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LETTERS TO THE EDITOR

INFINITE SEQUENCES OF CONSERVATION LAWS FOR THE KADOMTSEV-
-PETVIASHVILI EQUATION

By E. INFeLD AND P. Frycz

Institute of Nuclear Research, Warsaw*
( Received October 20, 1982}

Three infinite sequences of local conservation laws are found for the Kadomtsev-
~Petviashvili and 241 dimensional Korteweg-de Vries equations by a new method. These
laws are then reobtained by an extension of the Noether theorem and appropriate symmetries
are found. The new method should simplify general Lie and Lie-Bécklund calculations
by abolishing the need to include explicit x, f dependence in the generating functions.

PACS numbers: 02.90.+p, 03.65.Ge, 47.20.+m, 52.35.Py

Recently Zakharov and Shulman found an infinity of nonlocal conservation laws
for the Kadomtsev-Petviashvili equation (KP) in x, y, ¢ space [1]. The »’th conservation
law involves n-1 integrations in x, and the whole set generalizes that of Miura et al. for
K-de V found twelve years earlier [2]. In a recent paper by one of the present authors eleven
local constants of motion were found [3]. Here a refinement of the method proposed in

[3] will be used to obtain three infinite sequences of local conservation laws in differential
form.

The equation in question is

éx + ¢x¢xx + ¢xxxx + e¢)yy = 0! (1)

where e = —1,0,1 for KP, K-de V, and 241 dimensional K-de V respectively. This
equation appears in one form or the other in plasma physics, fluid dynamics, and solid
state physics [4-8]. It can be derived from the Lagrangian

L = 3¢¢.+¢3+3x> +6¢ 1. +3ed3, )]
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as the d¢ Euler-Lagrange equation, the dy E-L equation yielding

A= Pux 3
Symmetries of the Lagrangian yield, via Noether’s theorem,
1: ($3—3¢%x+3e0))i+ (66 :x—3¢" — 6 xsd—3076.).— (6ed,), = 0, C)
X2 (30D + (203 + 60, xx— 307~ 3e¢)), +(6ed,9,), = O, )
i (3.0 + (30D, +303h, +6¢xy— 641y br)s+ (Gedy —30d— 2 +342), =0,  (6)
$: 2+ ($7 +2¢0). +(2e0,), = 0. M

Only the first three laws are irreducible (the time derivative term cannot be incorporated
in the spatial gradient).
Now introduce the notation
ME tlt t[x+ =0, 3)
to = ¢x—3¢xx+3e¢;2' etc. (9)

The subscript after a capital letter thus indicates the symmetry and the superscript the
highest power of ¢ appearing in a given conservation law explicitly (now a stroke denotes
partial differentiation to avoid confusion). Suppose a vector quasipotential IT},, & = x, , ¢
can be found such that

TP+ 1y, =0 (10)

(summation over a understood). Then a new conservation law is obtained from Egs (4), (9)
and (10):

(T02+H“),+(X t+Htx)x+(Y t+th)y =0
and, similarly, the n’th conservation law will generate an n-+1st if a IT%," ! exists such that
I+, = 0. (11)

For Eq. (1) IT;; and IT,,; exist to all orders, though the ¢ laws so obtained are all reducible
to divergences. The general n law derivable from energy conservation and the ITj,, for
example, will be

["]- TO t + o« _t_”__j._ + Xo_t_n. + H" ._t’.,.__k‘
e Y| “(n—k)!), " nl "(n—k)!/,

n

l" tn—l
0 b R ) = 12
* (" n ZH” <n—1)!) O (2



and similarly for the x and y laws. The quasipotentials are:
t: Iy = —x$3—2yh.,,
I, = x($1c+ed; =200~ D3+ V(4P
~ 400y~ 2070, ~200,) — 20 ~ 20 xx— DDE + 41 Prs
Iy = —2ex¢.,—2y(edy—hdx—3 3 + o) —2e6,;
T = (x* 4+ ey’ $.) s
I/, = X°(3 $2+ D) + Y7 €03 + i —F €dZe—F 67) — 2%+ 26,
I, = ex’gy+y*h,y;
I3 = —exy’dy, Iy = =5 X970 —exy’brux—X"¢ + ) s,
I, = —xy*¢,+2xyé;
O =0, I = 75 y (@ +% 62+ buxx) +exy’9,
I, = {5 ey*$,~+ ey’e;
m,=0, k=5 a=xyt
X My = =2, = =x($7+200)+ 200 1Ty, = —2ex¢,;
g =0, I3 =2exp+ey ($+3di+¢ud), 115, = Vo, —2y¢;
ot =0, k>3,
yi = —feydl, = y(G ¢) —ehrbrentt edi—F €d),
o, = —yb.by;
Iy, = exyd,, 1T, = exy( $i+ ) —€Vbuws 11}, = Xy, —x6;
I3 =0, I}, = —77 Y’ (2$+¢i+20.0) —exyd,
5, = % ey’ ¢, +3 ey’d,;

n;, =0, k>4
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13)
(14)

15

These values give three infinities of conservation laws when used in Eq. (12) and its
x, y counterparts. Note that a new, nontrivial #’th law is obtained even when all IT;; are
zero (nonexistence would stop the procedure). It is straight forward to show completeness
in the sense that any polynomial conservation law (polynomial in x, y, #) can be generated

by our method if the appropriate zero order law is known.
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Although our method is extremely simple and requires no knowledge of group theory,
it is natural to ask what symmetries the conservation laws obtained correspond to. Equation
(1) expressed in terms of ¢ and yx is found to be invariant under the transformation

x—o x+ef, y—y+tes, t—>tter, > Pten, - ytex,
¢ =fx—fey’ f—Feyg+h,
o=2f+g =3
n=—fo-[Fey’ [ +ieyg—hlx+5fx"t4+55y*f
+17 Y g~z ey htym+n,
k= —3fy+f, (16)

and f, g, h, m, n are general functions of time. Under the transformations the action element
is transformed into (dQ = dxdydt):

LdQ — LdQ+W,,dQ, a7

and so the action integral is still invariant. The transformations of Eq. (16) thus generate
a generalized Lie group [9]. The irreducible conservation laws generated by f, g, & can
be recreated by combining those obtained from Eq. (12) and vice versa. Thus the new
method yields the generalized Lie group for Eq. (1) (this will of course contain the proper
Lie group when W, = 0: %1, [‘;], [;], [°1, ['D). For Maxwell’s equations, however, it yields
just the 15 invariants of the proper Lie group. The same is true of the cubic nonlinear
Schrodinger equation in x, y, f and of the equations of ideal gas dynamics in D dimensions
(9 and D+1 respectively).

In the Lie-Bicklund method more general symmetries, in which the generating func-
tions depend on derivatives of ¢, are investigated [10]. The methcd is in general quite
cumbersome and any simplification should be welcome. Now it will be possible to initially
drop the explicit dependence on x, ¢ in the generating functions, recreating conservation
laws in which the independent variables appear explicitly by our method. This could perhaps
encourage a wider application of Lie-Backlund.
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