Vol. B14 (1983) ACTA PHYSICA POLONICA No 2

TENSOR FORM OF THE BREIT EQUATION
By W. KROLIKOWSKI
Institute of Theoretical Physics, Warsaw University*
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The Breit equation for a system of two Dirac particles is represented in the scalar@®
vector@tensor form. Then, in the case of equal masses, the internal motion satisfies a gen-
eralized Klein-Gordon equation for spin s = 0 (parafermionium) and generalized Proca
equations for spin s = 1 (orthofermionium). If the potential is central, one gets for ortho-
fermionium radial wave functions being analogues of electric and magnetic multipole radial
fields (but with m # 0 and ¥V £ 0).

PACS numbers: 11.10.Qr

As is well known, the Breit equation for a system of two Dirac particles 1],
[E=V —(@; - p+Bim)— (=5 - p+Bom)]p(r) = 0 ey

(where F=r,—r,and p= D1 = —DP,), is usually handled in the spinor @ spinor repre-
sentation [2]. In the present note we write it down in the scalar @ vector @ tensor represen-
tation which may be convenient for some purposes, giving directly relativistic equations
for paratermionium and or:hofermionium.

To start with we write Eq. (1) in the Dirac rcpresentation of matrices &; = 778; and
B:(i = 1,2) and then combine the wave-function components v, 4, (where f; = +1 are
eigenvalues of ;) into the new components

_ A o £ Yi-T -,

fE 52 g N )
In this calculation we assume that
Vo= VityiyvE, 3)
where V'R depend on ¥ and §; (i = 1, 2) only. In general,
VIR = PoVg R+ P VR €
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with P, (s = 0, 1) being the projection operators,
Po=3(1-3,°8,), Py=%3(3+8,0;)=%(5,+5)% ©)

on states with spin s = 0 and s = 1, respectively. For instance, if the potential is of the
Breit type

V = Vi) +1 [&1 A+ @}”2 : ’)] V() 6)
we have
vi=ve), VE=1% [31 c0+ (il—j)r—z@—i)] Vs(r) Q)
and hence
Vo=V{=Vcr), V§=-2Vs(r), V= %-[(5‘+f’)'—;]2 Va(r). (®)

In this way we can represent Eq. (1) by the following system of equations:
(E—-V'FVOf*—(my+m)f ¥ = £(5:F3,) - pg*,
(E-VIFVR)g* —(my—my)g¥ = +(5,F6,) - pf*.

Applying to Egs. (9) the spin projection operators (5) we obtain the system of equations
for the wave-function components f& = P,f% and gf = Pg*(s = 0, 1):

®
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Note that the “large-large* components % _ ,’s are included only in f ’s.
In Eqgs. (10) the matrices &; can be easily absorbed into the wave function com-
ponents if ¥ and V¥ do not depend on & (this condition means practically that the

retardation is neglected: VX = 0, see Eq. (8)). In fact, defining the new components
by the formulae

+
L(E“V{¢ Vf)gf—(m1~m2)gf +(G,F35,) P{ S
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we are able to rewrite the system of equations (10) in the following form independent
of d;:

LE-VI-VH°—p- ¢ = L(mi+my)é,
LE-VI+VP = 3 (my+my)¢°,
< . ! BT 0 . +0 (123)
2 (E-Vi —V1)¢—po = 7 (my—my)¢°,
3 E-V+VDE+iB X7 =+ (my—my)
and
% (E- Vo" V({{)Xo"; . 2 = % (my—my)y,
LE-V3+Vx =3 (m—my)x’,
1 I R\Z> .0 1 ~0 (12b)
s (E=Vi{—=V)—px =z (my+my)y,
FE-V+VIP+iPx$° = F(m+my)i.

It can be seen from Eqgs. (12) that (at least in the free case of ¥V = 0) ¢ and y are two sca-
lars, (¢%) = (¢°, ¢) and (x*) = (x°, x) form two four-vectors, and $° = (¢*) and ¥° = (x*)
are the time-space parts of two skew-symmetric tensors. Instead of $° and ¥°, respectively,
one can operate with the space-space parts

Z _ Gy—08; G406, _ 6,+3, 6,—5,) g7 (11b)
b 2 2 2 2 fr

of two skew-symmetric tensors ¥** and ¢*” (in Eq. (11b) the dyadic product is used). Then
£ = i"mpo™ and ¥ = iy 5o that in Eqs. (12) one can write p + y = —ip x¢° and/or

f) fﬁ = —ipx x°. Obviously, the tensors ¥** and ¢*’ are mutually dual. Note, however,
that Eqs. (12), even in the free case of V' = 0, are not evidently covariant in consequence
of the lack of evident covariance of the relativistic Breit equation (1).

In the case of equal masses m = m, = m, the system (12) splits into three independ-

ent parts:

(L(E-V{-VR°~p- b = mg,
LE-Vi+VH$ = m¢°, (13)
3 E-V{-V))$—-ps® =0

A

and

(L E-Vi-VD-3-7 =0,

) FE-V{-VDr-p°  =m,
LE-VI+V+ipx ¢° = my,

3 E-VI+VD§+ipxi° =0

(14)
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and one trivial equation implying y = Oi.e. go = 0. The systems of equations (13) and (14)
include the “large-large” components for spin s = 0 and s = 1, respectively, and so
describe in a relativistic way states with s = 0 (parafermionium) and s = 1 (orthofer-
mionium), separately.

In the case of ¥V = 0, Egs. (13) and (14) take the form

p,,(ﬁ“ = mé’
Po® = md,, (15)
Po‘?’“’ﬁ‘lbo =0

and

px' =0,

POZ-E‘PO = m)?o,
S - (16)
PoXot+ipX ¢o = my,

\p0¢0+i-’5x20 = O’

respectively, where p, = % E and (p,) = (po, —P). Egs. (15) lead to the free Klein-Gordon
equation:

(p*—m*¢ = 0. an
Denoting in Egs. (16)

A* =y, E=imy°, B= —mg° (18)

we can recognize this second system as a part of free Proca equations:

(9,4" =0,
. 24
E = — — — grad 4,,
ot
< OE (19)

— — +rot B = —m?4,
ot

oB -
— 4rotE =0,
ot

~

when p, = i0/0x" and (x*) = (¢, 7). The rest of free Proca equations follows already

from the former:
B = rot 4,
. (20)
divE = —m?q.
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Egs. (17) and (18), if put together, are evidently covariant and imply that
(p*-mhH4a* =0, p4"=0, 1)

where p?> = [J. Of course, all these equations describe the internal motion of a system
of two Dirac particles, in contrast to the original Klein-Gordon and Proca equations
referring to the external motion of one particle.

Turning back to the interaction case of ¥ # 0 let us assume that Vg = V§ = ¥ and
V& = v} = 0 (it is the case of spin-independent static potential). Then the simplest equa-
tion we can obtain for ore wave-function component from the system (13) is

E-V\ ., , [BV] 2] .
—— ) —p - = 0.
((E2) o= B o
If the potential is central, V' = V(r), Eq. (22) gives the radial equation
dv
E-V\* 1 @  jG+1) ,.  dr d| .,
(_2-_)+7?17r"7’_'"+E var|? 0= @3

where the radial wave function ¢°(r) is labelled by n,,j, ! =j, s = 0 and P = (—1).
Similarly, the simplest equation following for one wave-function component from the
system (14) is

E-V\* o, , [PV] Q= ([P5V]Is [PV o
B - TR S LA + + , =0, 24
{( 2 ) P E~-V Pex E-V p¥p E-V X 24)

where ¥° = (x°). If the potential is central, Eq. (24) leads for the radial projection of

> - : r . .
Loag=r7 (thh P = ;) , to the radial equation

av
E-V\* 1.4 jG+1) , d dr |,
—_— L — =0, 25
( ) + ’ drzr 2 m T E—V XeT) 25)
where the radial wave function 3 (r) is labelled by #,, j, s = 1 and P = (—1), correspond-
ing to a mixture of / = j—1and/=j+1ifI> 0(j = 1if I = 0). Since 3° ~ E is analo-
guous to the electric field (sce Eqs. (18)—(20)), z3(r) is an analogue of the electric 2’-pole
radial field (remember, however, that here m # 0 and ¥V # 0). Two other radial equations

- a -
follow from Eq. (24) for two perpendicular-to-radial projections of x°, x5, = e z° and

a\ - 0 ) ) d 0 10
Xmag (?x —5) =47 <% xx) Making use of the relations F-ae ?5; Ty

r-a—oa 2a izdi‘a px 2 btains for th
a?— ,a? = Ly 6? = anda 1 -—rx-a—;—rx—a—_r. one obilamms Ior CSC
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projections the radial equations

dv
E-V\? 1 a* jG+1) , dr [(d 3\|,
(T)*':;ﬁ’" 7 "m+‘ﬁ_:f/"<2?_7) ion7)

av av av
dr d d dr dr jG+1+1
=21 = = .= - 0 26
ivatanEv v =0 (26)
and
dv
E-V\* 1 d* jG+1) , dr (d 1\|,
Sl PR AP A A — (= 4+ = =0. (27
( 2 )+ r dr"‘ r2 m +E—V<dr+ 1‘) Xnmg(r) ( )

The radial wave function yp,(r) or Xoag(r) is labelled by n,, j, s =1 and P = (— 1) or by
n,j,s=1and P=(—1y"*, corresponding to a mixture of / = j—1 and ! =j+1 or
to ! = j. It is an analogue of the longitudinal electric radial field or magnetic 2’-pole radial
field, respectively (but with m % 0 and ¥ # 0). It can be seen that y3(r) = xg (r) and
x,?,ag(r) =0if = 0. If I > 0, all three radial wave functions appear independently, describ-
ing relativistically the orbital-angular-momentum triplet with the radial quantum num-
ber n,, total angular momentum j and spin § = 1. Note that the definitions of “electric”
and “magnetic” multipoles interchange when the function ¢° ~ B is considered in place
%° ~ E (see Eqs.(18)~(20)).
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