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LINEAR RESPONSE OF NUCLEAR MATTER WITH TENSOR
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The dynamic form factor of nuclear matter in spin and spin-isospin channels is calcu-
lated with proper inclusion of tensor forces. The calculation is performed in the long wave-
length limit, using the methods of the theory of normal Fermi liquid. Numerical results,
obtained for the quasiparticle interaction derived from the realistic nucleon-nucleon potentials
show that tensor forces may appreciably modify the linear response of nuclear matter in
the spin channel. In particular, for some models of the quasiparticle interaction, the presence
of tensor forces leads to instability of the standard ground state of nuclear matter with respect
to some small amplitude spin-dependent perturbations.

PACS numbers: 21.65.+f

1. Introduction

A reliable theoretical description of the properties of infinite nuclear matter is thought
to be a first step towards a many-body theory of nuclei. Up to now, most of theoretical
effort has been concentrated on the simplest problem, that of the calculation of the ground
state properties of nuclear matter starting from an assumed nucleon-nucleon interaction [1].

Incomparably less attention has been paid to the excitation spectrum of infinite nuclear
matter. The small amplitude excitations of nuclear matter may be studied (neglecting
possible effects of superfluidity) using the general methods of the theory of linear response
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for normal Fermi liquids [2]. The central quantity in this theory is dynamic form factor
which describes linear response of the system to external perturbations. The knowledge
of the nuclear matter response function is relevant for the studies of such problems as, e.g.,
large momentum transfer electron scattering on nuclei, Gamow Teller mode of collective
excitation, or hypothetical pion condensation in dense nuclear matter. Finally, the dynamic
form factor of nuclear matter is an essential ingredient for the calculation of the diffusion
of neutrinos in dense hot matter in the interior of neutron stars and in the central region
of supernovae.

In the present paper we shall restrict ourselves to the spin-dependent, long wavelength
excitations in nuclear matter. Our calculation will be performed within the framewotk
of the theory of normal Fermi liquids. This problem has been considered previously by
other authors. Gogny and Padjen [3] studied the dynamic form factor of nuclear matter,
using the Fermi liquid parameters calculated in the Hartree-Fock approximation from
the semi-empirical nuclear forces. Similar problem has been studied by Alberico et al. [4]
using a broad selection of the Skyrme interactions. Particular emphasis in Ref. [4] has
been put on obtaining analytical expressions for the response function, the sum rules and
the relative strength of the modes of excitations.

In the calculations of the dynamic form factor of nuclear matter, reported in Refs.
[3, 4] (and in most of other existing calculations of this quantity) the tensor component
of the nucleon-nucleon interaction has been usually neglected. One of the few exceptions
from this rule is the work of Kohno [5], who calculated the effect of tensor force on the
lowest-order perturbation contribution to the Fermi gas response function in nuclear
matter. However, his calculation has been performed for the large momentum transfer,
which is relevant to inelastic electron scattering. Hence, he did not consider the spin and
spin-isospin sound modes of collective excitation, appearing in the long wavelength region
(i.e., for small momentum transfer). For the tensor force he used the effective nucleon-
-nucleon interaction parametrized by Sprung [6]. This interaction is based on the reaction
matrix in nuclear matter, derived from the Reid soft-core potential.

In the last years several sets of the Fermi liquid parameters of nuclear matter have
been calculated starting from the realistic nucleon-nucleon interaction [7, 8]. One of
important conclusions, stemming from the results reported in Ref. [7], is that tensor forces
may play an important role for the spin dependent excitations in nuclear matter. Tensor
forces were included in the paper of Friman and Haensel [9], who studied however only
the collective spin-dependent excitations (discrete spectrum). In the present work we study
the influence of tensor quasiparticle interaction on the whole spectrum of long wavelength
spin-dependent excitations in nuclear matter.

In the next section we recall basic equations of the linear response theory and introduce
the notation. The Fermi liquid theory calculation of the dynamic form factors is described
in Sects. 3 and 4. In Sect. 5 we briefly present the models of the quasipaiticle interaction
In nuclear matter, derived from realistic nucleon-nucleon potentials. Numerical results
are described in Sect. 6, where, in particular, we study the stability of the ground state
of nuclear matter with respect to the spin-dependent perturbations. Finally, Sect. 7 contains
a discussion of results and conclusion.
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2. Linear response of nuclear matter to the spin dependent perturbations

In what follows, we shall consider, for the sake of simplicity, the isospin independent
perturbations. Let us consider the linear response of symmetric, unpolarized nuclear matter
at T' = 0 K to external perturbation, which is assumed to be described by the hamiltonian

H®™ = [ d*r V(r, 1) - o(r)+ hermitian conjugate, )]
where the spin density operato1
o(r) = Z G 5(r—ry). 2
Assuming
Vir,t) = Ve rmen
we get, passing to the momentum representation,
H™(t) = V - 6(—k)e ' +h.c., (3)

where

o(k) = [ d*re™™ "a(r). (4)

The probability (per unit time and volume) that the perturbing external field transfers
the momentum %k and the energy hiw to the system can be calculated using the Fermi
Golden Rule, as

) 2n ;i
P(k, w) = ¥ Z Sii(k, w)¥ WV &)
L

whre /, j are cartesian indices of vector or tensor quantities, and the dynamic form factor
for spin-density fluctuations is defined by

1 X
Sk ) = Z (Hlo(=K) 0 - Ol (K) |1350(w— o). ©

n

Here, Q is the volume of the system, |n) are the eigenstates of the unperturbed hamiltonian
(H°|n) = E,|n)) and '

wyo = (E,—Eo)/h. (7
In general, the tensor S;; can be split into a purely real symmetric component

Sﬁ) =7 [Si;+Sx] )
and a purely imaginary antisymmetric part

S =3 [S;—5S;]. ©)
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In consequence of the invariance of the nuclear hamiitonian with respect to space inversion
and time reversal, one has

Sk, ) = Sk w) (10)
and, consequently,
2n ! ;
Pk, w) = > E SPLVIVI*]®. (11)
h

i

From now on, the index (s) will be omitted.
We define the spin density — spin density response tensor by

> ik, WV = (6" D (12)
where
e® T, Fee = (D)) ' (r) (1) (13)

and the (perturbed) wavefunction y(¢) is calculated using first order time dependent pertur-
bation theory for H = H°4 H(¢). Assuming that nuclear matter was in its ground state

in the remote past (y(t) = e # 103 for £ —» —oo0) and using the symmetry properties
of the unperturbed hamiltonian we can relate the y;;(k, ) and S;(k, w) tensors through
the fluctuation-dissipation theorem

1m0, 0) = — - [Suk, @)= Sy(k, —)] (14)

The theory can be easily generalized to the case of the spin and isospin dependent
perturbations of the form

3
H™ =Y Ve Y gafe™ "+he.. 15)
a=1 i
In the present paper we shall restrict ourselves to the case of symmetric nuclear matter
and hence the quantity Sif(k, ®), defined by an obvious genealization of Eq. (6), will be
proportional to the unit matrix in the isospin space, S;f = 8,5,

3. Elements of the Fermi liquid theory of nuclear matter

The Fermi liquid theory, formulated by Landau [10-12], is semiphenomenological
in nature and describes infinite fermion systems near T = 0 K. A basic assumption is
that the system is normal. Namely, it must have the property that, when the interaction
is slowly turned on, the ground state of the system of noninteracting particles develops
adiabatically into a ground state of weakly interacting quasiparticles. This system of quasi-
particles retains the essential properties of an ideal Fermi gas, e.g., the ground state distri-
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bution function for the quasiparticles is the same as for an ideal gas. In the case of nuclear
matter at T = 0 K, the quasiparticle distribution matrix in the ground state, n;’,, reads

ng = 0(pp—p) x (unit 2x2 matrix in spin and isospin space). (16)

The Fermi momentum p; is related to the equilibrium nucleon density by ¢° = 2p3/3n2h3,

The Fermi liquid theory establishes a one-to-one correspondence between low lying
excitations in the system of quasiparticles and those in the real system. The theory is valid
only when the number cf excited quasiparticles is small compared with the total number
of particles. In what follows we shall restrict ourselves, for the sake of simplicity, to the
case of static and space homogeneous excitations. The total energy E of the system is
a functional of the quasiparticle distribution matrix n,. However, for a small number of
excited quasiparticles, the excitation energy (per unit volume) implied by a small deviation
on, = n,,—-ng from the ground state distribution matrix is given by the simple formula,
including only terms quadratic in én,,

A 3

ok = Tr, Tr, j — (e + U (o - 1))dn,(a, 1)

(2nh)

d3P1 d’ P2

Gty | Gy T Pr P12, (015 1)1y, (02, %2) a7

+ 2 Tln 12 rm,a;J

where eg is the quasiparticle energy in the absence of other elementary excitations and
U, describes the effect of a time and space independent but possibly spin and/or isospin
dependent external field applied to the system. The matrix structure of dn, has been indi-
cated using Pault matrices in the spin and isospin spaces, a;, t;. The quantity f(p,, p.),
appearing in Eq. (17), plays a central role in the Fermi liquid theory. This is the quasi-
particle interaction, which determines the properties of the low lying excited states of
nuclear matter as well as many of its static properties [13].

The quasiparticle interaction in symmetric unpolarized nuclear matter is assumed
to be of the form [14]

Nof(py, p2) = F+F'ty 1,4+ Go, - 6,
+G'(6, - 6,) (v; - 1)+ q % pe[H+H'(t; - 7,)]812(9) (18)

where N, is the density of quasiparticle states at the Fermi surface,
NO = ey (19)

and m* is the quasiparticle effective mass at the Fermi surface, pgfm* = (aeg/é’p)pz e
The tensor operator, coupling quasiparticle momenta to their spins, is defined as

S12(&) = 3(ay - é) (65 é)"’al"za (20)
where ¢ = p; —p,.
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Within the approximations of the theory, the quasiparticle momenta are restricted
to the Fermi surface, p; = pgm;. The quantities F, F', G, G', H and H’ depend thus only
on the cosine of the angle between p, and p,,cos 0,, = n; - n,. This dependence is expanded
in Legendie polynomials,

F(pi, py) = Z FiP(cos 0,,), (1)
T

with similar expansions for the remaining functions.

In what follows we shall restrict ourselves to the case of excitations in the spin channel.
The expansion of the matrix dn, = n,—n5 around the unperturbed Feimi surface reads
then, including only first order terms,

. on)
Oh, = w(n), (22)

P e}
vép

where hermitian, traceless matrix w(n) may be rewritien in a suitable form [7]

wn) =u(m) o= Y (=YVu'(moe"

u=-—1

Here, ¢! and ¢! are spin rising and spin lowering operators and ¢° = ¢°. The part of
the quasiparticle interaction relevant for the excitations in the spin channel is

AF = Go,  o6,+q*|ptHS, ,(q). (23)
Let us define a rank two spherical tensor
AF e = £ Tr, Tt [AF (=) 05" o]
= (G~q*/peH)d,, +3Hq"q™" (= )" pr. (24)

In view of the symmetry properties of the quasiparticle interaction it will be particularly
suitable to rewrite the equation of the Fermi liquid theory in the basis of the total angular
momentum of the quasiparticle — quasihole pair, J [7]. The matrix elements of 4 in this
basis are given by the equation

AF L = 3 (=) Uml—pld M) (Um'L—p'[JM)
mu
m'u’

X {dny § dn, Y )AF 40 Y (). (25)

The exolicit formulae for the matrix elements A%}, may be found in Ref. [7].

The generalization to the case of the spin-isospin channel is straightforward, since
the quasiparticle interaction is invariant under rotations in isospin space. One should only
replace G, H, by G; H/ and use matrix w of the form

3

w(n) = Y u'(n)- o™ (26)

a=1
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4. Kinetic equation, its solution and the dynamical form factor

In what follows we shall restrict ourselves to the case of the perturbations in the spin
channel. In order to calculate the quantity {6).,, Eq. (13), we should first calculate the
change in the quasiparticle distribution matrix, dny(r, t), implied by the external perturba-
tion described by the hamiltonian H*(¢), Eq. (3). In the T~ 0 K region, where the fre-
quency of collisions between the quasiparticles becomes negligible (w,,, < w: the collision-
less regime), the kinetic equation for ny(r, t) = np+0ny(r, t), after linearization in dn,,
takes the form

o
Py on,+(V,eg) - (V,0n,)—(V,0e,) - (V,np) = 0. 27

In the linear approximation, the change in the local quasiparticle energy implied by H*(¢)
is calculated as

d’p .
de, (0,1, 1) = U, (0, r, )+ Tr, J‘(i;'n;g No 1Aé‘(pl, p2)on, (6,, 1, 1), (28)

where A is the quasiparticle interaction in the spin channel, Eq. (23), and
Uyo,r,t)y=V" ge'® TN, (29)

Let us notice, that in our case the potential energy U does not depend on the quasiparticle
momentum. The kinetic equation, Eq. (27), will be solved in the long-wavelength limit
(k < pg/h). The form of Eq. (27) implies the following Ansatz for the dn, matrix,

0
on,

on, = p w(m)e'* rmen, (30)

P
p

where the functional dependence of the 2x2 matrix w on n = p/p is to be found. The
ground state of nuclear matter is assumed to be spin isotropic and hence it will be natural
to choose k as our z axis (spin quantization axis). Inserting expressions (28-30) into Eq.
(27) we obtain an inhomogeneous integral equation for the spherical components u“(n),
Eq. (22),

(s—2u(n)—z Z J\%Aﬁ”u,u“r(nz) = —zVH# (31)
T

v

u

where z = n, -k, AF w18 given by Eq. (24) and, to satisfy our assumption that nuclear
matter had been in its ground state in the remote past (t —» ~--c0), we have put s = A+in,
with real A = m*w/kpy and n being an infinitesimal positive quantity (3 — +0).

We expand the angular dependence of the #*(n) functions in spherical harmonics [9],

z 4
*(n) = E " . 32
u (n) S—z \/21+1 ulm),lm(n) ( )
Im
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This expansion is inserted into Eq. (31). Inttoducing the parameters Cf related to uf,
through the linear transformaticn

Cl =Y (=) (Uml—v|JM) u},, (33)

we reduce Eq. (31) to a system of linear equations for C}J,

M J JI'M, o ~M My ~Me =
Ciy— Y, AFpapy (DCry = —(=)"V 75, 1610 (34)
Jr

The matrices C corresponding to different M’s are not coupled by the kinetic equation.
The matrix elements A%; are given by Eq. (25) and functions « (1) are defined by

a MA) =Y (Im L—v[JM) ('mi—v|J'M) - ajj(4) (35)
with
o) = [QI+H QU +D] ' jdn *—Z— V()Y (n). (36)
A—Z+ 1R

Useful formulae for aj;(4) are collected in the Appendix.
In the Fermi liquid theory the definition of the spin density — spin density response
function can be rewritten in terms of the quantity w(m) as

ot =1 [ odp ® an N dn ) 7
A (K, @ = Tr, c"w(n = ~ —— u¥(n).
Kion J Qrh)’ de, ° | 4n
-
In the linear approximation the quantities
CH=chyyv ™™ (38)

are independent of V. Using expansion (32) for u”(n) we obtain following formula for
the diagonal elements of the y,, tensor,

Xl = —(=)"No % a0 (4 Cif”, (39

where the parameters C,;* are to be calculated from a system of linear equations, resulting
from Eq. (34),

Ci*— Z Ag’”{waﬁ{'_“(/{)éfﬁ = —(—)"0;,18,,0- (40)
vy
The solutions to this equation correspond to a fixed value of M = —p = m—v. With

our assumption about the symmetry properties of the unperturbed hamiltonian of nuclear
matter, the nondiagonal elements of the y,,  tensor vanish and y.,;,4+; = ¥-1,-1- The
cartesian components of the spin density — spin density response function can be
calculated from

Xxx = Kyy = %(Z+1,+1+X—1,—1) = X+1,+1> Xzz = Xoo> 4D
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the nondiagonal elements being identically zero. Let us notice, that in the standard case
of central quasiparticle interaction one would have y.. = %, = .-

In what follows we shall consider the case A > 0, relevant for nuclear matter at 7 = 0.
Then, for every A < 1 there exists a nontrivial complex solution to Eq. (40), yielding a ncn-
vanishing imaginary part of y,,. The corresponding contribution to S,,(4), coming from
the single pair excitations (excited states |n) corresponding to one quasiparticle-one quasi-
hole pair), will be denoted by

Suv(A) = (1 —2)S,,.(4). (42)

For A > 1 the only contribution to the imaginary part of y,, can result from
the existence of nontrivial solutions to the homogeneous counterpart of Eq. (34). Such
a nonftrivial solution corresponds to an undamped zero-sound mode of collective excitation
of nuclear matter in the spin channel, with M = —pu.

Let us rewrite Eq. (40) in the form

l}; A (WCrt = (=)'05.1010 (43)
where the A7 matrix is defined as
A (3) = ;Aﬁfw{f{f"(i)—5ur<5u'- 44
The solution to Eq. (43) is given by the formula
C" = M "(A)/det A(4), (45)

where the numerator is a determinant resulting from the application of the Cramer’s rule.
The existence of an undamped zero-sound type mode of collective excitation, prop-
agating at phase velocity vy = pgle/m* {4y > 1), corresponds to

det A(},) = 0. (46)
In the vicinity of 4,

d
det A(4) = o det A (A—420). 47)
ars Aio
In order to determine the behavior of C’s in the vicinity of 4 = 4,, we put expression (47)

into Eq. (45) and use the prescription A — A+ iy, in accordance with the asymptotic condi-
tion at r — —oo. Using the Dirac identity

1 i . .
e i) 49)

).;;VO +in A—Ag
we obtain the final formula for the collective mode contribution to dynamic form factor,

Sa (A) = U"h(A— o), (49)
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where

M
U* = —No(—)* Zam HA o>——“ o) (50)
~det A(A)

Ao

Finally, let us remind once again, that in the presence of tensor forces projections of
orbital angular momentum and spin on the z-axis (m and —v in Eq. (33)) are nc longer
good quantum numbeis. Instead, the excitations are labeled by M = m—v. Solution
contributing to S,, and x,, are those from the M = —u = 0, +£1 channels, because
only in these channels can the value m = 0 appear in expansion (32), giving rise to a non-
vanishing value of {(¢*).

The generalization of the results obtained above to the case of the spin-isospin channel
is straightforward and consists in replacing G,, H, by G,, H,, respectively.

5. Quasiparticle interaction in nuclear matter

So far no empirical information on the tensor components in the quasiparticle inter-
action in nuclear matter is available. We shall therefore use the theoretical results for spin
dependent Fermi liquid parameters obtained by Bickman et al. [7] and Jackson et al. [8],
starting from the realistic nucleon-nucleon potentials.

The calculation of Bickman et al. [7] has been based on perturbational techniques,
the basic input being the Brueckner reaction matrix calculated from the Reid soft-core
nucleon-nucleon potential [15]. The values of the spin dependent Fermi liquid parameters
has been taken from Table 2 of Ref. [7]. In view of large uncertainties in perturbational
results for m* and for the renormalization of the quasiparticle pole, Z, we made the simplest
choice m* = m and Z = 1. Also, we did not attempt to include the effects of the so-called
induced quasiparticle interaction, for the following reasons. Firstly, in the calculation repor-
ted in Ref. {7] the tensor component of the induced interaction has not been constructed,
neither the effects of the tensor part of the quasiparticle interaction on the central induced
interactioh have been included. Secondly, according to Ref. [7], the changes in values of
Fermi liquid parameters implied by the inclusion of the induced interaction are, except
for F,, rather small.

The expansion in Legendre polynomials converges rapidly for the functions G and G,
where the Fermi liquid parameters for / > 2 are small. Hence, we put G;, G, = Ofor/ > 4.
However, for H and H’ the convergence of Legendre expansion is rather slow. Hence,
in order to get reliable results for the soluticn of Eq. (40) we must retain a large number
of partial waves in the H, H' expansions. Actually, we put H,, H/ = 0 for / > 8. The
set of spin dependent Fermi liquid parameters, described above, will be hereafter referred
to as the RSCI one.

Very recently, the Fermi liquid parameters in nuclear matter have been calculated
by Jackson et al. [8] using variational techniques, for the Reid soft-ccre and the Bethe-
-Johnson [16] nucleon-nucleon interactions. Actually, for technical reasons, they used
the nucleon-nucleon potentials represented in the so-called v¢ form [17]. Their calculations
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have been performed within the correlated basis functions (CBF) scheme in which the
initial approximation was the Jastrow type trial wave function. Then, the effects of the state
dependent correlations have been included using second order CBF corrections. For
technical reasons, only lowest (I < 3 for the central part and / < 2 for the tensor part)
Fermi liquid parameters could be calculated with sufficient precision. We have put
G,, G; = 0 for [ > 2. However, putting H,, H = 0 for / > 1 would be unreasonable in
view of the slow convergence of the Legendre expansions. Hence, the values of H;, H, for
1 < /< 9 have been calculated using the one-pion exchange approximation but with
a proper value of m*/m in the density of states. As in the case of the RSCI model, we
put H,, H; = 0for ! > 8. The corresponding sets of the spin dependent Fermi liquid param-
eters for the Bethe-Johnson and the Reid soft-core interactions will be hereafter referred
to as the BJ and RSCII ones, respectively.

6. Results

6a. Stability of the ground state

The stability of the ground state of nuclear matter implies that the free energy (per
unit volume) has a minimum for n, = ng‘ The criteria of stability in the presence of tensor
forces have been derived by Bickman et al. [7]. In what follows, we shall restrict ourselves
to the most interesting case of the perturbations of the quasiparticle distribution matrix
in the spin channel. The stability criterion is there equivalent to the requirement for the
mattices

AT = by + AF7, (51)

to be positive-definite for each value of J. The matrix elements A%}, are given by Eq. (25)
and the explicit formulae for them may be found in Ref. [7]. In the standard case of purely
central quasiparticle interaction one would have (IJ|4|l'J) = 6,[1+G,/(2/+1)] and
hence the stability criterion would read

1+GJ21+1) > 0 (52)
for every /.

In the presence of tensor forces we have, for a given J, one 2 x 2 matrix {/J{41l'J)
(I,I'’ = J+1) that has to be positive-definite and one value {(JJ|4|JJ) that should be
positive. For J = 0 we get the condition {10]4{10> > 0. The explicit form of the stability
criteria for J < 3 may be found in Ref. {7]. The stability criteria in the spin-isospin channel
are obtained by replacing G, and H, by G, and H].

Summarizing: the stability of the ground state of nuclear matter requires that the
lowest eigenvalue of the (IJ|A|l'J)> matrix be positive. It has been pointed out in Ref. [7]
that the presence of tensor component in the quasiparticle interaction may significantly
lower the value of the (10|4|10) element of the stability matrix, as compared to that for
central quasiparticle interaction. This has been confirmed by our calculations with the RSC
and BJ Fermi liquid parameters, for which the lowest eigenvalue of the stability matrix
1s always

(10]Aj10) = 1 -2 H,+3 G +3 H,—Fs H,. (53)
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For both the RSCII and BSJ Fermi liquid parameters we found negative values of
<{10]|4110) for 1.2 fm~* < kg < 2 fm, i.e, in the whole density interval studied in Ref. [8].
The lowest eigenvalues of A are given in Tables I and II. At the lowest density considered,
ky = 1.2 fm!, the (negative) value of {10{4]10) is close to zero. However, the magnitude
of (10|4]|10> grows rapidly with increasing density. At the highest density considered,
kg = 2fm* (¢ = 3.25 9o, where g, is normal nuclear matter density corresponding to

TABLE 1
The lowest eigenvalue of the stability matrix 4 for the RSC Fermi liquid parameters of Ref. [8]
kr Lowest eigenvalue
(fm~) . .
RSC with OPE for / > 1 RSC with H; =0 for I > 1
1.2 —0.035 0.043
1.2550 - 0.0
1.4 —-0.263 —0.147
1.6 —0.557 —0.397
1.8 —0.911 —0.697
2.0 —1.378 —1.096
TABLE 11
The same as in Table I but for the BJ Fermi liquid parameters of Ref. (8]
ke Lowest eigenvalue
(fm™") . .
BJ with OPE for / > 1 BJ with H; =0 for I > 1
12 ~0.050 1 0.020
1.2098 — 0.0
1.4 i —-0.329 —0.227
1.6 —0.483 | —0.350
1.8 —0.657 ‘l —0.497
2.0 —0.746 | —0.563

kg = 1.35fm™!) the instability in the J = 0, S = 1, T = 0 channel becomes very strong.
Let us mention, that at the same time the system is stable with respect to the standard
static, space homogeneous perturbations

H™ =V -a(r) | 59

relevant for the definition of the static spin susceptibility and the spin symmetry energy of
nuclear matter. The deformation of the Fermi surface induced by (54) are there restricted
to the J = 1, [ = 0,2 channel [18].

The spin instability in the J = 0, / = 1 channel is driven by the tensor force. More
precisely, it results from large, positive values of the parameter H,. Quite large OPE
values of H, for | < [ < 4 amplify further this effect. If one puts H, = 0 for / > 1 instead
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of replacing them by their OPE values, the point of instability shifts towards higher value
of ky. Namely, nuclear matter becomes then unstable for k¢ > 1.210 fm~! in the case of
the BJ model and for kg > 1.255 fm! in the case of the RSCII model.

6b. Dynamic form factor

In view of the instability of the standard ground state of nuclear matter with the RSCLI
and the BJ quasiparticle interactions, discussed in the preceding subsection, we have
restricted ourselves to the calculations with the RSCI Fermi liquid parameters. The calcu-
Jations have been done at the saturation density of nuclear matter corresponding to
kp = 1.35fm~1.

Our results for the dynamic form factors in the spin and spin-isospin channels are

presented in Figs. la, b. The plotted quantity is S,,(4) in the units of P , the maximum
R nzhz
m
value of the dynamic form factor for the Fermi gas model, Sg(4) = Pr A0(1 —2).
T

The contributions from undamped collective modes, corresponding to poles of the linear
response functions, are represented by vertical lines. In order to illustrate the effect of
tensor forces, the results obtained with H,, H; = 0 are also shown.

The relative probability of excitation of a collective mode in a given channel M is
given by

Fean(M = —p) = | S, (A)dA/ g S, (A)dA = U*h] g S, (A)di. (55)
i

The results of our search for undamped collective modes, as well as the relative probability
of their excitation are presented in Table Iii.

The main qualitative effect of tensor ferce is to remove degeneracy with respect to
M the tensor component of the quasiparticle interaction discriminates between the M = 0
and M = +1 excitations and the only degeneracy is that with respect to the sign of M.
Generally, the effect of tensor force in the spin channel is stronger than in the spin-isospin
one; this is due to the fact that H,’s are usually 2+3 times larger than H; ’s. The pole
corresponding to undamped collective excitation splits into two poles: one corresponding
to M = 0 and the other corresponding to M = +1 mode. Let us consider first the case

TABLE 111

The position of the poles of the linear response functions, 4o, and their relative contribution to the excita-
tions spectrum, reon. (see the text) for the RSC 1 set of the Fermi liquid parameters, calculated
at kp = 1.35fm*

J Spin channel Spin-isospin channel

|7 o

! 2o % reott. (%) ! o ! reou. {76)
p= %1 1.1162 | 59 1.0724 E 61
n=0 l 1.0308 i 29 1.1349 \ 76
no tensor forces | 1.0734 54 1.0914 ‘ 68
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of the spin channel. At given value of the wavenumber of collective excitation k, tensor
force shifts the energy of the M = 0 mode down and that of the M = +1 mode up with
respect to the energy of excitations in the absence of tensor force. This is accompanied
by a significant decrease of the relative strength of the collective M = 0 mode (see Fig.
la and Table III).

In the spin-isospin channel the effect of tensor force is weaker. At fixed k the tensor
force shifts up the energy of M = 0 mode and shifts down that of the M = 11 ones,
as compared to the case of purely central quasiparticle interaction. Hence, the effect of
tensor force is opposite to that seen in the spin channel. This is due to the fact that H, are
negative while H, were positive.

7. Conclusion

In the present paper we have studied, within the framework of Fermi liquid theory,
the effect of tensor forces on the linear response of nuclear matter to long wavelength spin
dependent perturbations.

The calculations performed using several sets of the spin dependent Fermi liquid
parameters show that the effect of tensor forces may be very important. In particular,
for the Fermi liquid parameters derived using variational methods from the Reid soft-core
and Bethe Johnson potentials by Jackson et al. [8], tensor forces imply the instability
of the ground state of nuclear matter near and above normal nuclear matter density.
The instability occurs in the J = 0, S = 1, T = 0 channel and does not show up for the
spin dependent Fermi liquid parameters derived from the Reid soft-core potential using
perturbational methods [7]. ‘

Of course, it may well be that this instability is an artifact of the approximations
made in the calculation. In particular, it may be due to the perturbative treatment of the
state dependence of the two-body correlation. This is probably the case. The appearance
of the instability in the S = 1, T = 0 channel may just reflect large uncertainty in our
theoretical knowledge of the quasiparticle interaction in nuclear matteir. In consequence
of this instability, however, we were not able to study the linear response of nuclear matter
in this channel for the sets of Fermi liquid parameters for which the instability appeared.

The calculation cof the dynamic form factors for the spin and spin-isospin density
fluctuations has been performed using the spin dependent Fermi liquid parameters derived
from the Reid soft-core nucleon potential by Backman et al. [7]. In the presence of tensor
forces dynamic form factor S;;(k, ®) in the spin and spin-isospin channels is no longer
proportional to the unit matrix. Assuming k to be the z-axis, one has S,, = §,, # S..

Fig. 1. The plots of the dynamic form factor S,,(4) (in the units of mpr/n242) in the spin (S =1, T = 0)

and spin-isospin (S = 1, T = 1) channels calculated for the RSCI set of the Fermi liquid parameters.

Dotted line: ¢ = —M = +1 channel, dash-dotted line: # = M = 0. The contribution from collective

modes is shown using vertical lines. The heights of vertical lines are proportional to the pole contribution

to the integrated form factor. For the sake of comparison, results for the case of no tensor forces (solid line)

and those for an ideal Fermi gas of particles of mass m* (short dashes) are also shown. The calculation has
been performed at kg = 1.35 fm™!
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Also, tensor force removes the degeneracy of both one quasiparticle-one quasihole and
as well as collective excitations with respect to their magnetic quantum number, M. The
effects of the tensor force is particularly large in the spin channel.

The methods elaborated in the present paper can be applied to astrophysically interest-
ing case of neutron matter. The neutron matter dynamic form factor is relevant for the
neutrino scattering in hot neutron star matter. In particular, dynamic form factor for spin
density fluctuations enters the axial vector part of the scattering rate of neutrinos in neutron
medium via weak neutral current. The knowledge of neutrino mean free path in dense
hot matter is important for theoretical studies of cooling processes in newly born neutron
stars as well for physics of supernova explosions. Recently, the calculations of the ‘effect
of the nucleon-nucleon interaction in neutrino mean free path in hot dense neutron matter
has been done using the methods of the theory of Fermi liquids [21], assuming, however,
purely central quasiparticle interaction. The formalism developed in the present paper
will enable us to study this probiem taking into account the full complexity of the nucleon-
-nucleon interaction.

We aie grateful to J. P. Blaizot for critical reading of the manuscript.

APPENDIX

In order to derive a useful formula for

a(l) =

i *
NCEYETERY J ety T Yi) (A1)

we use the expansion [19]

i—z+in Z QL+ DPY)Qu(A+in), (A2)

where P; and Q, are Legendre functions of the first and second kind, respectively.
This enables us to perform explicitly the integration over angular variables. For 4 > 1
we get real function [9]

. N\ rr 1I'L ,
@A) = = Su @I+ D+A(-) Z(zLH) (m . 5) (0 o O)QL(A), (A3)
L

where the values of Q;(4) can be obtained putting z = 4 in the formulae (8.4) of Ref. [18]
and using the recuirence relations. For 0 < 4 < 1 we obtain complex values of of., with

Re ofi(1) = — 521+ D)+ A(~)" Z(2L+1) (’ L) (f)é OL) 0.(h)

Im o} (4) = —3 7d(—)" Z(2L+1)(I ! —m 0) (é i) O)PL(A),

where the values of 0;(1) may be calculated using the formula 8.6.19 of Ref. [20].
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