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RELATIVISTIC TWO-BODY EQUATION FOR ONE DIRAC
AND ONE DUFFIN-KEMMER PARTICLE
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A new relativistic two-body wave equation is proposed for one spin-1/2 and one spin-0
or spin-1 particle which, if isolated from each other, are described by the Dirac and the
Duffin-Kemmer equation, respectively. For a static mutual interaction this equation splits
into two equations: a two-body wave equation for one Dirac and one Klein-Gordon particle
(which was introduced by the author previously) and a new two-body wave equation for
one Dirac and one Proca particle. The proposed equation may be applied in particular to
the quark-diquark system. In Appendix, however, an alternative approach is sketched,
where the diquark is described as the point limit of a very close Breit system rather than
a Duffin-Kemmer particle.

PACS numbers: 11.10.Qr

1. Introduction

A need for establishing a relativistic two-body wave equation for one spin-1/2 par-
ticle and one spin-0 or spin-1 particle arises from some recent models, where such particles
are constituents of close bound states. It is the case both in the composite models where
leptons and quarks are built of spin-1/2 and spin-0 preons [1], and in the composite mod-
els operating with quarks and diquarks as effective building blocks of hadrons {2]. But
the new equation may be also useful in considering relativistic effects in some more con-
ventional bound states as e.g. the helium ion or deuterium atom or various mesoatoms.

Such a relativistic two-body wave equation has been already tound for one spin-1/2
and one spin-0 particle which, if isolated from each other, are described by the Dirac
and the Klein-Gordon equation, respectively [3]. The Coulomb fine-structure formula
has been derived from the new equation and verified to reproduce in one-body limits
the well-known formulae [4]. ,

In the present paper we propose a relativistic two-body wave equation for one spin-1/2
and one spin-0 or spin-1 particle which, if isolated, are described by the Dirac and the
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Duffin-Kemmer equation, respectively. It turns out that the new equation implies the
previously found equation for one Dirac and one Klein-Gordon particle [3}, if the spin-0
states of the Duffin-Kemmer particle can be separated out of its spin-1 states. Then
the latter states satisfy a new relativistic two-bcdy wave equation for one spin-1/2
and one spin-1 particle which, if isolated, correspond to the Dirac and the Proca equation,
respectively. This spin separation takes place in general for a static interaction between
the Dirac and the Duffin-Kemmer particle.

2. Concise form

To start with consider the free Duffin-Kemmer equation describing a free spin-0
or spin-1 particle:

where
Blﬁnﬁv"—ﬂvﬁuﬂ}. = gluﬂv"—gvuﬁ}. ('13 ", v = O: la 2’ 3)’ (2)

(8" = (8° B) and (p,) = (po, —p) With py = E [S]. We will use for the Duffin-Kemmer
matrices the convenient representation

B* = 3 (YL +72), (3)

where () = (B:, Bi%), % = ¥io; and ] = iydylyy? (i = 1, 2) are two commuting sets of
the Dirac matrices. So the spin of the Duffin-Kemmer particle is

§ =@+ @

in consistency with the relations S, = g,,S,, and
S* = i[p¥, B'] = 3 (o' + %), &)
where ¢f’ = %.[y’i‘, y1). The wave-function components corresponding to spin § = 0 and

s = 1 of the Duffin-Kemmer particle are y, = P,y (s = 0, 1), where the spin projection
operators are given by

Py =1(1-3,-3,), Py=1(+d -3, =132 ©

e

Note that [P, §] = 0, whilst Po(c,~0,) = (61—02)P; and Py(5,—0,) = (6,—03) Po.
The mass M in Eq. (1) has generally the operator form
M = PoMy,+P M, )

where masses M, may be different.

Now, we go over to the system of one Dirac and one Duffin-Kemmer particle. In
the free case we introduce the relativistic two-body wave equation that arises from the
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Duffin-Kemmer equation by the substitution

E - Epg » E—@- pp+Pm), p— ppx 8)

providing the correct energy eigenvalues tor our tree system (the subscripts D and DK
refer here to the Dirac and the Duffin-Kemmer particle, respectively). The Dirac matrices
« and B appearing in Eq. (8) commute with the Duffin-Kemmer matrices f* and, there-
fore, also with their component Dirac matrices y{ (i = 1, 2). In this way we get the following
tree equation:

{B°[E—( - po+Bm)] =B Box—M}¥(Fp, Fox) = 0. ©)

In the centre-of-mass frame where pp = — ppx = p and rp—rpg = F, this equation takes
the torm

{F’[E~@- p+Bm)]+ - p— M}y () = 0 (10)

which will be our basic kinematical relationship.

The interaction can be introduced into Eq. (10) by some substitutions. If the particles
interact mutually by the vector potential ¥ = V() (being the time component of a four-
-vector) and the scalar potential S = S(r), we substitute

E->E-V, M- M+3S, m->m+3:S, (11)
where in general
V=P0V0+P1V1, S=P0S0+PISI (12)

with P, given in Eq. (6) (we stress that s = 0, 1 denotes spins of the Duffin-Kemmer par-
ticle). So, in such a case we obtain the following new relativistic two-body wave equation:

{BLE-V~G - p+Bm+p 5 S)]+B- p—M—% S}y() = . (13)
In this equation we will use the abbreviations.

D=o p+fm+i8)+V, I=M+1S. (14)

3. Spinor components

In order to make Eq. (13) more explicit we write it down as a system of equations
in the Dirac representation of matrices y¥(i = 1, 2). In this representation, 5,(i = 1, 2)
are diagonal and so can be replaced by their eigenvalues f; = +1. Then

{<51, B2IB° = 3 (B1+B2) <By Bl
(B> BolB = £ B13:{— By, Bol +% B2 2B\, =Bl

since y; = Byid; (and &; commute with g; and 7). Thus, having written down Eq. (13)
for g, = <Bs, B2lv> (B; = £1) and then combining the wave-function components

(15)
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¥g,5, Into the new components

TN o Yy-ty_
= -HT_, gi= +_\/§ +’ (16)

f:".
we arrive at the following system of equations in the case of potentials ¥ and S, not con-
taining the matrices y1:

{(E_D)fi —If* = $3(3,%5,) - pe*,
a7

~Ig¥ = $%(51—52)'5fi-

Note that the components f* include the “large-large” and “small-small” components
of y, whereas g* include the “large-small” and “small-large” components of y (all the
notions referring to the Duffin-Kemmer particle).

Applying to Eqgs. (17) the spin projection operators (6) for the Duffin-Kemmer par-
ticle we obtain the system of equations for the wave function components f¥ = P f*
and gf = Pg* (s = 0, 1). This system splits into two independent subsystems involving
the “large-large’ components for spin s = 0 and s = 1, respectively. In this way we get
for s = 0:

(E"Do)foJr _Iofo_ =0,

(E—Do)fs —Iofs" =% @,—5,)- pei, (18)
~l,g; = —%(51—32)'§f0+
and for s = 1:
(E-D)f{~LfT = =3 (@,+5,) pgi,
(E-Dyf —1,f{" = £(@,—5,) pgo> 19)
—1,gf = 5 (3,+3) - pf1,
—Ioygo = "‘%(51_32)';’)?;,

| 5

while g5 = 0 is a trivial component. Here, D, = a - p+f(m+L1S)+V,and I, = M,+1S,.
We can see that the splitting (17) — (18)+(19) follows for static potentials (more generally,
an analogical splitting holds for some non-static potentials.

From the system of equations (18) we can easily derive the following equation for fg
in the case of I, = I, = M, (i.e. S =0 and M, = M,):

[(E~Do)*~p*~M3lfs = 0. 20)

1 1t is the case of static potentials which arise from the general potentials through the substitution
@ —0,8; -1 and y -0 (and also & -0, —1 and y5 —0).
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It is the previously found relativistic two-body wave equation for one Dirac and one
Klein-Gordon particle interacting mutually via a static vector potential [3].

In the general case we can conclude that one Dirac and one Duffin-Kemmer particie
interacting mutually via static potentials are described by the new wave equation (18)
or (19), depending on whether the spin of the latter particle is s = 0 or s = 1.

4. Scalar and vector components

In the systems of equations (18) and (19) the dependence on the matrices 3 (3, +7,)
can be absorbed into the wave-function components. To this end we define for the system
(18) the following new components:

¢ = f0+’
() =" 6) = (fo‘, 3——;’— g;). 1)

Then after a simple calculation we obtain the following system of equations equivalent
to the system (18}):

(E—D0)¢ = Io¢0’
- - (22a)
p¢ =19
and
(E—~Do)po—1- ¢ = Iod. (22b)
Putting Dy = 0 and I, = I, = M, we identify Egs. (22) with the familiar equations
Pud = Moo, (23a)
and
pud" = Moo (23b

leading to the free Klein-Gordon equation
(p*—Mg)p = 0. (29

In the case of I, = I, = M, (i.e. S = 0 and M, = M,) but Dy, # 0, Egs. (22) lead to
Eq. (20) with f§ = ¢. Putting D, = 0 in Eq. (20) we come to Eq. (24).

Analogically, for the system (19) we define the following new wave-function com-
ponents:

U = (U 0) = (ga, “’;"Zf;),
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[ G,—¢6
U = —y»° =( 12 2)f1+,
1

qu = < Ukl _ 61—62 6:1'{"6:2 _ 6:1+a'.27 61_32 | + (25)
2 k 2 1 2 k 2 i 81

I | +
L = 2(01k021— 00181

where U*" = — U™. Then after some calculations we get the following system of equations
equivalent to the system (19):

(E—D)U;—pUqy = I, Uy,
(26a)

nUi=pU, = 1,Uy

and
J’(E_Dl)UOl—pkUkl =1,U,
L —DkUsko = IyU,.

Again putting D, =0 and I, = I, = M; we recognize Eqs. (26) as the free Proca
equations

(26b)

p.U,—p,U, = M,U,, (27a)
and
pU* = M U” (27b)
leading to the familiar equations
(p*~-MPU, =0, pU*=0. (28)
In the case of I, = I, = M, (i.e. $ =0 and My, = M,) but D, # 0, Egs. (26) lead to

the new equations

{[(E —-D))*— (52 +M)]U+ pup Uy = (E—Dy)p,Us,
(29a)

—(P*+M)Ug+p(E-D)U, = 0

and
1 _
(E=Dp)Uo—p Uy = — M. [Pw VilUso. (29b)
1
Eliminating U, from Egs. (29a) we obtain

- - DiP
[(E—D))*—p"~ MU+ [pkp,—<E—D1)?J’;—](4—2(E—D1)] Up=0. (30
1
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It is a new relativistic two-body wave equation for one Dirac and one Proca particle in-
teracting mutually via a static vector potential?.
Note that in the two-body wave equations (20) and (30) tor spin s = 0 and 5 = 1,
respectively, we can write
(E-D,)*—p*— M

=(E-V)'—2E-V)(a-p+pm)+a - [p, V,]+m*—M!?

2 2
T 1 - m _Ms P
= \/E—-V,[E—Vs—-2(a-p+ﬂm)+ 7 ]\/E-—vs, (31)
so that in the case of Eq. (20) the factor VE- Vo can be absorbed into the wave function
fo = ¢, what gives the equation

m*—M3

E—V,

[E—Vo—z(& < p+Bm)y+ ](\/E—Vo ) =0 (32)
that was handled befcre {3, 4).

In the general case we conclude that one Dirac and one Duffin-Kemmer particle
interacting mutually via static potentials can be described by the new two-body wave
equation (22) or (26) depending on spin s = 0 or s = 1 of the latter particle. The systems
of equations (22) and (26) are perhaps more convenient in application than their equiv-
alent systems (18) and (19).

APPENDIX
Alternarive approach: diquark as a very close Breit system

The two-body wave equations (20) and (30) may be applied to the quark-diquark
system q (qq), if the diquark (qq) can be treated as a Duffin-Kemmer particle with spin
s = 0 and s = 1, respectively. One can wonder, however, if the better description of the

2 Egs. (26) give also the equations for U; and Uy;:
1
(E=D)U;— —— pxp1Uok = M Ug,
M,

1
(E—D)Ug— *ﬁ/[-‘Pk(PkUl—PlUk) = M,U,.
1

Eliminating Up; we get after some calculations:

WE— D)) —p2—~ MU,

1 pi+ M} Pip.
—pxpi, Vil ( ! - U~ ~Un|=0.

E—D, M? M3}

This equation must be equivalent to Eq. (30).



104

system ¢ (qgq) is not provided by the triple-Dirac equation where two of three quarks,
being bound very closely, are put together kinematically:

Ps, M =m,=4M. (A1)

i
N]=

- g -
rg, P1 = P2

ry =r;

In this alternative approach the diquark (qq) corresponds to the point limit of a very close
system described by the Breit or double-Dirac equation. In such an approach the free
triple-Dirac equation

3
-

[E- ¥ (- Pt Bm)]9 O(Fy, 7y 73) =0 (A2)

i=1

transits into the equation

[E—(a - po+Bm)—% (a;+%5) - Pe—% (By+ B)IMIyp O (Fp, Tg) = 0, (A3)
where @ = a3, = B3, Fp = F3, Pp = p3 and m = my. In the centre-of-mass frame, where
Po = —pg = p and rp—rg = F, this equation assumes the form

[E—(& - p+Bm)+%+ (2, +3,) - p—3 (B + )My V(F) = 0 (Ad)

and has to be compared with Eq. (10) of our previous approach. Though 8° = 1 (B, +8,)
and ﬁ =3 (7, +7,) both the equations diffcr evidently because

LG4y # LB +B) L@ +y) (A5)

and, moreover, there is no inverse of 3 (8, + ,).2
Introducing the interaction into Eq. (A4) through the substitution (11) one gets the
following relativistic two-body wave equation (instead of Eq. (13)):

[E—~V—@- p+Bm+B1S)+} (@ +8z)  D—3 (Bi+B) (M+3 S)]p() = 0. (A6)

Here, the abbreviations (14) may be also used.

Writing down Eq. (A6) as a system of ¢quations in the Dirac representation of ma-
trices o; = y78; (i = 1,2) and then combining the wave-function components V.82
(B; = +1)into f* and g as given in Eq. (16), one obtains in the case of static potentials
V, and S, the following system of e¢quations (instead of Egs. (17)):

(E-D)f*—IfF = T1(3,%5,) pg™,

(A7)
((E—D)g* = F3(6:48) - pf "

3 It follows that Fq. (Ad4) even with the werm & -1_;+/3m put zero is not evidently relativistic
covariant, what is in contrast to Eq. (10). It is a consequence of the lack of evident relativistic covar-
iance for the (wo-body Breit equation. Note that in the case of m, # m, the operator (f,m,+ f,m;)
X(my+my)! gets its inverse equal to (8,m,— Bm,) (m,—m,)*.
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Note the differences between Egs. (A7) and Eqgs. (17):
(E-D)g* = —Ig%, (3,%8,) pf* = (3:F5,)  pf ™. (A%)

The spin projection operators (6) applied to Egs. (A7) give the system of equations
for f* = P,f* and gf = Pg* (s = 1,2), which splits into two independent subsystems
involving the “large-large” components for spin s = 0 and s = 1, respectively. In this
way one gets for s = 0 (instead of Egs. (18)):

(E-Do)fs —Iof5 =0,
(E=Do)f5 —Iofs = +(8,-82) - pgi>» (A9)
(E-Dy)gr =36,~5) s
and for s = 1 (instead of Egs. (19)):

((E-D)fi-1.f1 = —%(@,+82) - el

) (E-D)fi—Iiff = $@,—8)" ?ga, 10)
(E—Dy)gf = —3@,+5) i,

(E=Do)go = 1@,-5)pf7,

while (E— Dg)gs = 0 so that gg is a trivial component which can be put zero: g5 = 0.
From the system of equations (A9) one can deduce in thecase of D; = Dgand I, = M,
(i.e. Vi = V, and S = 0) the following equation for f o (instead of Eq. (20)):

{(E—Do)z—iz—M§+p - [ps Vo]lfo =0. (A11)

E—Dy

It is a more involved equation than the two-body wave equation (20) for one Dirac and
one Klein-Gordon particle [3]. Note that the resulting equation for f is a bit simpler
than Eq. (All):

{(E Dy) —*Z—Mo [Pa Vo] Jfo = 0. (A12)

Also for the systems of equations (A9) and (Al0) one can absorb the matrices
1 (3, +7,) into the wave-function components. In fact, in terms of the componcnts defined
in Eq. (21) ihe system (A9) assumed the form (to be compared with Egs. (22)):

(E_’Do)¢ = Io¢o,
(E-D)—pdo =0, (A13)
[(E—Do)po—1 ¢ = Iod.
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If D, = D, =0 and I, = M,, Eqs. (A13) reduce to the relations

Po® = Moo,
Pob1—Pido = 0, (A14)
Pu¢u = M0¢

implying the tree Klein-Gordon equation (24). In the case of Dy = Dy, # O and [, = M,
(i.e. Vi = V, and S = 0), Egs. (Al13) lead to Eq. (All) tor f§ = ¢ and to Eq. (A12) for
fo = ¢o.

Similarly, in terms of the wave-function components given in Eq. (25) the system
(A10) takes the form (to be compared with Egs. (26)):

(E-D)U,—p U, = I,Uyg,
3 (E=D)Uu—(pUoi—pUo) = 0,

(A15)
(E-D)Ug—p Uy = 11U,
\(E_DO)UO_pkUk = 0.
If again D, = D, = 0 and I, = M, Eqs. (Al5) transit into the relations
poUi—pUo = MUy,
PoUu—(PUoi—pUo) = 0, (AL6)
p U = MU',
p,U* =0

giving the familiar equations (28). Inthecase of Dy = D, # 0 and 1, = M, (ie. Vo =V,
and S = 0), Egs. (A15) lead to the following equation for U:

{(E—DI)Z-EZ—M%ﬂ?E

&

1 e d
D ' [Pa VJ} U,

1 1
- <PkE_D1 [, Vi]+Lps V1] m‘l' Pk) Uy=0 (A17)

that has to be compared with Eq. (30) of our previous approach. The resulting equation
for Uy, is a bit simplur:

{w—mt?—M%—[ﬁ, r]—— plug
)

E—Dl

D+ py
L

D

1
+ , ¥,
([Pk 11 E— E_

1
[P;u Vz]) U = 0. (A18)
D,
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In the general case, the two-body wave equation (A13) or (AlS5) is proper for spin
s =0 or 5 = 1, respectively.

While it is likely that our previous approach fits better a preon system, the alternative
approach sketched in this Appendix seems to be more proper for a quark-diquark system
since the diquark is really a composite state of two quarks. The essential difference be-
tween both approaches consists in the fact that the Duffin-Kemmer equation arises from
formal adding of two operations

2 Gip—M) (i=12) (A19)

s0 that mass is there formally additive. In contrast, taking the point limit of the Breit
equation one adds two operations

(o= - p—BM) (i=1,2) (A20)

in consistency with the physical additivity of energy which always liolds when some con-
stituents form a composite system.
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