TENSOR FORM OF THE BREIT EQUATION

By W. Królikowski

Institute of Theoretical Physics, Warsaw University*

(Received August 31, 1982)

The Breit equation for a system of two Dirac particles is represented in the scalar \oplus vector \oplus tensor form. Then, in the case of equal masses, the internal motion satisfies a generalized Klein-Gordon equation for spin s=0 (parafermionium) and generalized Proca equations for spin s=1 (orthofermionium). If the potential is central, one gets for orthofermionium radial wave functions being analogues of electric and magnetic multipole radial fields (but with $m \neq 0$ and $V \not\equiv 0$).

PACS numbers: 11.10.Qr

As is well known, the Breit equation for a system of two Dirac particles [1],

$$[E - V - (\vec{\alpha}_1 \cdot \vec{p} + \beta_1 m_1) - (-\vec{\alpha}_2 \cdot \vec{p} + \beta_2 m_2)] \psi(\vec{r}) = 0$$
 (1)

(where $\vec{r} \equiv \vec{r}_1 - \vec{r}_2$ and $\vec{p} \equiv \vec{p}_1 = -\vec{p}_2$), is usually handled in the spinor \otimes spinor representation [2]. In the present note we write it down in the scalar \oplus vector \oplus tensor representation which may be convenient for some purposes, giving directly relativistic equations for paratermionium and orthofermionium.

To start with we write Eq. (1) in the Dirac representation of matrices $\vec{\alpha}_i = \gamma_i^5 \vec{\sigma}_i$ and $\beta_i (i = 1, 2)$ and then combine the wave-function components $\psi_{\beta_1\beta_2}$ (where $\beta_i = \pm 1$ are eigenvalues of β_i) into the new components

$$f^{\pm} = \frac{\psi_{++} \pm \psi_{--}}{\sqrt{2}}, \quad g^{\pm} = \frac{\psi_{+-} \pm \psi_{-+}}{\sqrt{2}}.$$
 (2)

In this calculation we assume that

$$V = V^{1} + \gamma_{1}^{5} \gamma_{2}^{5} V^{R}, \tag{3}$$

where $V^{I,R}$ depend on \vec{r} and $\vec{\sigma}_i$ (i = 1, 2) only. In general,

$$V^{I,R} = P_0 V_0^{I,R} + P_1 V_1^{I,R} (4)$$

^{*} Address: Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Hoża 69, 00-681 Warszawa, Poland.

with $P_s(s=0,1)$ being the projection operators,

$$P_0 = \frac{1}{4} (1 - \vec{\sigma}_1 \cdot \vec{\sigma}_2), \quad P_1 = \frac{1}{4} (3 + \vec{\sigma}_1 \cdot \vec{\sigma}_2) = \frac{1}{8} (\vec{\sigma}_1 + \vec{\sigma}_2)^2,$$
 (5)

on states with spin s = 0 and s = 1, respectively. For instance, if the potential is of the Breit type

$$V = V_C(r) + \frac{1}{2} \left[\vec{\alpha}_1 \cdot \vec{\alpha}_2 + \frac{(\vec{\alpha}_1 \cdot \vec{r})(\vec{\alpha}_2 \cdot \vec{r})}{r^2} \right] V_B(r), \tag{6}$$

we have

$$V^{I} = V_{C}(r), \qquad V^{R} = \frac{1}{2} \left[\vec{\sigma}_{1} \cdot \vec{\sigma}_{2} + \frac{(\vec{\sigma}_{1} \cdot \vec{r})(\vec{\sigma}_{2} \cdot \vec{r})}{r^{2}} \right] V_{B}(r)$$
 (7)

and hence

$$V_0^I = V_1^I = V_C(r), \quad V_0^R = -2V_B(r), \quad V_1^R = \frac{1}{4} \left[\frac{(\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \vec{r}}{r} \right]^2 V_B(r).$$
 (8)

In this way we can represent Eq. (1) by the following system of equations:

$$\begin{cases} (E - V^{I} \mp V^{R}) f^{\pm} - (m_{1} + m_{2}) f^{\mp} = \pm (\vec{\sigma}_{1} \mp \vec{\sigma}_{2}) \cdot \vec{p} g^{\pm}, \\ (E - V^{I} \mp V^{R}) g^{\pm} - (m_{1} - m_{2}) g^{\mp} = \pm (\vec{\sigma}_{1} \mp \vec{\sigma}_{2}) \cdot \vec{p} f^{\pm}. \end{cases}$$
(9)

Applying to Eqs. (9) the spin projection operators (5) we obtain the system of equations for the wave-function components $f_s^{\pm} = P_s f^{\pm}$ and $g_s^{\pm} = P_s g^{\pm}(s = 0, 1)$:

$$\begin{cases}
(E - V_0^I \mp V_0^R) f_0^{\pm} - (m_1 + m_2) f_0^{\mp} &= \begin{cases} (\vec{\sigma}_1 - \vec{\sigma}_2) \cdot \vec{p} g_1^{+}, \\ 0 \end{cases}, \\
(E - V_0^I \mp V_0^R) g_0^{\pm} - (m_1 - m_2) g_0^{\mp} &= \begin{cases} (\vec{\sigma}_1 - \vec{\sigma}_2) \cdot \vec{p} f_1^{+}, \\ 0 \end{cases}, \\
(E - V_1^I \mp V_1^R) f_1^{\pm} - (m_1 + m_2) f_1^{\mp} &= \pm (\vec{\sigma}_1 \mp \vec{\sigma}_2) \cdot \vec{p} \begin{cases} g_0^{+}, \\ g_1^{-}, \end{cases}, \\
(E - V_1^I \mp V_1^R) g_1^{\pm} - (m_1 - m_2) g_1^{\mp} &= \pm (\vec{\sigma}_1 \mp \vec{\sigma}_2) \cdot \vec{p} \begin{cases} f_0^{+}, \\ f_1^{-} \end{cases}.
\end{cases}$$

Note that the "large-large" components ψ_{++} 's are included only in f's.

In Eqs. (10) the matrices $\vec{\sigma}_i$ can be easily absorbed into the wave function components if V_s^I and V_s^R do not depend on $\vec{\sigma}_i$ (this condition means practically that the retardation is neglected: $V_s^R \equiv 0$, see Eq. (8)). In fact, defining the new components by the formulae

$$\phi = f_0^-, \quad \phi^0 = f_0^+, \quad \vec{\phi} = \frac{\vec{\sigma}_1 - \vec{\sigma}_2}{2} g_1^+, \quad \vec{\phi}^0 = \frac{\vec{\sigma}_1 - \vec{\sigma}_2}{2} g_1^-,$$

$$\chi = g_0^-, \quad \chi^0 = g_0^+, \quad \vec{\chi} = \frac{\vec{\sigma}_1 - \vec{\sigma}_2}{2} f_1^+, \quad \vec{\chi}^0 = \frac{\vec{\sigma}_1 - \vec{\sigma}_2}{2} f_1^-, \quad (11a)$$

we are able to rewrite the system of equations (10) in the following form independent of $\vec{\sigma}_i$:

$$\begin{cases} \frac{1}{2} \left(E - V_0^I - V_0^R \right) \phi^0 - \vec{p} \cdot \vec{\phi} &= \frac{1}{2} \left(m_1 + m_2 \right) \phi, \\ \frac{1}{2} \left(E - V_0^I + V_0^R \right) \phi &= \frac{1}{2} \left(m_1 + m_2 \right) \phi^0, \\ \frac{1}{2} \left(E - V_1^I - V_1^R \right) \vec{\phi} - \vec{p} \phi^0 &= \frac{1}{2} \left(m_1 - m_2 \right) \vec{\phi}^0, \\ \frac{1}{2} \left(E - V_1^I + V_1^R \right) \vec{\phi}^0 + i \vec{p} \times \vec{\chi}^0 &= \frac{1}{2} \left(m_1 - m_2 \right) \vec{\phi} \end{cases}$$
(12a)

and

$$\begin{cases} \frac{1}{2} (E - V_0^I - V_0^R) \chi^0 - \vec{p} \cdot \vec{\chi} &= \frac{1}{2} (m_1 - m_2) \chi, \\ \frac{1}{2} (E - V_0^I + V_0^R) \chi &= \frac{1}{2} (m_1 - m_2) \chi^0, \\ \frac{1}{2} (E - V_1^I - V_1^R) \vec{\chi} - \vec{p} \chi^0 &= \frac{1}{2} (m_1 + m_2) \vec{\chi}^0, \\ \frac{1}{2} (E - V_1^I + V_1^R) \vec{\chi}^0 + i \vec{p} \times \vec{\phi}^0 &= \frac{1}{2} (m_1 + m_2) \vec{\chi}. \end{cases}$$
(12b)

It can be seen from Eqs. (12) that (at least in the free case of $V \equiv 0$) ϕ and χ are two scalars, $(\phi^{\mu}) = (\phi^0, \vec{\phi})$ and $(\chi^{\mu}) = (\chi^0, \vec{\chi})$ form two four-vectors, and $\vec{\phi}^0 = (\phi^{0l})$ and $\vec{\chi}^0 = (\chi^{0l})$ are the time-space parts of two skew-symmetric tensors. Instead of $\vec{\phi}^0$ and $\vec{\chi}^0$, respectively, one can operate with the space-space parts

$$\frac{\vec{\vec{\chi}}}{\vec{\phi}} = \left(\frac{\vec{\sigma}_1 - \vec{\sigma}_2}{2} \frac{\vec{\sigma}_1 + \vec{\sigma}_2}{2} - \frac{\vec{\sigma}_1 + \vec{\sigma}_2}{2} \frac{\vec{\sigma}_1 - \vec{\sigma}_2}{2} \right) \begin{cases} g_1^- \\ f_1^- \end{cases}$$
(11b)

of two skew-symmetric tensors $\chi^{\mu\nu}$ and $\phi^{\mu\nu}$ (in Eq. (11b) the dyadic product is used). Then $\chi^{kl} = i \bar{\epsilon}^{klm} \phi^{0m}$ and $\phi^{kl} = i \bar{\epsilon}^{klm} \chi^{0m}$ so that in Eqs. (12) one can write $\vec{p} \cdot \vec{\chi} = -i \vec{p} \times \vec{\phi}^0$ and/or $\vec{p} \cdot \vec{\phi} = -i \vec{p} \times \vec{\chi}^0$. Obviously, the tensors $\chi^{\mu\nu}$ and $\phi^{\mu\nu}$ are mutually dual. Note, however, that Eqs. (12), even in the free case of $V \equiv 0$, are not evidently covariant in consequence of the lack of evident covariance of the relativistic Breit equation (1).

In the case of equal masses $m_1 = m_2 \equiv m$, the system (12) splits into three independent parts:

$$\begin{cases} \frac{1}{2} (E - V_0^I - V_0^R) \phi^0 - \vec{p} \cdot \vec{\phi} = m\phi, \\ \frac{1}{2} (E - V_0^I + V_0^R) \phi = m\phi^0, \\ \frac{1}{2} (E - V_1^I - V_1^R) \vec{\phi} - \vec{p} \phi^0 = 0 \end{cases}$$
(13)

and

$$\begin{cases} \frac{1}{2} (E - V_0^I - V_0^R) \chi^0 - \vec{p} \cdot \vec{\chi} &= 0, \\ \frac{1}{2} (E - V_1^I - V_1^R) \vec{\chi} - \vec{p} \chi^0 &= m \vec{\chi}^0, \\ \frac{1}{2} (E - V_1^I + V_1^R) \vec{\chi}^0 + i \vec{p} \times \vec{\phi}^0 &= m \vec{\chi}, \\ \frac{1}{2} (E - V_1^I + V_1^R) \vec{\phi}^0 + i \vec{p} \times \vec{\chi}^0 &= 0 \end{cases}$$
(14)

and one trivial equation implying $\chi \equiv 0$ i.e. $g_0^- \equiv 0$. The systems of equations (13) and (14) include the "large-large" components for spin s=0 and s=1, respectively, and so describe in a relativistic way states with s=0 (parafermionium) and s=1 (orthofermionium), separately.

In the case of $V \equiv 0$, Eqs. (13) and (14) take the form

$$\begin{cases} p_{\mu}\phi^{\mu} = m\phi, \\ p_{0}\phi = m\phi_{0}, \\ p_{0}\vec{\phi} - \vec{p}\phi_{0} = 0 \end{cases}$$
 (15)

and

$$\begin{cases} p_{\mu}\chi^{\mu} = 0, \\ p_{0}\vec{\chi} - \vec{p}\phi_{0} = m\vec{\chi}_{0}, \\ p_{0}\vec{\chi}_{0} + i\vec{p} \times \vec{\phi}_{0} = m\vec{\chi}, \\ p_{0}\vec{\phi}_{0} + i\vec{p} \times \vec{\chi}_{0} = 0, \end{cases}$$

$$(16)$$

respectively, where $p_0 = \frac{1}{2}E$ and $(p_{\mu}) = (p_0, -\vec{p})$. Eqs. (15) lead to the free Klein-Gordon equation:

$$(p^2 - m^2)\phi = 0. (17)$$

Denoting in Eqs. (16)

$$A^{\mu} = \chi^{\mu}, \quad \vec{E} = im\vec{\chi}^{0}, \quad \vec{B} = -m\vec{\phi}^{0},$$
 (18)

we can recognize this second system as a part of free Proca equations:

$$\begin{cases} \partial_{\mu}A^{\mu} = 0, \\ \vec{E} = -\frac{\partial \vec{A}}{\partial t} - \operatorname{grad} A_{0}, \\ -\frac{\partial \vec{E}}{\partial t} + \operatorname{rot} \vec{B} = -m^{2} \vec{A}, \\ \frac{\partial \vec{B}}{\partial t} + \operatorname{rot} \vec{E} = 0, \end{cases}$$
(19)

when $p_{\mu} = i\partial/\partial x^{\mu}$ and $(x^{\mu}) = (t, \vec{r})$. The rest of free Proca equations follows already from the former:

$$\begin{cases} \vec{B} = \cot \vec{A}, \\ \operatorname{div} \vec{E} = -m^2 \varphi. \end{cases}$$
 (20)

Eqs. (17) and (18), if put together, are evidently covariant and imply that

$$(p^2 - m^2)A^{\mu} = 0, \quad p_{\mu}A^{\mu} = 0, \tag{21}$$

where $p^2 = \Box$. Of course, all these equations describe the *internal* motion of a system of two Dirac particles, in contrast to the original Klein-Gordon and Proca equations referring to the external motion of one particle.

Turning back to the interaction case of $V \neq 0$ let us assume that $V_0^I = V_0^I \equiv V$ and $V_0^R = V_1^R \equiv 0$ (it is the case of spin-independent static potential). Then the simplest equation we can obtain for *one* wave-function component from the system (13) is

$$\left\{ \left(\frac{E-V}{2} \right)^2 - \vec{p}^2 - m^2 - \frac{\left[\vec{p}, V \right]}{E-V} \cdot \vec{p} \right\} \phi^0 = 0.$$
 (22)

If the potential is central, V = V(r), Eq. (22) gives the radial equation

$$\left[\left(\frac{E - V}{2} \right)^2 + \frac{1}{r} \frac{d^2}{dr^2} r - \frac{j(j+1)}{r^2} - m^2 + \frac{\frac{dV}{dr}}{E - V} \frac{d}{dr} \right] \phi^0(r) = 0, \tag{23}$$

where the radial wave function $\phi^0(r)$ is labelled by n_r , j, l = j, s = 0 and $P = (-1)^j$.

Similarly, the simplest equation following for one wave-function component from the system (14) is

$$\left\{ \left(\frac{E-V}{2} \right)^2 - \vec{p}^2 - m^2 - \frac{[\vec{p}, V]}{E-V} \cdot \vec{p} \right\} \vec{\chi}^0 + \left(\frac{[p^k, V]}{E-V} \vec{p} + \vec{p} \frac{[p^k, V]}{E-V} \right) \chi^{0k} = 0, \quad (24)$$

where $\vec{\chi}^0 = (\chi^{0k})$. If the potential is central, Eq. (24) leads for the radial projection of $\vec{\chi}^0$, $\chi^0_{el} = \vec{r} \cdot \vec{\chi}^0 \left(\text{with } \vec{r} = \frac{\vec{r}}{r} \right)$, to the radial equation

$$\left[\left(\frac{E - V}{2} \right)^2 + \frac{1}{r} \frac{d^2}{dr^2} r - \frac{j(j+1)}{r^2} - m^2 - \frac{d}{dr} \frac{dV}{E - V} \right] \chi_{el}^0(r) = 0, \tag{25}$$

where the radial wave function $\chi_{el}^0(r)$ is labelled by n_r , j, s=1 and $P=(-1)^j$, corresponding to a mixture of l=j-1 and l=j+1 if l>0 (j=1 if l=0). Since $\vec{\chi}^0 \sim \vec{E}$ is analoguous to the electric field (see Eqs. (18)–(20)), $\chi_{el}^0(r)$ is an analogue of the electric 2^j -pole radial field (remember, however, that here $m \neq 0$ and $V \not\equiv 0$). Two other radial equations

follow from Eq. (24) for two perpendicular-to-radial projections of $\vec{\chi}^0$, $\chi^0_{lon} = \frac{\partial}{\partial \hat{r}} \cdot \vec{\chi}^0$ and

$$\chi_{mag}^{0} = \left(\hat{r} \times \frac{\partial}{\partial \hat{r}}\right) \cdot \vec{\chi}^{0} = \hat{r} \cdot \left(\frac{\partial}{\partial \hat{r}} \times \vec{\chi}^{0}\right). \text{ Making use of the relations } \frac{\partial}{\partial \vec{r}} = \hat{r} \cdot \frac{\partial}{\partial r} + \frac{1}{r} \cdot \frac{\partial}{\partial \hat{r}},$$

$$\hat{r} \cdot \frac{\partial}{\partial \hat{r}} = 0, \frac{\partial}{\partial \hat{r}} \cdot \hat{r} = 2, \left(\frac{\partial}{\partial \hat{r}}\right)^{2} = -\vec{L}^{2} \text{ and } i\vec{L} = \vec{r} \times \frac{\partial}{\partial \vec{r}} = \hat{r} \times \frac{\partial}{\partial \vec{r}} \text{ one obtains for these}$$

projections the radial equations

$$\left[\left(\frac{E - V}{2} \right)^{2} + \frac{1}{r} \frac{d^{2}}{dr^{2}} r - \frac{j(j+1)}{r^{2}} - m^{2} + \frac{\frac{dV}{dr}}{E - V} \left(\frac{d}{dr} - \frac{3}{r} \right) \right] \chi_{lon}^{0}(r) \\
= 2 \left[\frac{\frac{dV}{dr}}{E - V} \frac{d}{dr} + \frac{d}{dr} \frac{\frac{dV}{dr}}{E - V} - \frac{\frac{dV}{dr}}{E - V} \frac{j(j+1) + 1}{r} \right] \chi_{el}^{0}(r) \tag{26}$$

and

$$\left[\left(\frac{E - V}{2} \right)^2 + \frac{1}{r} \frac{d^2}{dr^2} r - \frac{j(j+1)}{r^2} - m^2 + \frac{\frac{dV}{dr}}{E - V} \left(\frac{d}{dr} + \frac{1}{r} \right) \right] \chi_{mag}^0(r) = 0.$$
 (27)

The radial wave function $\chi^0_{lon}(r)$ or $\chi^0_{mag}(r)$ is labelled by n_r , j, s=1 and $P=(-1)^j$ or by n_r , j, s=1 and $P=(-1)^{j+1}$, corresponding to a mixture of l=j-1 and l=j+1 or to l=j. It is an analogue of the longitudinal electric radial field or magnetic 2^j -pole radial field, respectively (but with $m \neq 0$ and $V \neq 0$). It can be seen that $\chi^0_{el}(r) = \frac{1}{2} \chi^0_j(r)$ and $\chi^0_{mag}(r) = 0$ if l=0. If l>0, all three radial wave functions appear independently, describing relativistically the orbital-angular-momentum triplet with the radial quantum number n_r , total angular momentum j and spin s=1. Note that the definitions of "electric" and "magnetic" multipoles interchange when the function $\vec{\phi}^0 \sim \vec{B}$ is considered in place $\vec{\chi}^0 \sim \vec{E}$ (see Eqs.(18)–(20)).

REFERENCES

- [1] For an early rewiew of. H. A. Bethe, E. E. Salpeter, in *Encyclopedia of Physics*, Vol. 35, Springer 1957.
- [2] Cf. e.g. W. Królikowski, J. Rzewuski, Nuovo Cimento 4, 975 (1956); Acta Phys. Pol. 15, 321 (1956);
 B7, 487 (1976);
 B9, 531 (1978);
 W. Królikowski, Acta Phys. Pol. B12, 891 (1981).