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DEUTERON STRUCTURE IN THE ELASTIC ELECTRON-
-DEUTERON SCATTERING
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The relativistic light front dynamics, which unifies descriptions of low and high energy
phenomena, is applied to the deuteron. The deuteron wave function is constructed from
the Weinberg equation with spin, under the constraints of the quark substructure of the
deuteron current, It is shown that the relativistic nucleon impulse approximation of deuteron
is insufficient to explain the experimental data for the elastic electron-deuteron scattering
at momentum transfers of the order of 8 GeV2.

PACS numbers: 13.40.-f, 25.30.-¢

1. Introduction

Deuteron is a bound state of two nucleons with a binding energy of about 500 times
smaller than the nucleon mass, and a radius about 4 times larger than the nucleon radius.
Therefore the nonrelativistic Schrodinger wave function® describes very well the deuteron
properties. Surprisingly it describes well the deuteron electromagnetic form factors even
at momentum transfers ¢ comparable with the nucleon mass.

On the other hand the quark dimensional counting rules [1] predict a flattening of
the deuteron elastic form factor accoerding to the rule Fy(t) ~ t-°. The experimental data
confirm this behaviour already at 7 of the order of a few GeV? [2].

The important question arises whether at these momentum transfers the deuteron
current is carried by nucleons, or whether the other intermediate states like meson ex-
changes, and six quark states have important contributions to this current. Only a consistent
relativistic model, incorporating the nonrelativistic knowledge about the deuteron, may
answer that question.

In this paper we use the light front dynamics [3]. It provides a unique description
of a bound system [4], invariant under three Lorentz boosts [5]. The relativistic deuteron

* Address: Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Hoza 69, 00-681 Warszawa,
Poland.
! The words “wave function” are abbreviated by “wf”.

(893)



894

wf is determined by the Weinberg equation [6] which is the light front counterpart of the
Bethe-Salpeter equation. In Section 2 we assume that the nucleons in the deuteron are
bound by one meson exchanges. The Weinberg equation allows us to incorporate the non-
relativistic knowledge in a particularly natural way. The asymptotic tail of the deuteron
wf is governed by vector meson exchanges, under constraints of the quark substructure
of the deuteron current. The calculation of the deuteron current is presented in Section 3
where we benefit from simplifications of the light front dynamics. In Section 4 we evaluate
the contribution of relativistic nucleon impulse approximation to the deuteron Rosenbluth
functions 4 and B, and compare it with experiment. Finally in Section 5 we conclude about
the deuteron structure in the elastic electron-deuteron scattering.

2. Relativistic deuteron wave function

The Weinberg equation for a two nucleon bound system is invariant under three
independent Lorentz boosts {5]. Without the loss of generality we invariantly express the
Weinberg equation for the deuteron in terms of the relative three-momentum k& of nucleons
from their center of mass frame of reference. Then for the deuteron at rest the Weinberg
equation reduces to the Schrédinger equation with nonlocal energy dependent potential
V(k,k')[4]. This potential is obtained from the sum of one meson exchanges. The nonlocality
and energy dependence of the potential is negligible for relative momenta k small in com-
parison with the nucleon mass m. Therefore, the Weinberg wf is exactly equal to the
Schrodinger one for [k| < m. By this incorporation of the nonrelativistic knowledge we
take into account the light meson exchanges in the potential V(k, k'). The nucleon-nuclecn
interaction inside the deuteron at high relative momenta is mediated by heavy vector
meson exchanges. Hence we find the relativistic tail of the wf from an approximate solution
of the Weinberg equation with the potential ¥V(k, k') restricted to heavy vector mesons?.
Finally, we interpolate between the relativistic tail and the nonrelativistic Schrédinger
wf by writing a superposition of two Huithen wf with appropriate form factors.

The Weinberg equation is

K
000 =Gy > | vk M)
Qrny’ vm +k

spins
isospins

where the propagator G, = (me+k*)"' has the same form as in the Schrédinger equation,
¢ denotes the deuteron binding energy. The potential V(k, k") for the o meson exchange
is shown in Fig. 1 and given by the following expression

Vk, k') = gFa(p)y"u(p' )b, gFu(n)y u(n' )ity
x[p2+(k—Kk') +a(k, K')]7". (2)

2 The details of calculation depend only on the vector nature of mesons and we shall consider the
o meson for illustration.
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The nonlocal term « is negligible for small momenta k, k’. The nucleon’s spinors and
isospinors are denoted by u and y, respectively. The form factor F is chosen to be

v

F = @u* +(k—K) +a(k, k)] 2. (3)

The exponent v will be determined later, from the study of the quark substructure of the
deuteron current.

The asymptotic tail of the wf @(k) is governed by the propagator G, and the meson
exchange potential, containing the square of the form factor F. On top of that there is the
spin and isospin structure of the wf. The isospin structure of the deuteron wf is trivially

Fig. 1. The Weinberg kernel for the p meson exchange

accounte for by the isospin Pauli matrix it,. The approximate spin structure of the deute-
ron wf is in the form of a constant matrix B, which satisfies the following equation®

B = 14" (1+y")B(1+y°)y}.

b0
2=(o )

where b is a 2x 2 symmetric matrix. From the Schrédinger S state wf at the low mo-
mentum k we find b = 6Sio,, where the vector § describes the deuteron’s spin state. The
whole deuteron wf @(k) is

d5(k) = ﬁa(p)aﬁ(n) (SyC)aﬂX;rXIs(iTZ)rs(pM(k) (4)

where the function gy(k) satisfies the scalar Weinberg equation. We take ¢y(k) in the
form of two Hulthen wfs

@ Nm? a_ i—a o\ )
M = eI\l T i)\t

A= 1+4ks| m*+K*)7F,

This equation has a solution

which incorporates the nonrelativistic knowledge of deuteron and has the high energy
tail obtained from the Weinberg equation.

3 For the wave function concentrated in the region of small relative momenta the sum over spins
of nucleon is well approximated by 1/2(1+%°).
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The model of the wf ®(k) given by Eqgs. (4) and (5) has the following properties:
1. it is a superposition of two Hulthen wfs,
2. for small momentum k it reduces to the Hulthen-Sugawara soft core S state wf of
deuteron [7] with its scalar factor represented by the first term in the bracket in Eq. (5),
3. the second term In the bracket in Eq. (5) represents a contribution of heavy vector
meson exchanges; u3 > ul,
4. it contains the important form factor describing the composite structure of nucleons,
5. it has the exact asymptotic behaviour of the Weinberg wf. The factor 1 originates
from the terms denoted by « in Eqs. (2) and (3). The normalization constant N is deter-
mined from the condition
3
16m? (121%)\5 (m*+E3 7 ph(k) = 1, (6)
which follows from the Weinberg equation if we neglect the small energy variation of
the Weinberg potential.

3. The deuteron current

We calculate the probability amplitude ., for elastic electron-deuteron scattering
using the old-fashioned light front perturbation theory [3]. The electron transfers a four-
-momentum g, (g2 = t) to the deuteron by the emission of the virtual photon in the electron-
-photon vertex. The sum of all orders of the electron-photon vertex relatively to other
vertices gives us the amplitude ., in the factorized form?*

1
E’ReD = j’: ?]Du'

In the Breit frame of reference
D :(D_a D+) “‘Illlz), q :—'(0, 0, ql), "= D+q

the NN pairs do not contribute to the current j, because g+ = 0 [3].
We focus our attention on two main contributions to the deuteron current, depicted
in Fig. 2. The contribution of the nucleon impulse approximation (Fig. 2a) is

1 dkrdkt p** bt o .
BT i o (K)pp(k) Tr [S"*y(py" + m)I*(py + m)Sy(ny —m)], (7)

1
I* = Fis(@* )"+ o lan” =y qF 2s(a%)

4 The instantaneous Coulomb-like interaction is included and the deuteron current has to be conserved,.
gjp = 0.
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is the nucleon isoscalar elm. current matrix (Section 4). The deuteron wfs gp(k) and ¢p(k’)
are properly boosted [3, 5] from the deuteron rest frame to the Breit frame, Eq. (A.2).
The tricky calculation presented in the Appendix recovers the peculiar structure of the
current jy leading to the standard expression for the cross section.

The asymptotic falloff of the deuteron elastic form factor Fy(r) calculated from the
nucleon impulse approximation is Fy(t) ~ t~2-", where v is the exponent of the nucleon-
-vector meson form factor. The contribution of the Brodsky mechanism, i.e. the reduced

Fig. 2. Contributions to the deuteron current: () from the nucleon impulse approximation, and () from
the generalized photon-giuon Compton scattering on the struck quark in the reduced form factor picture

form factor mechanism of Fig. 2b, to the deuteron current has asymptotic behaviour [1]
Fy(t) ~ t75. According to the quark counting rules this is the slowest possible falloff of
the deuteron form factor. The nucleon impulse approximation may not decrease more
slowly.

Thus v == 3, and the deuteron wf from Eq. (4) is strongly suppressed for the large
relative momenta of nucleons, in comparison with the Schrédinger wf. The question
whether this damping excludes a saturation of the experimental data by the nucleon
impulse approximation itself is answered in the next section.

4. Numerical analysis of the nucleon impulse approximation

The Rosenbluth functions A4 and B are known experimentally for |¢| from zero up
to 8 GeV?, and 1 GeV?, respectively. In Figs. 3 and 4 we present the results for functions
A and B for momentum transfers |t] < 1 GeV2. The qualitative agreement with the data
(modulo D state probability) originates from the equality between the Weinberg and the
Schrédinger wfs for low relative momenta. The parameter p? is equal to 0.05 GeV? as
in the Hulthen-Sugawara wf [7).

For generality we present results for three standard versions of the nucleon elm
isoscalar form factors F;5 and F,g, labelled in figures as follows:

Dipole — empirical dipole formula

UL — vector dominance fit [8]

Dipole + (F,, = 0) — dipole fit with the Dirac neutron form factor set equal to zero [9].
This variety of possibilities is a consequence of the lack of independent constraints on the
neutron structure.
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The important test of the two nucleon impulse approximation is provided by the
function A for high momentum transfers (Fig. 5). The parameters v, u* and u3 in the wf,
Eq. (5), play the decisive role in obtaining an agreement with the data, independently from
the neutron ambiguities. To estimate the upper limit of the impulse contribution to the
deuteron current we choose for the parameter v the lowest allowed value v = 3. For this
value of v the parameter 2 is chosen to be 4 GeV2. The lower values of p* would provide
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Fig. 5. Structure function A4 compared with experiment at high momentum transfers. The data points are
from the Refs. [16, 22]

a faster damping. This choice of v and u? is on the limit of agreement with a phenomenology
of the meson-nucleon form factors [9, 10]. Then the parameter 3 has to be much larger
than the square of the o meson mass. The curves given in Fig. 5 are for pz = 2 Gev?
and a = 0.07.

In principle the heavy vector mesons would be responsible for the flattening of the
function 4, but their masses should be about twice larger than the @ meson mass. Although
our estimates are approximate, nevertheless they suggest that the new mechanism of the
photon absorption has to be included in the deuteron current. The most natural candidate
for it is the reduced form factor mechanism of Brodsky, which is the quark prototype
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of the meson exchange currents [11]}. This is the proper way to take into account six quarks
in the electron-deuteron scattering. The external photon picks up the quark and calls for
the six quark intermediate state in the deuteron current.

5. Conclusion

The light front dynamics provides a consistent description of the deuteron, invariant
under three Lorentz boosts. The deuteron wf is determined on the basis of the Weinberg
equation with spin. The unique resemblance of the Weinberg equation and the Schrédinger
equation is used for the incorporation of the nonrelativistic knowledge about the deuteron.
The tail of the wf is determined by vector mesons. The quark substructure of the deuteron
current implies that the relativistic generalization of the Schrodinger wf has to contain
factors accounting for the nucleon-meson form factor. Then the nucleon impulse approxi-
mation needs masses of vector mesons about twice larger than the ¢ meson mass, to saturate
the data for large . This result implies the other contributions suggested by the quark
substructure, play considerable role in the deuteron current at momentum transfers of the
order of 8 GeV2,

We are grateful to Professor J. Namystowski for continuous guidance, encouragement
and valuable remarks on the manuscript. We also acknowledge the numerical guidance
of Dr E. A. Bartnik.

APPENDIX

This Appendix contains the main steps of our light front procedure of extracting
the deuteron form factors from the Eq. (7). It differs from the procedures used in the
Refs. [9, 11-15]. Denote

x = Lkym*+k* "% = k*/D*
and change variable k& in the integral from Eq. (7) to
n_L — %D‘L—kl,
where n denotes the momentum of a passive nucleon. For two polarizations of the deuteron
{9] boosted to the Breit frame of reference
—1

V2

S, =(S” =2D*Si/D*,8* =0,81), S% (£1, ),

we have
Sn = 1(1~x)- Sq—S*n*,

S*n = —L(d—x): S'*q—S5'*'nt. (A1)
Introduce
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and
K2 = (kY +ax?m?) (1—4xH) 71,
then the boosted wfs are
o (K )gp(k) = puk Jem(k-), 4= 1+2x], (A.2)

and we have the following identity for any four-vector «a

J a2 g K)ok (@ 0" = | & go (k) go(k)

L (gn)® aq n)?
X [al <n“+ {I ,)—-) +q" «,] (xtl2+2 (4 ,-)~>] .
q° q* q?

Using this identity and Eq. (A.1) for u = +, 1 components of the deuteron current from
Eq. (7), we calculate the trace and recover a standard Lorentz structure [9]

—1
—jp = Gy(1)- S8 (D" + D)+ G,(1) - (S - gS'*—S"* - ¢S)

[

4S™* - q
2M*

L4

S
—G4(1) - (D' + Dy~ (A.3)

The form factors Gy(¢) are expressed as integrals of lengthy expressions multiplied by the
product of wfs and the nucleon isoscalar form factors. For y = — component and the
third deuteron polarization .S, the deuteron current has to have the same structure with
the form factors G(¢) evaluated in Eq. (A.3). Thus the cross section for the elastic electron-
-deuteron scattering is expressed by the two Rosenbluth structure functions 4 and B
simply related to the form factors Gi(¢) [9]

do do A+ B0t o\ _ ( do F2(0)
A9, \d2. ) Ve ) = aan ) e
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