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MASS AND CHARGE AS VARIABLES AND CHARGE
QUANTIZATION
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In the classical relativistic mechanics of a particle whose internal structure is neglected
the mass and the charge are treated as variables. In this way the manifestly covariant Hamilto-
nian formalism is derived. Upon quantization the charge quantization rule e = neg,
n=20, +1, +2, ... is proved.
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1. Introduction

It is commonly assumed that if the internal structure of a particle is fixed and neglected
then the mass and the charge of the particle are some fixed parameters (this is also true,
up to renormalization, in quantum field theory). We shall, on the contrary, starting with
the Lagrangian of a charged point particle placed in external gravitational and electro-
magnetic fields, assume that its mass and charge are additional variables. As the internal
structure of the particle is neglected, the resulting system consists of a point particle of any
kind subject to the action of these fields. In Section 2 we show what modifications of Lagrange
formalism this train of thought entails. Section 3 contains the derivation of manifestly
invariant Hamiltonian formalism and the discussion of the gauge invariance of change
in parametrization. Section 4, which is central in this article, gives the proof of charge
quantization which is based on the assumptions of the present approach.

2. The mass and the charge as variables

The action of a particle with charge ¢ and mass m in external gravitational and electro-
magnetic fields described by the metric tensor g,, (with signature (+1, --1, ~1, —1))
and the potential 4, respectively is

S, = f Lodt = j —meNg ()P — < A ()i, @.1)
c
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where z*(1) is an arbitrarily parametrized trajectory of the particle. This action integral
is invariant with respect to the gauge transformation of reparametrization and changes
by only boundary terms under the gauge transformation of potentiai A4,. It follows that
the equations of motion are invariant with respect to these two gauge transformations.
The Lagrangian %, itself, however, consists of two terms multiplied by mc* and e respec-
tively, which depend on the choice of gauges. Therefore, if we want to treat m and ¢ as
variables and write down the Lagrange-Euler equations while retaining the gauge invariance
at the same time, we must add to these terms two additional generalized velocities, say
s and 4 respectively, to compensate the gauge changes. The resulting action is

S = ‘)a Fdr = j[mcz (5—— i\/g:(‘:fzgv)
¢

\

+e <i— —(1; A,l(z)z“ﬂ dr, (2.2)

where the set of variables consists now of z, m, e, s, 2. The action integral is gauge invariant

. . . N

if together with the gauge transformation A4, — A:-i— 0,/ the replacement 4 — A+ — A(2)
¢

is performed. The equations of motion are

m =0, (2.3)
e=0, 24
d 2 1
mcy| — ""‘:i—*__: + e T;‘ﬁz'aip] = EF‘fQZ.Q, (25)
dr \/ggvz;gz‘v \/govz.gév ¢
. 1
s = — Vg, (2.6)
c
s )y @7
A =—A7Z, .
c #

where (2.3) and (2.4) have been used in (2.5). The equations (2.3) and (2.4) ensure what
is demanded of mass and charge, namely that once measured to have values m and e
respectively they remain constant along the whole trajectory. The equation for trajectories
(2.5) is exactly the same as usual. From (2.6) it is clear that s controlls the parametrization
and is increasing, but otherwise is not determined by equations of motion. Classically
s is the proper time. Similarly 4 controlls the electromagnetic potential along the trajectory
of the particle. Classically both s and 4 have no physical meaning or consequences.
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3. The Hamiltonian formalism and gauge invariance of reparametrization

Aiming at the canonical quantization we shall now go over to the Hamiltonian formal-
ism. To this end let us introduce the momenta conjugated to z*

0¥ 2" e
Pp B — (- = MC——= 4 + - A” (3.1)
¢z \;gavé()é‘ ¢
and let us denote
e
T, = Pu— ;A,‘. (3.2)

The set of variables enlarged by p, satisfies one constraint equation
g'n,m, = mic3. 3.3)

Wishing to retain the manifest relativistic invariance we regard p, as independent variables
and use (3.1) and (3.3) to eliminate m from Lagrangian %, which yields

P = e}i—pﬂé“+sgn m- \f';g’”n,,rzv cs.
Defining a new variable 4 = s - sgn m and denoting #(z. p, €) = c/g¥'n,m, we obtain
L = ed—p 2+ H(z, p, Ot (3.4)

The set of independent variables is now z*, p,, e, 2, u. The Lagrange-Euler equation with
respect to variable u is dependent on the remaining Lagrange-Euler equations for Lagran-
gian (3.4) which are equivalent to

e=0, (3.5)
= e g, (3.6)
N g% mm,
uc €
f, = o= {F;,g""n,,nk+ - Fl,f‘nx] s 3.7
\/gq”ngnv c
. ] .
b= g4, (3.8)
\/g""ngnv

u is not determined by the equations of motion. If u is chosen as monotonic function of
7 then the equations (3.5)-(3.8) are equivalent to the original set of equations of motion
(2.3)~(2.7) for m # 0, appended by the definition of p, (3.1). The unrestrictive choice of
positive m in the original equations is equivalent to the condition u > 0 and classically
u becomes then the proper time.
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Let us now by (&, #) denote any of the pairs (—4,e), (z%,p,), 1 =0,1,2,3. The
just discussed independent Lagrange-Euler equations of (3.4) have the form

: oA . oH (3.9)
=—1, = — . .
am T T

Any choice of u > 0, even if it depends on trajectoty, can be reduced by change of parametri-
zation on each solution to one common value u = 1; 7 is then the proper time. By this
choice we arrive at the standard Hamiltonian formalism

&y =1 q=1{a#} (@q=%&n, (3.10)

which offers a starting point for quantization. On the other hand, should we quantize (3.9)
before u has been eliminated, we would face the following difficulty of physical non-
uniqueness: in quantum case u is an operator and its choice has physical content. This
effect is demonstrated in the Appendix.

The equations (3.10) (for pure electromagnetic interaction) with A however missing
and e being a fixed constant, constituted the base for the relativistic quantum model of
[1] (see also [2] and Refs. of [1]). In the following section we shall investigate the con-
sequences of subjecting to quantization another pair of canonical variables (—4, e).

4. The electromagnetic gauge invariance and charge quantization

While we got rid of the gauge freedom of reparametrization the electromagnetic
gauge freedom persists and, as we have remarked, the change in potential

A, = A, +30,4 4.1
is accompanied by
1
A =i+ — A(2) “4.2)
c
and obviously
= ¥, (4.3)

In order to remain within the Hamiltonian formalism we demand that (4.2), (4.3) form
part of a canonical transformation. This yields the transformation of momenta

e =e, 4.4)
, 1
Py = p,+e - 0,A(2). 4.5)
The gauge transformation (4.1)-(4.5) leaves the Hamiltonian and the classical physical

state unchanged. Going over to the quantum case we shall demand the gauge independence
of physical states to be retained.
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The quantization of canonical variables gives
(4, ¢é] = ih, (4.6)
[, 2] = ihs), @.7n
The Hilbert space of the canonical relations (4.7) has no bearing on the present discussion
and will simply multiply the Hilbert space in which (4.6) is represented. As translation
in / by arbitrary constant, a special case of (4.2), is an allowable transformation leaving
all other quantities unchanged, it is clear that the variable A is continuous in nature. It
seems therefore reasonable to represent (4.6) in the Hilbert space H = L3(R, du(4)) in
which 1 is the operator of multiplication by 2. We make no a priori assumptions about the
measure u itself.
The assumptions about the charge operator e and the set of physical states are given
in the following two points:
1) e is a selfadjoint operator in the Hilbert space H = L*(R, du(4)). The action of

I
the unitary group U(e) = exp (—i— sé) can be represented as translation in A. This means
3

that if v, = U(e)y then functions which represent the vectors  and y, (and which will
be denoted by the same symbols) can be chosen so as to fulfil
plA) = ple+2).
2) Physical states are represented by all these rays in H which are invariant with
respect to the group U(e). These rays lic in the range 2(é) of operator ¢ and span the whole
Hilbert space H.
The first point translates the heuristic relation (4.6) into mathematically sound
statement!. The second, beside the usual assumptions about physical states, introduces
their invariance with respect to the special gauge transformations: translations in A.
Proposition. The whole spectrum o, of operater é consists of isolated eigenvalues. whose
separations are bounded from below. The physical states are charge eigenstates.
Proof. Let ye H represent a physical state. Then according to 2) y, = U(e)y = exp
1

(i phase (£))y. Taking the strong limit lim — (y, — ), which exists due to y € Z(é) we
e—0 &

obtain ey = ey, e € g, where o, is the set of all eigenvalues of operator e. Conversely,

A i . .
if  is an eigenstate of e, then y, = U(e)y = exp (T ee) y and y is a physical state. 1If we
3

i
choose representants of y and vy, asin 1) then p(4) = y(0) = 9(0) exp (7— el) . The meas-
12
ure u must therefore be finite and can be normalized. The set (of all physical states)
i —_—
{exp (T e/l)} forms an orthonormal basis in H. It follows that ¢, = ¢ i.e. o, consists
! e€d o

of the set of eigenvalues and its limit points. The latter, however, are absent as the separa-
tions between different points of o, are bounded from below. Indeed, if e, ¢’ € o,e—e#0

1 We do not insist on (4.6) itself to be fulfilled in the strict mathematical sense.
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then due to orthogonality e¢'—e is one of the zero points of the function f(x)
i
= jexp <? a)v) du(2), which being a Fourier transform of a finite measure on R is contin-

uous and f(0) = 1. Zero points of such function include a nearest to zero one. Proof
is completed.

We know by now that physical particles have sharply defined charge which can take
values only from a denumerable set ., and differences in charge are bounded from below;
in particular, there exists charge e, # 0 nearest to zero — the minimal charge. As no
other physical states are allowed there is a superselection rule in action [3, 4] which forbids
forming the superpositions of different charge states. The unphysical nature of variable
4 is confirmed (it does not commute with é).

The discreteness of charge and the superselection rule being established the following
third assumption suggests itself:

3) The set of allowed charge values is closed with respect to addition.

This is justified if only the Gauss law holds. The charge of a system of particles can
then be determined by measurements in spacial infinity, When viewed from that distance
the system can be regarded as one (possibly unstable) particle with charge being the sum
of constituent charges.

We can now easily prove our main assertion:

Theorem. The electric charge is quantized: e = ney, n = 0, +1, +2, ...; ¢4 is the minimal
charge.
Proof. Let eco,. If —e¢ o, then due to 3) for every ¢, ¢’ € g, there is

exp| — L el], exp L e’ = | exp L (e+e )L ) du(i)
h h 12 h
_ j exp (lil ¢ '/1> exp <fi (e+¢' +e"),1) du()
i h
i e l t XA
= [ exp _ITe A), exp i—l(e+e +e')A =0,
L2

. . i . —
which contradicts the completeness of {exp <~h— el)} . Hence o, is symmetric with respect

ecae

to the change of sign. If ¢, is the minimal charge then from 3) and symmetry of o, we
infer that ne, € 6,, n = 0, + 1, ... This set of points exhausts the spectrum. Indeed, if ¢’ € o,
and |keo| < |€| < [(k+1)eq| then |e'|—|kegl€o, and 0 < |e'|—|keo| < lepf, which
contradicts the minimality of e,. This ends the proof.

The consistence of our assumptions 1)-3) which led us to charge quantization can

1
be proved by presenting a model which satisfies them. Namely, let us put du(l) = R di
(¢]

on {0, A,y and du(d) = 0 outside <0, 4,). The representants of elements of L*(R, du)
can be chosen as periodic functions: y(A+4,) = w(4). U(e) is defined as acting on these
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representants according to (U(e)y) (4) = y(e+1). U(e) can be easily proved to be strongly

) i
continuous unitary group. Hence according to the Stone theorem U(e) = exp ( 7~eé ,
2
\

A
where é is a selfadjoint operator. The functions {exp 2nik 7—} form an orthonormal
O

A

basis of L? and are periodic; U(¢) acts on them as translation and éexp 2rnik —
4o

2nh A

= k~7— exp 2nik ——

Y.
(V] o]
Finally let us observe that the discreteness of charge ensures the full gauge invariance

. The consistence is proved.

i - . .
of physical states (the operator exp <7z_ é/l(:)) generating the canonical transformation

(4.2)-(4.5) reduces to the usual exp (—;l— eA(E)).

5. Conclusions

We started our treatment of mass and charge of a particle in quite symmetric way.
Both mass and charge became variables correlated in like way to additional variables,
each controlling one type of gauge symmetry. In course of elaboration, however, the
theory reveals their essentially different nature. The mass becomes the value taken on
by the generator of evolution, whereas charge is one of independent canonical variables.
Upon quantization it turns out that mass remains undetermined by external interaction
and moreover the consistence of the theory demands that it has some nonzero spread
(sce [1] and [2]). Both position and shape of mass distribution must be determined by
internal dynamics of the particle or some other additional assumptions. On the other
hand the results of the last section reproduce-the observed universality of charge quantiza-
tion and confirm its independence of internal dynamics. Our derivation of the charge
superselection rule does not invelve the Gauss law, which is however crucial in the deriva-
tion of the charge quantization rule — this is quite contrary to the usual arguments for
charge superselection rule and quantization (cf. [4] and [5)). The scale of the elementary
charge remains undetermined by our arguments.

I would like to thank Prof. A. Staruszkiewicz for some remarks.

APPENDIX

The quantum nonequiralence of classically equivalent parametrizations
There is a distinguished class of choices of « in (3.9) leading to a class of different

(but classically equivalent) Hamiltonians. Namely, if 4 = —— is chosen, then
dx |- secem
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the equations (3.9) take on the form

g O L OFE)

an » = ‘65

3

F(#) taking the role of the Hamiltonian. Let us consider a simple model with one pair
of canonical variables [z, p] = ih and the Hamiltonian 2 = p. In this model a wave
function has a fixed shape changing only its position. The square of 5, however, generates
the usual spreading which cannot be eliminated by any change of parameter.
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