form of the coupling
of the gauge field to the external source fu, i.e. instead of

j’jauAaud3SC’

to write a different, gauge invariant expression. We will describe our proposal in more
detail in Section 11.3. Here we would like only to mention that this general line of im-
proving the theory of external colored sources was pursued also by Nambu and Venturi,
[58], although in different manner. In our opinion the first proposed solution, based on
(22)—(24) is more natural from the point of view of the standard CCD, in which selfin-
teracting Yang-Mills fields are coupled to quark fields.
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IT.1.2. Gauge invariant characteristics of the external color charges

From (9) it follows that the color 4-current density j, is not gauge invariant, in contrary
to the Abelian case in which the electric current is gauge invariant.

It is natural to ask what are gauge invaiiant features of the external color charge.
Of course, gauge invariant are the local quantities

ho(X, 1) = 3 Tr [ (%, 0] (%, O] (25)

The diagonal elements 4,, are the moduli of the components of the current density j,.
We would like to point out that there also exist certain global characteristics of the
external color current, [28] which are invariant under so called small gauge transformations.

a

. e n - O
For definiteness, let us consider the time-independent color charge density jo(x) = j§(x) TR

We also assume that
JoX) = € (x), (26)

where |e| = 1, and f(X) # 0, possibly except for the single point x = 0. This assumption
about f(;) is a technical one. It can be avoided at price of complicating of the analysis.
We assume also that j,(X) is continuous. The color structure of jo is entirely described
by e(x).

The gauge invariant characteristics of 3(52) is given by the winding number 7, [e],
called also the Kronecker index — an element of the second homotopy group =,. This
topological number is present here because e(x) defines a continuous mapping of the
sphere S2: |X| = R, R > 0, into the sphere $2: |¢| = 1, and such mappings are classified
accordingly to =,, [59, 60]. This number is invariant under continuous deformations of
the mapping e(X) : S —» S2. From this fact it follows that r,[¢] does not depend on the
radius R(s# 0). It also follows that m,[e] is gauge invariant. Namely, mappings S23 X
— o(x) € SU(2) = S* are topologically trivial [59, 60]. Therefore one can continuously
deform w(X), |x| = R, into the unit matrix. This deformation of o(x) gives also a contin-
uous deformation of é'(x), defined as

é'(x) = a(x)é(x)o”(X)

into é(X). Thus, 7,[e] is gauge invariant, because 7,[é'] = 7,[é].

Of course, when 7,[e] # 0, e(X) has to be singular at least at one point. With the
assumptions following (26) this point is x = 0. In this case we have to take f(0) = 0
in order to keep j,(x) continuous.

Example of e(X) such that n,[e] = k is given by

sin3 cos kg
é(x) =|sin9 sinke |, Qn

cos 9
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3, ¢ — spherical angles, k£ — integer. The case k = 1 was investigated in [7, 8]. For
lk] > 1 no exact solution is known. Likely, such solutions can not be spherically sym-
metrical. However, it is possible to obtain approximate solutions by perturbative expansion
in powers of j,, see Section IL.2.2.

Now, let us consider in more detail the class of e(x) characterized by n,le] = 0.
Utilising regular gauge transformations it is possible to transform this class of external
color charges into the Abelian gauge frame, in which

é(X) = —. (28)

This follows from the facts that: 1) such e(x) can be continuously deformed to the constant
map, e(x) = const, for each R (= |X|), 2) continuous deformation of e(x) is equivalent to
local rotations of e(x), i.e., it is equivalent to the gauge transformations. Moreover, é(x)
does not have to have the topological singularity at x = 0 induced by behaviour of e(x)
at x = 0. Therefore, we assume that E(J?) is regular everywhere. Now we will show that
this class of e(X) admits for a topological subclassification.
Namely, consider e(x) such that
- o
é(x) —» ) 29)

when |X| — co. Then, e(x) becomes constant at spatial infinity and therefore we can pass
from R? to its compactification $3, still keeping e(x) continuous. Thus, such ¢(X) can be
considered as a continuous mapping from S? into S$2. Such mappings are known to be
classified by the Hopf index #le], [59, 60].

Of course, even if h[e] # 0, one can find w(X) such that

3

e o
o 1éX)ow = 5 (30)

However, it is possible to prove that such w(x) themselves are characterized by nonzero
winding number #,[w]:

ns[w] = Ale]. @31)

Here, n3[w] is an element of the third homotopy group, which classifies mappings from
S3 (compactified R?) to another $2 (formed by the manifold of SU(2) group). The equality
(31) follows from another equality (38), proved below.

Gauge transformations w(Sc') such that n3[w] # 0 are called the large gauge transfor-
mations. It is well-known that they have to be regarded on a different footing than small
gauge transformations, i.e., those with mi[w] = 0, [61]. The existence of the large gauge
transformations implies the f-vacuum and instanton tunneling in the quantized Yang-
-Mills theory. Therefore, it would be natural to expect that the external charges with
nonzero Hopf index would play an essential role in a classical gauge theory which somehow
takes into account the presence of the 0-vacuum.
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It is well-known that one can construct the conserved current J%[e] corresponding
to the Hopf index regarded as a conserved (topological) charge, [62]. This current is con-
structed as follows. Introduce the antisymmetric tensor

fuw = (8% 0,0)e (32)
and introduce the potentials
S = 0,a,—0,a,. (33)

Then, the current is given by the following formula

Jile] =

3272 et s, (34)

The Hopf index is given by
hle] = | d>xJ%[e]. (35)

Similarly, one can construct the conserved current corresponding to the winding num-
ber mijw]:
i
24n?

Jlw] = e Tr 0,00 8,00~ 10,0071 ]. (36)

The winding number is given by
nsfw] = | d*xJ3[w]. 37

From (34), (36) it is clear that spatial topological currents are present when the external
color charge is time-dependent. In the time-independent case they vanish, and the four-
-currents reduce to the Hopf index density and the winding number density.

Now we shall prove that

Jhle] = J4[w], (38)
where

- 1

ed = wo o L,

(39

From (38) taken for u = 0, together with (35), (37), follows the equality (31).
The proof of (38) is the following. Substituting (39) into (32) it is easy to find the
potentials a, defined by (33),

a, = —iTr[c’0™'8,0].

As the next step, we prove that

- 1
Jilel = pe; e Tr [4y 6,4,], (40)
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where

A 03 -f~

d, = —w ‘é,w.
2

The proof of (40) is nothing more than tedious algebra based on the following param-
etrization of w:
SU@Q)sw = ¢°c°+igs, (¢°)°+¢ = 1.

It is easy to see that the r.h.s. of (40) is equal to J%[w].
Let us generalize the above considerations to the time-dependent external color
charges jo(X, t). From the condition (6) it follows that

aofa‘ig[go,fo] =0, (41)
ie.,
Jo(%, 1) = ut, 01%)]o(X, O)u~"{t, 01%), (42)
where
t
u(t,0)x) = Texp [ig [ Ao(x, t')dt'] (43)
(¢}

is an element of SU(2), T denotes time ordering. From (42) it follows that the time evolution
of j, is described by time-dependent gauge transformations. As we know, continuous
gauge transformations can not change the topological number ,[e]. Therefore, the basic
classification of j,, based on the second homotopy group 7,, holds also for time-dependent
external color charges J,, provided that the time evolution is continuous.

What concerns the Hopf index subclassification in the sector m,[e] = 0, it also holds
for time-dependent charges under some assumptions. Because time evolution (42) is as-
sumed to be continuous, it can be regarded as a continuous deformation of the vector
field Z(?c, t = 0), and therefore it can not change the value of the Hopf index hle(x, 1)]
which takes discrete (integer) values only. However, it is important that (42) does not

change the boundary conditions imposed on e(X) at spatial infinity. This is equivalent to
3

the assumption that lim e(x, ) is time independent <and equal to (;) Only if this
Jx|—=w

assumption is satisfied, the Hopf index subclassification can be cxtended to time-

-dependent color charges.

The presented topological classification of external charges is kinematical one in the
sense that it is entirely based on the fact that the color current has values in 3-dimensional
space. 1t has not been clarified whether the topological characteristics of the external charge
somehow manifest themselves in the form of solutions of Yang-Mills equations with the
external charge. In this respect, an interesting example is discussed in Section 11.2.3 —
an external color charge with Hopf index %1 is shown to support perturbative Nonabelian
Coulomb solution.

It is also not clear how to generalize the above classification to SU(n), n > 2, gauge
groups.
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I1.2. Examples of Nonabelian gauge fields generated by external sources

I1.2.1. The Abelian Coulomb solution for the system of spatially separated
external charges

Classical Yang-Mills equations with nonvanishing external sources provide us with
a relatively simple example of color interactions. Solutions of these equations possess
a number of rather peculiar properties. This can be observed even in the simplest case of
the Abelian Coulomb solution presented below, [6].

The equations have the form (4) of the Chapter 11.1

Dﬂﬁm’ — fv’ (1)
where the external color current j* obeys the condition (6) of the Chapter II.1
D,j* = 0. @

We use the matrix notation

a a
- g ~ a
Y @V v auy
j ._..]a R FI‘ ._.Fﬂ ,

a=1,2,3, ¢°* — Pauli matrices. The covariant derivative has the form
D) = 9,(- »+igld,, (-)]
In the following we shall consider only the case without spatial currents
PG 1) = 86 1) ©)
with jo(X, t) continuous.

Let us now consider the case of time independent j,(X), nonvanishing only in several
disconnected, bounded regions €, 2,, ..., @y of space. Then, we can write

R.(%), O]

M=

; o(g) =g

a=1

where

2 - _{#0 for XeQ,
K“(")‘Lo for %¢Q,

Utilising gauge transformations

. » i _
4, = wA“w_l—i— g,; 0,0m t (5
Ju=0j07h (6)

where o € SU(2) is appropriately chosen, it is sometimes possible to rotate in color space
the charge density j,(x) in such a way that it will become parallel or antiparallel to the
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third directions in color space, i.e.,
3

o = e, 7

This is the so called Abelian gauge frame.

The sign of j;’(x) has to be constant in each region @, i.e., j’(x) has to be parallel
or antiparallel to the third axis in color space in the whole Q,. Otherwise, the gauge trans-
formation w determined from (6), (7) would not be continuous. Uncontinuous gauge
transformations are not allowed because of differentiations present in (5). (In fact, it is
easy to give examples of singular gauge transformations which change physical charac-
teristics of the system, like its energy.) However, the relative sign of j;>(x) between different
Q.’s is not determined. This follows from the fact that in between the regions Q, the gauge
transformation o can be chosen freely, because j, = 0 there. Therefore, one can always
find a smooth gauge transformation m(x) rotating j;(X) from the antiparallel orientation
to the parallel one, or vice versa, in a chosen region €, while not rotating jg(x) in the
other regions Q,, « # f. For example, one can take w(¥) = w,,()?), where

- fexp(ic’r) for XeQ,,
Wp(x) = {1 for xeQ, a#p, ®)

and for x¢ Q,, o = 1, ..., N, w,;(a'c') interpolates smoothly between the values (8). Thus,
we can write
N

g Z 2.K(%) €))

a=1

Jox) =

o] 9,

where g, = +1, and K,(x) > 0. The value of ¢, is not determined — it can be changed
by the gauge transformations of the type (8).
With the external color charge (9) we assume the following Ansatz for 4,:

3

dr=0, dy=" 420, (10)
Then (2) is satisfied automatically and (1) leads to the ordinary Poisson equation
N
445°(X) = g ¥ 4.KyX)
a=1

with the solution (vanishing at infinity)

. , KUx')y ..
AF(X) = — £ dy v;»(~-;—?~ d*x
dn [x—x'|

Performing the gauge transformation inverse to (5), (6) we calculate 4,, thus obtaining

a solution to (1) and (2) with the external color charge (3). This solution is called the Cou-
lomb solution.
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The energy for this solution is

N

2 K OKHX') 1e s
E= 3;2 E quq,,f RIS s, (11)

Ix—x'|

wp=1

It depends on the choice of values for g,. Thus, the fact that j,(x) is not gauge invariant
has lead to appearance of several physically different solutions. Therefore it would be in-
teresting to identify certain gauge invariant features of the external color charge distri-
bution jo(X, ). We have attempted to achieve this by ascribing to jo(%, f) topological
numbers, Section IL.1.2. The above method of solving Yang-Mills equations with external
charges was proposed in [3] for continuous charges and in [6] for a set of pointlike charges.

In literature there are given also many other types of solutions besides the Coulomb
solutions, like the “screening” solutions and “magnetic dipole” solution of Sikivie and
Weiss [3] or time-dependent generalization of the Coulomb solutions, the “Nonabelian
Coulomb” solution and its time-dependent generalization, and bifurcating solutions of
Jackiw and collaborators, [7, 8]. There is no explanation why do all these solutions exist
and what are they for. Only rather partial results on this are available. For example, below
we shall argue that the Nonabelian Coulomb solution is intimately related to the charge
with nonzero Hopf index.

11.2.2. The perturbative approach to Yang-Mills equations with weak
external sources

Among many very interesting developments in the subject of classical Yang-Milis
equations with external sources there is also an idea cf a perturbative expansion of the
classical solution in powers of the external charge, {7]. This idea is very attractive, because
it is the proposal of systematic and calculable procedure for solving Yang-Mills equations
even with complicated external charges. In the paper [7] only the lowest order approxi-
mation is presented. Next, it is there applied in order to show existence of a new interesting
type of solutions, namely Nonabelian Coulomb solutions (see the definition in the next
Section). The authors give two examples of external color charge densities for which the
perturbative Nonabelian Coulomb solution exist. In this Section we investigate this
perturbative method in more detail, [27].

It should be clearly stated that the perturbative method, although very useful, is not
universal. There are solutions which can not be reached in the perturbative way. For
example, type I solutions discovered in [7] do not exist for sufficiently small g.

We consider Yang-Mills equations with fixed, static color charge density

A

Ju = 0,0q0(X) = d,0]0(%), (12)

where ¢ is a smail parameter and § is a smooth function vanishing at infinity. Here we

a

. . . 4 .
again use the matrix notation. e.g. ¢ = ¢ —-. The gauge group is SU(2). We assume
g ¢ 5 gauge group
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that solutions of these equations have the following form
Ay = qgAP+* 40+ .., 13)
A= AP +q* AP+ ..., (14

consistent with an analysis of powers of ¢ in the equations. We find that Yang-Mills equa-
tions with external charge (12) admit the perturbative solution (13), (14) only if there is
also present a spatial current

Ji= P+ 9+ . (15)
This unpleasant fact was not observed in [7]. The current j; is not arbitrary. It is induced
by the assumed color charge (12) and it is necessary for consistency of the perturbative
method. The phenomenon reminds very much examples from the quantum field theory,
e.g. the inducing of Ag* term is scalar electrodynamics, [63]. There the quartic term is
necessary for applicability of perturbation theory, namely for its renormalizability.

If 4(x) obeys the condition

AAT @O = —8(x), (16)

where A(x) is an arbitrary, non-vanishing regular function of X, then the second order
contribution to the current vanishes, j{* = 0 although the color magnetic field in general
need not vanish in this order. Therefore, this class of external charges is particularly in-
teresting. It can support perturbative solutions of the magnetic type. In this case the possible
presence of the magnetic field is due to particular features of the charge ¢, because the
induced current of order g* at least cannot produce magnetic field of order g2. The con-
dition (16) appears in the lowest order in ¢ and therefore it was discovered in [7], although
in a different way and with different interpretation. We give new examples of charges
obeying this condition. The analysis of the perturbative procedure is preserted in Section 2
of our paper.

We expect that for small ¢ and smooth and localized §(x) the perturbative series is
convergent to an exact solution of Yang-Mills equations, because there is rather little
room for a pathological behaviour under such strong regularity conditions. However,
one assumption has to be added. The reason is that the perturbative procedure involves
taking inverse of the operator of linearized Yang-Mills equations around the zeroth order
solution. For the Ansatz (13), (14) the zeroth order solution is 4, = 0. As it is well known,
in gauge theories such operator is not invertible, unless one restricts the space of functions
by adding a gauge condition. In our paper we assume that Coulomb gauge condition

ai.AAi = 0.
For static, regular, and vanishing at infinity fields this condition is sufficient for inverti-

bility of the linear operators. Of course, the solution calculated in the Coulomb gauge
can afterwards be transformed to another gauge, if desired.
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The Yang-Mills equations in the static case can be written in the form (g = 1)

O F* +i[A,, F*°] = g0, (17)
O  +i[ Ay, FY+i[ 4y, F] = -], (18)
where
F*® = —5,d,—i[4,, 4., (19)
= 3,4, -0, A, +i[A4,, 4] (20)

These equations have to be completed with the well-known consistency condition,
“‘051"“'{';&9}&] +i["io, q8] = 0. 21

In this Section (21) is regarded as an equation for j,. Inserting (13), (14) and (15) we obtain
order by order in g the following equations

P = i[4A", 8], (22)
aiY = —i[AD, [P1+i[4D, 81, (23)

etc. We do not display higher order equations to save space. Their derivation is equally
straightforward.

From these equations 7™ is determined up to a curl. In order to remove this non-
uniqueness we can assume e.g., that the covariant curl of j, vanishes,

eul O+ il 1)) = 0. (24)

This condition determines the curl of ji*™,
8‘k,6,‘](2) =0, (25)
eufest = —iey (AP P AY), (26)

etc., what together with the divergence given by (22) and (23) fixes j{*” uniquely provided
that we also assume that j*" vanishes at |X] — oo.

From (22) and (23) it follows that in general j{*” # 0, because the commutators on
the r.hs. of (22) and (23) do not vanish. Thus, for the consistency of the method it is
necessary to accompany the given external charge 9(X) by the external current j, of order
g* or higher. This phenomenon reflects the Nonabelian nature of the theory because it is
caused by nonvanishing commutators.

From (22) we see that if

[45", 8] = o, (27

then we have j{2 = 0. However, ;* # 0 in this case, in general. Vanishing j{* requires
to satisfy another nontrivial condition, namely [AS’, 8] = 0.
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Now let us turn to the equations for gauge potentials. From Egs. (13), (14) and (17-20)
we obtain the following equations for A"~ ",

A4 = —p, (28)
A4 = 2[4, 0,45"], (29)
A4 = =2i[AP, 6, AP] - 2[4, 8, A+ [AP, [4P, A1, (30)

etc., when we have used the assumed Coulomb gauge condition for 4,. The equations
for the vector potential are the following

447 = P-4, 043", G1)
A4 = —JO+[AD, [P, AT - iLAD, 0,40
—i[A$, 3, +iI[AP, 9.4AP)-2i[ AP, 0,4P], (32)

etc.

In the first step of the procedure we determine 4(" and then j{2 and 4. In the next
step we calculate 45" and j{¥, AY. Equations (28)—(32) require to specify the boundary
conditions at infinity. We choose them to be the same as in the electromagnetics, i.e. for
the localized external source all potentials should vanish at infinity.

Let us now come back to the condition (27). For SU(2) gauge group it implies that

a(x) = AXALX), (33)

where A(X) is an arbitrary function. The equation (28) then takes the form of the condition
(16) for @(52). Equivalently, one can consider

A4ANM(x) = —AZ)AG(x). (34

3
The condition (34) is of course obeyed by any Abelian configuration, 45" ~ —22—_.

The external charge with nonzero Hopf index + | is another example in which the condition
(16) is obeyed. It will be considered in the next Section. Yet another example is provided
by external charges whose orientation in color space is characterized by arbitrary, nonzero
Kronecker index K. That is, we take

a(x) = a(x)e(x),
where
sin 9 cos K¢
é(x) = |sin 8 sinKg |,

cos 3



858

and g(x) is a function vanishing for x = 0 in order to ensure continuity of g(¥) at X = 0.
Because of (33) we have

APE) = p@De), v = 27 @e).
Substituting this to (34) we obtain three equations, from which it follows in spherical

coordinates that
K2-1

w(r, 9, @) = f(r) (sind) 2, (35)

where f(r) is any regular function of » = |x| vanishing at r = 0 in order to ensure continuity
of AV at the origin. From the same equations it follows that

11 d(zdf) (K*-1)?  K*-1

+K?+1.

) = — — —— )=
)=~ oy ar\’ ar 47sin’ 9 | 4

Therefore,

- 1 daf (K*-1
o= |- ) e e

K4 1 K2-1
+f (z)( +K2+1>] (sin) 7z . (36)

From (36) it follows that f(r) should behave like r**%,.5 > 0, for r » 0, in order g(0) = 0
We also see that only for K2 = 1 the external charge 9(x) becomes spherically symmetrical
(this case was considered in [7]), and that for K = 2 it has singularity for § = 0, n of the
integrable type.

The number of examples of charges obeying (16) (which is equivalent to (34)) can
also be sometimes increased by utilising the well-known behaviour of the Laplace operator
under inversions. It is easy to check that if A5'(X) obeys (34), then

a1 (R
Ag(x) = : Ay _i‘— e, (37)

where X = (r, 9, ) and R is a fixed radius, also obeys (34) with A(x) replaced by
R“ R?
A(X)=—5 4 ( » 9, (p)

The above examples are so general that from (37) we do not obtain a new example. How-
ever, for the example discussed in the next Section, the transformation (37) leads to a new
form of the external color charge.

11.2.3. The perturbative Nonabelian Coulomb solution

The perturbative method of solving of classical Yang-Mills equations is exceptionally
well-suited for investigations of the Nonabelian Coulomb solutions, because they are
defined through their behaviour in the limit ¢ — 0. The definition, given in [7], requires
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first to transform @ to the so called Abelian gauge frame in which

- - 0
0'(x) = o(x) 5 (38)

Then, the Nonabelian Coulomb (NC) solution is the static, finite energy solution which in
the limit ¢ — 0 does not vanish and becomes the pure gauge

Ay =0, A, = idon".

13

(39

It should be added that () is a gauge transformation of such a type that 4; in (39) cannot
be gauge transformed to zero by gauge rotations around the 3rd axis, which leave the
charge (38) invariant. The purpose of this complex definition is twofold. First, to distin-
guish NC solutions from more trivial Abelian Coulomb (AC) solutions, which exist for
any charge of the form (38) and have the property that 4, and 4; vanish when ¢ — 0
in the Abelian gauge frame (38) (up to static gauge transfomations leaving (38) invariant).
Secondly, the pure gauge limit (39) for g — 0 ensures that the nonzero strengths for g # 0
are entirely due to the external charge, that is that the solution is not a superposition of
a solution of sourceless Yang-Mills equations with e.g. AC solution.

In this Section we apply the perturbative method to the external charge (12) with §(x)
characterized by Hopf index + 1, [27]. We adjust §(X) in order to obey the condition (16),
and we calculate the solution in the lowest non-vanishing order. The solution is found
to be of the NC type, in accordance with our prediction [28] that the external chargé
with nonzero Hopf index supports NC type solution.

The external charges characterized by nonzero topological currents (34) of the Chapter
I1.1 (and zero Kronecker index) lead in a very natural way to the Nonabelian Coulomb
solution. To see this, we observe that in the Abelian gauge frame we still have some residual
gauge freedom, namely the gauge transformations of the form

- ic® .
(X, t) = exp [3— x(x, t)] , (40)

because they do not change the form (38) of the external charge. We shall have the Nona-
belian Coulomb solution only if the limit (39) can not be compensated by gauge transforma-
tions (40). If the term (39) can be compensated, then

2,00 " = d,wew; . (41)
This however implies that J4[w] = 0 because now all the terms on the r.h.s. of (36) of the
Chapter I1.1 commute, due to (41) and to the fact that o, contains only commuting matrices
o and o3. Thus, if J4[w] = J4[e] # 0, we can have the Nonabelian Coulomb solution.
It is sufficient to find any solution of Yang-Mills equations for jo(X) characterized by

%le] # 0 and such that it tends to zero when j, — 0 (e is related to j, by (26) of the Chap-
ter I1.1). Then, after passing to the Abelian gauge frame by gauge transformations and
after performing the limit j, — 0, we are left with the gauge term (39) which can not be
compensated by gauge transformations (40).
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The task of explicit obtaining the Nonabelian Coulomb solution is very difficult,
because the charge j, such that Jule]l # 0 is merely cylindrically symmetrical, implying
cylindrically symmetrical solution of Yang-Mills equations at best. Precisely speaking,
no explicit example of the exact Nonabelian Coulomb solution is known up to now.

Our perturbative solution has the limit (39) with w(f) characterized by the winding
number + 1. Therefore, our solution could be related to a gauge field generated by weak
external charge of the form (38) immersed in a topologically nontrivial (i.e., nonzero
winding number) sector of Yang-Mills 6-vacuum, [61]. This is one of the reasons that we
find the external charge with nonzero Hopf index interesting.

Our example of the NC solution is nicer than the two examples presented in [7], because
our external charge can be gauge rotated to the Abelian gauge frame by a regular and
simple gauge transformation. In the first example presented in [7], the gauge transformation
is singular. The second example in {7] contains three subcases. 1) The external charge
already being in the Abelian gauge frame — then, the solution is not of the NC type. 2) The
external charge can be homotopically deformed to a standard charge with nonzero Krone-
cker index — then the gauge transformation is singular. 3) The gauge transformation is
regular, however it is very complicated — this makes it difficult to compare NC solution
with AC solution for this charge.

The Hopf index enumerates continuous mappings from S? into $2. Its definition can
be found, e.g. in [59, 60]. The continuous color charge distribution ¢(%) can define such
a mapping. Namely, we assume that g(x) # 0. Then e(%) = ¢(x)/10(X)] has values in S2.
In order to compactify R® to S3, we include the point at infinity. For continuity of the
mapping it is then necessary to assume that lim e(X) = const., i.e. that it does not depend

x| a0
on angles. In this way e(x) gives a contimllolus mapping from S? into S2.

It has been proved, in Section I1.1.2, that the color charge distribution with orientation
in color space characterized by the Hopf index H can be obtained from the charge in the
Abelian gauge frame (38) by a topologically nontrivial gauge transformation, given by
o(x) with the winding number equal to H. The form of such a gauge transformation can
be taken as

ONPE ()

wo(X) = cos — +i— g sin 42)
2 r
where
z2(0) = 0, y(o0) = 2nH. (43)
Thus we have
- . .0 -

8(x) = o(x)wo(x) B} wg M%), (44)

where o(X) # 0. This gives

- - - axXx . _ ., xr)ox ax
o(x) = % o(x) (cos x(r)ac +sin x(r) =z o +2 sin’ Z(E-) — T) , (45)
r r

where we have introduced the vector @ = (0, 0, 1) in order to simplify the formula.
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The functions o(x), x(r) we shall determine from the condition (16) for the magnetic
type solutions. We assume from the beginning that o(%) and A(x) are spherically symmetrical.
With this assumption the condition (16) can be obeyed only if H* = 1. Denoting o(r)/A(r)
by w(r) as before, we obtain from (16) the following equations (dots denote differentiations
with respect to r)

.2 L2
Ap+ —r"/.li'“'rQZ —~~r—2wsmx=0, (46)
L., 22 2
Pyt Pt g ycosy— y+iy =0, 7
2 4 4
1p+~—!p~"; 1,v+ 5 pcos x+iy = 0. (48)

Subtracting the last two equations we obtain
., 2
+ — (cos y—1) = 0, (49)
r

which can be easily integrated. Taking into account the boundary conditions (43) we
obtain
x(r) = 4 arctg (urH), (50)

where H = +1 and u is an arbitrary constant scale, ¢ > 0.
Now, the equation (46) becomes the first order equation for y(r). Its integration yields

p(r) = d(1+p2r%) 712, (51)
where d is a constant. Next, we calculate ¢ = Ay from, e.g. Eq. (48). The result is
o(ry = 35u%d(1 +p°r*) ™52, (52

Observe that this function does not vanish for any finite r, as required at the beginning
of this Section.

Thus, we have found the external color charge with H? = 1 obeying the magnetic
condition (16). Because of (33) we also know A,

A% = L w(r) [cos x(ryac

+sin x(r) _-—’f o +2 sin 2"—3—) 7 55], (53)
r r

and we also have j® = 0.
Now we would like to calculate 4{®. From (31) we have

AAP = —i[AD, 6,45, (54)
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where AV is given by (53). The calculation of A{® from (54) is rather straightforward,
although it is very tedious and leads to rather uninstructive formulae. Therefore we cal-
culate here only the leading term for large r.
Because the r.h.s. of (54) behaves like r~* for large r, we can write
2y, i S | PN 1y,
AP(x) = — | &' == [APK), a45°(R)]. (55)
47 jx—x'|

Next we use the standard multipole cxpansion [64]. Because the commutator on the r.h.s.
of (55) has vanishing divergence, the magnetic pole term is absent. The magnetic dipole
term is different from zero. For large r

~

m,x*

‘4‘&2)(;) = Eis ’.3 s (5())
where the magnetic dipole moment is
AA s n d’ t 2 35 3
(my, my, m3) = ""'1_2;;3(0"0- »7g T ) (57)

From (57) it follows that the vector potential (56) contains mixing between color and space,
and that is not spherically symmetrical.

The spatial current j{* vanishes. Nonvanishing current can appear in the order g*
or higher. In order to check this it is necessary to check whether {45, 40"] = 0. This
is a very tedious calculation. It requires first to calculate 45 from (29). We have not
done it because in any case the nonvanishing current is at least of order g%, and therefore
can create magnetic field of order at least g4, as it follows from Eqs. (31) and (32). Thus,
our perturbative solution is a new example of the known phenomenon, [3], of creating
magnetic fields by static color charge densities. Because the magnetic field is here of order
g2, it can not be attributed to possible nonvanishing j{*.

The obtained perturbative solution is of the NC type. As it is seen from (44), the
external color charge with Hopf index H can be gauge rotated to the Abelian gauge frame
by the gauge transformation wg '(X), where wo(X) is given by Eq. (42). In the Abelian
gauge frame we obtain

lim (%) = —iwg '8;0. (58)
q-0
This pure gauge potential can be regarded as belonging to the sector of the 6-vacuum with
the winding number FH.

Let us now compare our solution with the AC solution for the color charge distribution
(45), (50) and (52). This exact solution is obtained by gauge rotating 6(X) to the Abelian
gauge frame, and next substituting into Yang-Mills equations the Ansatz

Ay =A,—, A =0. (59)
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The resulting linear Poisson equation for A,

44, = —qa(r)
yields

Ao(r) = %5 qd(i+p*rH) ™12 (60)

Next we gauge rotate the color charge back to the initial form (45) using @4(x). The corre-
sponding gauge transformation of the gauge potentials gives

sCo ..’ .
Ag(x) = Ao(r)wo(x) 5 @o (x), (61)

AT(x) = i0wo(X)wg (%), (62)
3
where wg —02— wg ' can be read off from Egs. (44) and (45).

This AC solution is exact. It has zero color magnetic field and the potentials vanish
when g — 0 in the Abelian gauge frame. On the other hand, the vector potential (56)

of the NC solution does not have the Abelian form in the Abelian gauge frame,
3

. o . R
ANC # Ai—z—. The AC solution differs from the NC one also by magnitude of Ao,
A5(x) = 5 AC. (63)

From (63) it follows that the energy of the AC solution is (3%)? times greater than the
energy of the NC solution. This relation is true only for small ¢, because we have neglected
all contributions to the energy of the NC solution of order higher than ¢?. The observed
fact that the NC solution has lower energy than the AC solution is in full accordance with
the general argument given in [7] for all NC type solutions. However, the big magnitude
of difference is somewhat surprising.

We have used the perturbative approach to solve the classical Yang-Mills equations
with the external charge with nonzero Hopf index. This method allowed us to perform
some calculations. The more ambitious task to find the NC solution exactly seems to be
very difficult, because one should not expect that the gauge potentials will possess more
than merely cylindrical symmetry, if any. This leads to untractable set of nonlinear equa-
tions. The problem is even more difficult because of the possibility that j{* s 0. There-
fore, the solution with j; = O need not exist — if it exists, then it has to be singular in
the limit ¢ — 0, or it has to cease to exist for small g (such solutions were found in Yang-
-Mills theory, [7D).

11.3. Fields generated by gauge invariant external sources

In this Chapter we would like to describe the anounced in Section I1.1.1 modification
of the coupling of an external source to the Nonabelian gauge field, [65]. The motivation
is twofold. The first one is based on the difficulties with gauge invariance of energy for the

a

standard coupling A4;j,. The other one is the following.
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In spite of numerous eforts it has not been possible to obtain confinement of quarks
within classical chromodynamics. On the other hand, it is commonly believed that quantum
chromodynamics does confine quarks. Therefore, CCD can not be regarded as a long dis-
tance limit of QCD. One is tempted to guess the form of a classical theory describing the
effective long-distance structure of QCD (up to small quantum fluctuations). Below we
present an effort in this direction. Namely, we assume that a physical source of Nonabelian
gauge field has to be described by a gauge invariant mathematical object. This would
correspond to the expectation that only color singlets are the physical states in QCD.
Therefore, we shall consider the gauge invariant external sources. Such sources can not
be coupled directly to Ay because the total action would not be gauge invariant. We assume
that they are coupled to gauge invariant, nonlocal objects (NGIO). We shall consider
the following examples of NGIO:

VV()’, )\iC) = Z(y) P exXp [lg C§ /iudZ"]W(x), (1)

where x, y are points in Minkowski space-time, C is a path connecting y and x, P denotes
path ordering of exponentials along C, x, v are fermion fields, and 4, = ALT* where
T* are generators of SU(2) (or its representation). As the fermionless NGIO we take

WOx, x|C) = TrPexp [ig i A,dz"], 2)

where the trace is with respect to colour indices and C is a closed contour which starts
and terminates at the same point x.

The nonlocal, gauge invariant objects, constructed from Nonabelian gauge potentials,
were considered in a number of papers, e.g. [66]. Presently,. there exists a hope that such
objects provide a string picture of hadrons within the framework of Nonabelian gauge
theories. They are expected to be directly related to the long distance structure of the Non-
abelian gauge theory. The elementary fermion and Nonabelian gauge fields are not expect-
ed to reflect the long distance structure of the theory because of confinement of quarks
and gluons.

In order to calculate S-matrix in terms of NGIO it is necessary to consider Green
functions for such objects [67]. As an intuitive starting point for this calculation one could
take the Feynman path formula for the generating functional for Green functions. Apart
from the gauge fixing and F-P ghost terms which are not important on the classical level,
the total action in such a formula would be

where
Sym = —% Fo F™,  a=1,2,3,

is the Yang-Mills action, S is the Dirac action for feimions, W denotes NGIO and | JW
is specified below. Our considerations can be regarded as an investigation of the static
classical approximation to the above sketched problem. Our expectation is that this can
be an easy way to get important information about properties of Green functions for
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NGIO. We restrict ourselves to the most interesting gluonic sector of the theory by
neglecting Sg.

Here we shall investigate the question what are the classical stationary points of the
action Syy+ [ JW. As W we take the NGIO (1) and (2). The fermion fields present in
(1) are regarded as a priori fixed external fields. In other words, we try to find classical
gauge potentials generated by the external source J. This external source is, of course,
gauge invariant, as it is coupled to the gauge invariant NGIO.

We observe that such sources imply classical Yang-Mills equations with an external
current of color along the path C. In the case of NGIO given by (1) we show that the
Yang-Mills equations are inconsistent, unless the fermion fields satisfy certain condition.
When fermions do satisfy the condition, the external current in Yang-Mills equations
vanishes and the external source decouples from Yang-Mills equations. This gives zero
gauge field for such a source.

The fermionless case (2) is more complicated. The gauge potentials generated by the
current of color flowing along the path C can be easily found. Because the line C has zero
thickness, the potentials are singular on C. This is an unpleasant difficulty for the classical
approach, because the external current of color contains explicitly Afu(z) taken for ze C
and this is infinite. Of course, this difficulty could be resolved by a quantum smearing of
the curve C. One should use some smooth J(x, y|C) and to average (2) with it. We say
‘“quantum smearing” because results of papers [66b] strongly suggest that J(x, y|C) can
be interpreted as a wave functional for a string.

However, there still exists a possibility of a classical description. Namely, one could
think of such a wave functional J(x, y|C) that it can be described classically by some
very complicated curve C, so complex that 4, will be finite on C. In fact, in the quantum
theory the curve C (being the shape of the string) strongly fluctuates, and therefore there
is no reason why the best classical description should be given by geometrically simplest
lines. We consider a curve C that fills in a torus, the twodimensional manifold. Such a curve
could be considered intuitively as a limiting case of a curve winding around some given
circle, when the number of windings increases to infinity. Continuous curves filling more
than onedimensional manifolds are known in mathematics, e.g., Sierpinski curve [68].
The corresponding solution of Yang-Mills equations is given by some color magnetic field
restricted to the inside of the torus and zero electric field. The classical selfenergy of the
source is, unexpectedly, quantized through a selfconsistency condition. For a thin torus
the energy spectrum is linear. Such a toroidal magnetic flux tube we would like to interpret
as a classical picture of a glueball.

Two remarks are in order:

1. We consider the simplest, so called Abelian, solutions of Yang-Mills equations.
It is already known that for a given external source Yang-Mills equations admit also other
types of solutions. A similar phenomenon should be expected also in the case of the gauge
invariant external sources.

2. Note that the action S is not in general real because of the term S, = | JW.
It is interesting that in spite of this, one could choose an overall constant in S,,, in such
a way that the stationary points are given by real gauge potentials Aj.
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A. Yang-Mills equations with the gauge invariant sources involving fermions

We search for a stationary point of the action

S = =1 [ d**xFiF*™ + 5,0 4
where
Sew = § d*xd*y [ [de,JJ(y, XIC)W(y, x|C), 3)

W{(y, x|C) being given by (1). Here [dc,] denotes a functional measure in a space of paths C,
connecting the points x, y in Minkowski space-time. Observe that the terms yyA v, present
in the neglected Sy, would act as an additional gauge noninvariant external source for
/f,,. Such sources were already investigated. In this Chapter we are not concerned with
them.

In the following we assume that the external source J is strictly localized in three-
-space and that it is static, i.e.,

J(, xIC) = gb(X —X,)8(y — X)0(%g — ¥o) [6(Co—xo)] [8(C—C )], (6)

where [5(5—5(0))], [6(Co—x,)] are the functional delta functions, X, x, are fixed points
in three-space and C®is a curve connecting x,, x,. The two deltas, d(x,—y,) and
[6(Cy — x,)] make the configuration to be equal time configuration. The fact that x, is
unspecified implies that the configuration is the static one. We assume that ¥, ¢ are constant
in time. ¢ is a constant characterizing the strength of the external source.

The action (4) implies the usual equations for the gauge potentials

D,F* = f:m Q)
where
jen(%) OSen (8)
X)y= ~— ——
Jext 6A3

and D, = ¢,+ig[d,, ‘1.
In order to calculate explicitly jZ;, we parametrize the line C'®: 1 €0, 1], C” = C{D(4)
= 2,(4), C0) = x,, CO(1) = Xy, Of course, x,0 = Xpo = zo(4). Then
Xb 1
Pexp [ig | A,dz*] = Pexp [ig | div"4,],
Xa 0

<3

where o* = R and the variational derivative in (8) yields after a straightforward
calculation
]g?t =0,
1
Je = 84 £ A (AI(z(A))6(x — 2(4)), ®
where

I(Z(3)) = i7(%p)VelEps Z(ANTVe(Z(A), X)9(X,), (10)
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and

(%, y) = Pexp [ig Ljidzi]-
C.y
Thus, j%, = 0, except for the line C'®, along which there is a flow of color charge.
Yang-Mills equations (7) imply the constraint (6) of the Chapter II.1, i.e.,

Byjes— geapcApion = 0 (1)
for any current on the r.h.s. of them. For gauge noninvariant external sources this constraint
is a nontrivial condition to be satisfied. For the gauge invariant sources, the current (9)
satisfies the constraint identically on the whole C®, excluding the end points X,, X,. At
these points the constraint is not satisfied unless the fermion wave functions ¥, y obey
certain condition. Namely, from (9) we get

i = QI +1°0;, (12)

1
where j'(x) = gqjdlv'(i)é(i-?().)) is the usual current obeying the static continuity
0

equation &, j' =0 for X # X Xp. Thus, the last term on the r.h.s. of (12) vanishes for
x # ;ca, x,. It is easy to verify that the first term on the r.h.s. of (12) cancels with the term
e‘,,,cvac,‘t present on the Lhs. of the constraint (11). For X = X,, X = X, we have
0ij' ~ é(x xa ») and therefore the constraint (11) implies

I(x,) = I"(x,) = 0. 13)
However, from (10) it follows that

I°(z) = DP(VYI'(%,),
where D®(V,) is the matrix of the adjoint representation of SU(2), corresponding to the
group element V(z(2), X;,). Therefore the condition (13) implies 1°(x) = 0 for all X e C'?,
i.e. the external source decouples from Yang-Mills equations. This means that the external
source does not generate any gauge field.

To summarize, either the external source decouples from classical Yang-Mills equations

or it is not consistent with them. We would like to interpret this result as an indication

that NGIO for which I°(x) = O are, in some sense, favored by the Nonabelian gauge
theory.

B. The gauge invariant sources without fermions

Now we shall consider the action (4), (5) with W replaced by W°(x, x|C) given by (2)
and J = J(x|C) = ¢8(X—Xx,) [6(C — C)] [6(Co— x,)). In the corresponding Yang-Mills
equations (7) the external courrent jI,, has the form (9), where now

I%(z) = i Tr [Vc(x,,, TV(Xs X0)]- (14)

V¢ is calculated along the other arc of C'® than that used in V. One can verify that the
external current satisfies the constraint (i1) on the whole C'©.
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At first sight Yang-Mills equations look as very complicated integro-differential
nonlinear equations. Still one could find a solution for them. Namely, we observe that
because gauge transformations just rotate the color spin vector (I), one can perform
such a gauge transformation that the resulting (I*) will point in the 3-rd direction for all
zeC, ie. I* = Iet, where ef = 6°, [6]. Then, the Ansatz A5(x) = 6*4,(x) reduces
Yang-Mills equations to ordinary Maxwell equations for 4,(x) with the external static
current

1
Jin(X) = I1gq [ dAv'd(x—C%4))
0

along the line C™. The corresponding solutions are known from a text-book electrody-
namics. As the next step, we insert the solutions for 4, on the r.h.s. of (14). Because the
Lh.s. is given (I* = 6*’I), this yields a consistency condition from which one could try to
determine some constants present in A,.

Unfortunately, because of zero thickness of the line C'®, 4, has a logarithmic singular-
ity on C® and we meet the difficulty mentioned carlier. As it was explained, we assume
that C(® is at least a twodimensional structure. The simplest possibility is to assume that
C® is a torus, i.e. the current j.,, forms a torus-like coil. This assumption is not as peculiar
as it may look at first sight. Firstly, we recall that in Yang’s formulation of Nonabelian
gauge theories [66a], one uses the exponentials exp [igA,dx"] independently at each space-
-time point x. There is no reason why one should arrange these infinitesimal exponentials
just along the simplest lines and to neglect more refined possibilities. Secondly, some support
comes also from energy considerations. Namely, the classical selfenergy of an infinitely
thin, static, linear current diverges logarithmically. On the other hand, classical selfenergy
of the current forming the torus is finite, equal to the energy of magnetic field inside the
torus.

Thus, we assume that C'© forms a torus-like coil. The solution of the Maxwell equa-
tions is given by some magnetic field inside the coil. It remains to check the consistency
condition. Because we have A = %4, T° = 46", 6" — Pauli matrices, then

X
Vex,%,) = Trexp[—ig [ A'dx'T] = exp [—igT ®d(x, x,)x],
CO) x,
and

V(X X) = exp [ —igT3®d(x,, X)x].

Here @ is the flux of the magnetic field through the torus, d(x, x,) is the length of the torus
between the points X,, X (that is the distance along the big circle of the torus between the
points obtained by perpendicular projections of the points x,, X on the big circle), J(i:,, x)
also is the distance between the projections of X, and x but taken along the other arc of
the big circle of the torus, x is an unknown coefficient describing the density of windings
of the current around the torus. The path ordering was dropped out because now the ex-
ponentials commute. From (14) we obtain that

I"=1"=0, I’=1=sin%} gdlx,
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where | = d(x, 5c'a)+c~l(5c'a, X) is the perimeter of the torus along its big circle. Because for
the thin, toroidal coil @ = ¢lgkS,, where S, is the area of the perpendicular cross-section
of the torus, we get the consistency condition

1 = sin [+ (gr)’1,V], (15)

where V is the volume of the torus. Of course, our considerations require x — co. In order
to obtain finite results we parallelly take g — 0, in such a way that gk = 1 = const.

The condition (15) can be read over in at least two ways. Straightforwardly, it can be
regarded as an equation for I, in which V, 4, g are fixed parameters describing the given
torus. The energy of the torus is E = £ H?V = % q?A*I?V. For sufficiently large A2qV
there are many values of / obeying (15).

However, the condition (15) can be interpreted also as a quantization condition for
J2V. Namely, when [ is a priori fixed, (I15) implies

2
A2y o= Ta (£ arcsin I+2k.n), k., = integer, k_ = integer -+%. (16)
q

Observe that (15) implies also that ¢ is a positive number, g > 0. Thus we have to assume
k. =0,k_:>% in order to ensure A2} > 0. Then, the energy is

E; = } ql(zarcsin I+2k.n), (17

T
where arcsin [ < 3 Observe that the spectrum of energy is linear and that it depends

only on the strength of the external source ¢ and on the constant /. The constant [ in
this case is not determined, except for the condition |/ < 1. The cases I = 0, 1 we exclude
as the trivial ones. It is natural to take I = 4 because we have used the fundamental repre-
sentation for T°.

Our results indicate that classical gauge fields can be created in a gauge invariant
manner on the classical level only if the accompanying fermions satisfy the condition (13).
Then, the external current vanishes and the external source decouples from Yang-Mills
equations. In particular, this means that the classical selfenergy of such a source is given
entirely by the classical selfenergy of the set of accompanying fermions. This selfenergy
can be calculated from Yang-Mills equations with the external current 7 “yp (this current,
coupled directly to A, is a gauge noninvariant external source of gauge fields and therefore
it was neglected in our considerations). Unfortunately, we cannot relate the condition
(13) to the common requirement that the fermions should form a color singlet state.

In the case without fermions, the classical approach seems to require rather complicated
cbjects instead of a simple, closed contour C. We have considered C to be a torus. The
question arises whether the resulting magnetic flux tube is stable. Presently we have no
answer to this question. It seems that there is no reason for a topological stability. On
the other hand, the spectrum (17) is bounded from below and, intriguingly, does not
depend on the size of the torus —— this suggests an energetistic stability.
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The above results can be easily extended to SU(n) groups. Of course, the number
of types of NGIO then increases.

This description of the gauge invariant external sources ends our investigations of
classical chromodynamics of external charges.

I1.4. Final remarks

The question what is the classical Yang-Mills field generated by a given distribution
of color charges is far from being satisfactorily answered. Just the opposite, numerous
investigations [2-28] reveal unexpectedly complex situation. It was discovered that a fixed
color charge distribution allows for infinitely many fields obeying Yang-Mills equations
(4) of the Chapter 1L.1, all these solutions having finite energy and vanishing at infinity.
There is no clear cut principle which could tell us which of the solutions is to be adopted
as “the physical one”. Much more work is required in order to reach a satisfactory under-
standing of this situation.

We are convinced that further efforts in this direction will lead to important insights
into Yang-Mills dynamics on classical as well as quantum levels. Already at the moment
one can make interesting observations. For example, solutions with lowest energy as a rule
contain nonzero color magnetic fields. Thus, the presence of color magnetic fields results
in lowering the energy of Yang-Mills system. This remarkably well corresponds with the
belief that the vacuum state in confining QCD is filled in with magnetic fields [50], although
the precise relation of the two things is not known at the moment.

A possible way of incorporating into quantized Yang-Mills theory the knowledge
gained from classical Yang-Mills equations with external sources is through a modi-
fication of gluon propagator. An effort in this direction is presented in [69] — unfortu-
nately, it requires to invent a way of dealing with infrared divergences.

The author would like to thank Professor J. Rayski for encouragement and support.
Helpful discussions with Professors K. Zalewski, A. Staruszkiewicz and H. B. Nielsen
are also acknowledged.
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