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Institute of Theoretical Physics, State University of Utrecht**
(Received June 15, 1982)

Solitons are solutions of nonlinear wave equations. A single soliton is just like a normal
dispersionless wave in that it does not change its shape in the course of time. The soliton
is known for its remarkable stability. When a soliton encounters another soliton of arbitrary
size or velocity it can change beyond recognition for a short or long period, but ultimately
it will revert to its original shape. This type of wave is observed in many fields of physics.
In this paper I shall concentrate on giving a short explanation of the various ways in which
mathematical physicists have tried to understand the amazing soliton. The reader is not
expected to have studied advanced mathematics but he or she must be prepared to work
through some of the algebra, which is sometimes rather tedious.

PACS numbers: 03.50.z

1. The equation of Korteweg and de Vries (1895)

A fisherman who is paying more attention to the water than to his float will soon
realise that a wave u = f(x—ct) moving past him from left to right with velocity c is a so-
lution of the partial differential equation

u,+cu, =0, ¢y

A closer examination reveals however that higher waves move more quickly and it is
obvious that this dispersion should be taken into account by replacing (1) by

u,+uu, = 0, 2

We guess that the solution of this equation, with the initial condition u(x,0) = f(x) at
t = 0, is given by the solution of the implicit equation

u = f(x—ut). 6
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From (3) it follows that w,+uu, = —t(u,+uu)f’, where f' denotes the derivative of f
with respect to its argument. Or equally
(A+tf") (u,+uu) = 0. ©)]

For all x and ¢ for which 1+1#f’ # 0, it turns out therefore that we have in fact found the
solution of equation (2). Let us take the special case where f(x) == cos nx; then the equation
for u(x, t) becomes

u = cos {x~ut). (5
The condition 14 ¢ # 0 becomes
| — ¢ sin n(x—wut) # 0. 6)

It is obviousthat this condition is satisfied forall t < — = ;. Fig. 1 shows the solution
i1

of Eq. (5) for a number of values of ¢. In the course of time the wave becomes steeper
and at t = fy it is about to break. This occurs when sin n(x—utg) = 1, therefore when
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cos n(x—uty) = 0, thus when u = 0 (Eq. (5)), and so when x = . For larger values of ¢
there are more solutions, as can be seen in Fig. 2. This multivaluedness is a consequence
of the hypothesis that even the strongly curved part of the wave can still be described
adequately by Eq. (2). The extra effects of strong curvature can be taken into account
by adding a term that includes a higher derivative. This then leads to the KdV-equation

u+uu +6%u,,, =0, )]
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where d < 1, so that the added term only has an effect in places where the wave surface
is strongly curved. This equation does not only have periodic solutions, which are given
by the elliptical function cn(z) of Jacobi, but it also allows functions of the form
u = f(x—ct). The propagation velocity ¢ can be chosen arbitrarily. The function f(x)

=
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+1
t=22tg
-1
0. 2
Fig. 2

however must satisfy Eq. (7). If we also want f(x) to become 0 for |x| — oo, then the only
possibility left is
Je

u(x, t) = 3¢ - cosh™? [—7 (x-ct)]. (8)
20

A wave of this type was first observed and described in 1834 by Scott Russell when he

saw a boat stop suddenly as he was riding his horse along the tow-path of a canal. Instead

of delighting in the attempts of the crew to get the boat moving — it had probably gone

aground — he followed the solitary wave that had come from the boat’s prow, until after

a chase of one or two miles he lost it in the windings of the canal.

Zabusky and Kruskal gave the name ‘‘solitons” to solutions of the type mentioned
above. They discovered a number of properties of these solitons by studying the numerical
solution of Eq. (7) with 6 = 0.022 and with the initial condition u(x, 0) = cos nx. Their
work can be reproduced quickly with modern computers (see Fig. 3), but does give rise
to some problems for large times {25]. The conclusions to be drawn from these calculations
can be summarised as follows:

a) Up to t = ty the wave is described reasonably well by the solution of Eq. (2).

b) For larger times the wave is broken up ioto a number of solitons which all seem to
originate from the breaking point x = 1.

¢) These solitons move with different velocities and their width is inversely proportional
to the root of the velocity (Eq. (8)).

d) Two solitons moving with different velocities do not become deformed when they pass
each other, but there is no superposition of solutions. Solitons are therefore very stable.
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¢) After a recurrence time Ty = 30.4¢; all the solitons overlap and a large part of the
original wave u = cos nx is reconstructed.

The last conclusion also explains why Fermi, Pasta and Ulam in their study of a one-
-dimensional anharmonic crystal did not find equipartition of energy over all possible
harmonic vibrations.

a) e) il

C

b) f) 2]
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Fig. 3. Numerical solutions of the KdV equation for various values of time: a) t = 0.5 ¢p; b) ¢ = tp;
C) t=2p; d) t=23tp; ) t =4tp; f) t =91p; g) t = 10tp; h) 1 = 11¢p; i) ¢ = 14tp; j) t = 15tp; k)
t = 16¢5; 1) t = 20¢p; m) ¢t = 30.41p

The soliton phenomenon is not restricted to the KdV-equation but also occurs in a num-
ber of exactly integrable non-linear differential equations which have been constructed
in the last few years. In view of the fact that several thousands of articles on solitons have
been published since 1965 I shall restrict myself to the discussion of a few examples and
some of the methods which have been introduced.

2. The method of inverse scattering

Consider the operators

L=p>—tu(x,t) and B = —4p3+% (up+pu). 9

In the function space where L and B operate, » is a multiplication operator andp = ~i—

ox
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so that [p, u] = —iu,. The quantity ¢ is a parameter which is not varied for the time being.
L, = 0L/dt = —% u, is also a multiplication operator. If we now calculate the commu-
tator [B, L] from this so-called Lax-pair, then we find that

i
[B’ L] = _6' (uux+uxxx)'

We see therefore that if #(x, ) is a solution of the KdV-equation (7), with & = 1, then
the following relation holds for L and B

iL, = [B, L]. (10)

This relation allows us to calculate what an arbitrary initial function u(x, ¢ = 0) will look
like at a later time ¢, regardless of the magitude of ¢. This could never be achieved by
a direct numerical integration of equation (7) because errors due to rounding up or down
and frequent instabilities would quickly render the resuit unreliable. It will become obvious
that only two linear equations have to be solved: a linear eigenvalue equation for the so-
-called **direct’” problem at ¢ = 0 and a linear integral equation for the “inverse’’ problem
at time ¢. Because the reasoning is rather complicated, it is divided into three parts.

I. The direct problem. Consider at f == 0 the eigenvalue equation

Ly = Ep. {11
After substituting expression (9) for L, Eq. (11) acquires the form of a Schrédinger equation:

e, I
- dxz -% u(x’ 0)1[) = Ep, (12)

where the arbitrarily prescribed function —% u(x, 0) plays the role of the potential. This
is the first linear problem. Generally the spectrum will consist of discrete eigenvalues
E,= —«2(n =1, ..., N) for the bound states §,(x) and a continuous part E = k2 for
the scattering states §,(x). The bar over {(x) indicates that the asymptotic behaviour
of the wave functions is chosen in a special way, namely:

_ e for x- + o
B(x) = {C,,(O)e""" for x- — o0 (13
and
Pi(x) ~ e "+ R(k, 0)™  for x— + oo, 14)

[R(k, 0)|? is the reflection coefficient. It is only the quantities x,, C,(0) and R(k, 0) which
will play a role in the story from now on.

II. Development in time. We again consider Eq. (11) and therefore (12), but this
time u(x, 0) is replaced by u(x, t). The only thing we know about this function is that it
satisfies the KdV-equation. However, it is possible to indicate how the aew $(x, 1) for large
x is linked to @(x, 0). In this way the problem is reduced to the problem of how, given
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the asymptotic behaviour of {(x, t), the function u(x, t) can be solved from the equation

d2
'l;i-’:__f_) —3 u(x, )P(x, t) = EP(x, 1). (15)

Again we write the eigenvalue problem as

Ly(x, t) = Eyp(x, t), (16)

but for the time being do not specify the asymptotic behaviour of this yix, t) without
a bar.

The t-dependence of y(x, t) is chosen in such a way that y(x, t) satisfies the equation

16— = By(x, t). an
ot

Because equation (16) is also valid for all ¢, we shall have to prove that the last two equa-
tions do not contradict each other. By differentiating (16) with respect to ¢ we see that
this is indeed the case, provided E is independent of ¢:

oy 0
iLy+il — = iE -—’f

18
ot ot (18)

By using the essential relation (10) and by substituting (16) and (17) we prove that (18)
is indeed an identity. The eigenvalues —«? are therefore independent of 2. The functions
P(x, t) are again defined as solutions of (16) with the special asymptotic behaviour

e ¥ for x—- +
7 o~ 19
tp,,(x, t) -— {C"(t)e+,‘"x for X = — 00 ( )
and
P(x, t) = e * 4 R(k, ) for x> + o0. (20

It is easy to prove the following surprisingly simple but important formulas for the time
dependence of C, and R

C(f) = C(0)e™* and R(k, t) = R(k, 0)e*™". 1)
The only hypothesis concerning u(x, t) here is that u(x, £) » 0 for |x| — co. From Eq.

(19) it then follows that

3

d
B~ —4p® = —4ia—x§ for  |x| = 0. 22)

If the asymptotic behaviour of the solutions of Eq. (17), which correspond to bound states
is written as

o JA@e ™ for x> + 23
wn(x, t) - {D"(‘)e‘l'ltnx for X — — 00, ( )
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then it follows from (22) that the coefficients 4,(t) and D,(t) must satisfy the equations

d4, 434, (1) d 4D, 43D (1 24
= Y4 n = —4;
dt nion a d t "n n( )’ ( )
which lead to the solutions
A1) = A,0)e* and D(t) = D,(0)e *". (25)

Now the functions y,(x, t) and $,(x, t) for a given 7 are both solutions of Eq. (16). Their
ratio is therefore independent of x. By comparing (19) and (23) one comes to the conclusion
that C,(t) = D,(t)/4,(t), from which the first relation of (21) immediately follows. The
second relation can be derived in a similar way.

Tt should be noted that Eq. (17) has the form of a time-dependent Schrodinger equation,
in which B, which is hermitian here too, plays the role of the Hamiltonian. It follows
that the norm of the wave functions y,(x, t) is independent of ¢ But this is no longer
true of the functions P,(x, t). The reader however can easily prove that the time depen-
dence of the quantity y,(¢), which is linked to the norm of i (x, ¢} in the following way

+o ,
v = | 1Pax, 0)*dx, (26)
is given by
(1) = 7,(0)e>* (27)

IIl. The inverse problem. The question is now whether knowledge of the asymptotic
behaviour of {(x, t) given by the quantities x,, y,(t) and R(k, t), enables one to derive

the potential ¥V = —% u(x, t) from equation (15), which can now be written as
d*p _ _
il + V(x)p(x) = EP(x) (28)

from which, for simplicity’s sake, the ¢-dependence has been omitted. This inverse problem
has been solved by Gel’fand, Levitan and Marchenko, who have shown that

d
V(x) = -2—K 3 s
(x) Tn (x, %) 29
where K(x, y) is the solution of the linear integral equation
K(x, y)+B(x+y)+ 5 K(x,2)B(z+y)dz =0 (y > x). (30)
In this equation B(x+y) is given by
N + w0
1 .
B(x+y) = Zy,,(z)e"‘"“*”+ > f R(k, )e* =9 dk, (31)
n=1 -0

where y,(¢) and R(k, t) are as in Eq. (27) and Eq. (21). The proof of this Marchenko equation
is too complicated to reproduce here.
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A simple case occurs when the initial potential happens to be chosen in such a way
that no reflection occurs for any valae of k and there is only one bound state. Then B(x+y)

= g(x)g(y) with g(x) = J ;(t_)e“"". The integral equation (30) then becomes

K(x, y)+g(x)g(n)+8(») § K(x, 2)g(z)dz =0 (y > x). (32)
The solation is obviously of the form K(x, y) = w(x)g(y). Substitution in (32) gives for w(x)
W) = — 8 (33)

1+ § gi(z)dz

where the integral is elementary. The function K(x, x) now becomes

—K _—z
K(x,x) = ¢

coshz ’

with z = #(x~— x,)—4x>t and y(0) = 2xe>™™, Via (29) the solution of the original problem
is then finally given by

1212

u(x, 1) = cosh®z”

(34)

With the identification ¢ =4«? this solution becomes identical to the one-soliton solution (8).

For N bound states, but still for a reflectionless potential, the integral equation (32)
reduces to an algebraic problem which can be solved exactly. For large times, both positive
and negative, this solution is the sum of N solitons of the type (34) which move from left
to right with different velocities. During the time when two or more of these solitons
overlap, the solution is certainly not a superposition of individual solitons. After the
complicated overtaking manoeuvre they reappear intact and have merely pushed each
other forwards or backwards.

For an arbitrary initial function w(x, 0) the reflection term in (31) will also make
a contribution. However, it has been proved that the effect of this on w(x, f) for t =
approaches zero, so only those solitons can be seen in which the original wave has broken
up. For a high wave this number is given by

+
1 ——
N =~ J' VIu(x, 0)] dx.

3. The Bicklund transformation

Consider a number of identical pendulums which are hanging from a horizontal
torsion wire and which due to the pull of gravity can move in vertical planes that are
perpendicular to the wire. The potential energy of this system is

N N
V=~ Y mglcos g, +3 mo’l* ¥ ($rs1— ) (35)
k=1 k=1
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where the angular deviation of the k-th pendulum from the rest position is given by ¢,.
N

With the kinetic energy T = Y 4 ml?¢; the Lagrange equations can be derived quite
k=1

simply, resulting in
“ g .
= — 7 Sin @+ 0 (Per 1 — 200+ - 1)- (36)

If the distance 4 between the pendulums is small the equations valid in the continuum
limit can be obtained by making the following replacements

o

S $(x, 1) and  $ai = $(x, NEA — +3 4°

¢

ox?

If \/i/} and dov/ I/} are now introduced as new units for time and length, then finally
one obtains the following partial differential equation:

¢ ¢

— — 5 = i , ). 37

o~ s = N én D) (37)
This is the so-called sine-Gordon equation which has found innumerable applications
ranging from Bloch walls to liquid crystals but which will be used here only for the purpose
of illustrating a new integration method. First of all Eq. (37) is transformed into

a*¢
— = sin ¢(&, M) (38
2o (%) )
e . . x—t x+t
by switching over to light cone coordinates { = 5 andn = 5 We now define a

function @(£,n) by the following so-called Bickiund transformation [26]

£(8)-m(5)

and

()23

where ¢(¢, 1) is a given solution of (38) and 2 an arbitrary real parameter. These two equa-
tions are not contradictory because the n-derivative of (39) minus the ¢-derivative of (40)
again gives Eq. (38). The sum of these two derivatives gives

62

LA )
ogon
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so that by means of the Backlund transformation a new solution ¢ is obtained from a given
solution ¢. In particular ¢ = 0 leads to the equations

6%(%) = isin(—%) and 5%(%5) = Asin (%),

which with the help of the integral

can be solved directly:

¢ =g fé(fo: Wo)e

t.._
&4 4

1
Xp [1 ¢ —io)H(n—'rio)] .

By using the parameter ¢ = (1 —A42)/(1+42) (which lies between —1 and +1) instead of
parameter A one can write this solution as

tg ¢(3: t) - tg ¢(x(: tO) . exp[

-+

\/,1 —c?

These one-soliton solutions have the form of a kink or anti-kink each of which can move
to the left or the right with velocity |c|. The closer |c] is to the speed of light |c| = 1,
the steeper the kink. Equation (42) shows that the angle ¢ between x = —co and x = +0
increases or decreases by an amount 2n. This means that somewhere in between, the pendu-
lums make a full swing round the torsion wire. By applying the Bicklund transformation
for a second time one obtains a two-soliton solution. This can be done in two ways, as
is shown in the following diagram

(42)

' (x-—xo)-c(t—@] .

An explicit formula for the two-soliton solution ¢; can now be proved; it looks like this

d3—do A+, ¢1— ¢
tg == tg .
4 A. 1™ /12 4
The innumerable solutions of the sine-Gordon equation are not exhausted with these one-
-(and multi)-soliton states, There are also solutions where a kink and an anti-kink remain
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close to each other during their propagation as a bound state called a “breather”. How-
ever, this phenomenon and the mutual annihilation of a kink or an anti-kink cannot be
discussed here.

4. Prolongation

It must have become clear in Section 2 that the KdV-equatioa could be solved exactly
as a result of the chance circumstance that there was a Lax-pair which satisfied equation
(10). Hitting upon a Backlund transformation is also mainly a matter of ingenuity or luck
and one therefore wonders whether there is not a systematic way of deciding whether
a given partial differential equation can or cannot be integrated exactly. The so-called
prolongation method is an attempt in this direction. This method will now be explained
with the help of a simple example.

Consider the equation which is used to describe tidal waves and traffic waves

u,+uu, = Du,,, 43)

which is known as Burgers’ equation and was studied by Bateman as early as 1915. In the
following, use will be made of the Lie-bracket

dA dB

for two functions 4(q) and B(q). This brackets-symbol does not only satisfy the usual
relations

[4,A]=0 and [4+B,C]=][4,C]+[B C]
but it also satisfies the Jacobi identity
[4, [B, Cl]+B, [C, A1 +IC, [4, B]] = 0. (44)

In analogy with the inverse scattering method, where a function ¢(x, t) was introduced
which had to satisfy equations (16) nad (17), we now iatroduce a so-called pseudo-potential
q(x,t), which has to satisfy

9. = A(q,u) and g, = B(q, u, uy). (45)
The functions 4 and B must be chosen in such a way that the condition for integrability

0 0

—q, = — 46
3th axqr (46)

is fulfilled for every u(x, r) which satisfies (43). Because 4 and B are not defined unambi-
guously as a result of this, there is still in principle a possibility of imposing extra restric-
tions on these functions so that (45) is simplified to two linear or at least to two easily soluble
equations. The method of findiag u(x, t) thereafter is like the inverse scattering method.:
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By writing out Eq. (46) and making use of Eq. (43) to eliminate u, one obtains
(DAu—Bu,,)uxx = (uAu'{'Bu)ux—‘[A’ B]’ (47)

where differentiation with respect to a variable is given by a subscript. This relation must
hold for every function u(x) (¢ is kept constant). However, since #,, does not occur in
the right-hand side it cannot appear in the left-hand side either, whence it follows that

B, = DA,. (48)
Now A4, does not depend on u,, so (48) can be integrated to
B = Du, A,+C(q, u) (49)
and therefore it also holds that
B, = Du,A,,+CJ(q, u). (50)

Substitution of these two expressions into (47) gives
DA u?+(uA,+C,—D[A4, Au,~[4,C]=0. (51)

In this formula the quantities u, and #2 occur only in the places where they are written
explicitly. The three coefficients on the left-hand side of (51) must therefore equal zero:

Ay =0, (52)
ud,+C,—D[4,4,] =0, (53
[4,C]=0. (549)
From (52) it follows that
A= Xyt ux,, (55)

where x, and x, (and later x5 and x, as well) still depend only on g. Differentiation of 4
with respect to u gives

A, = x, and therefore [4, 4,] = [x;, x2] = x3. (56)
Substitution into (53) resalts in C, = ux,+ Dx; and therefore
C = —3}u?x;+Duxs+x,.
From the last condition (54) one now finds simply that
=3 [x1, %]+ Dlxy, x3]1 = 0;  Dlxy, X3]+[x2, x] = 0; [x1, x] = 0.

Summarising, the condition for integrability (46) therefore leads to the requirement that
the functions x,(q), i = 1,4 must satisfy

[x3, %20 = %35 [xn, 23] = a(@);  [x1, x4] = 05

1
[x2, %3] = 2D x3;3 [x2, x4] = —Da(q); [x3, x4] = b(q), 57
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where a(g) and b(g) must be chosen in such a way that the Jacobi identity (44) is satisfied.
If not, then a(g) and b(g) are regarded as new functions x5 and x, the Lie-brackets of which
must be well chosen with the other x;. This prolongation is continued until a closed algebra
is obtained for all x;. From the exactly integrable equations known to date it would appear
that this is not really necessary. In particular (57) can be satisfied by choosing

x1=X3=x4=a=b=0

where only x, is a function of ¢ requiring further specification. Equations (45) now
acquire the following form

g. = uxy(q) and g, = (Du,—F u*)x(q). (58
One finds in a simple way that Eq. (46) now becomes

d 0
L O (u+ v, — Duy)xa(q) = 0,

which makes it clear that Burgers’ equation can indeed be regarded as the integrability
condition of equations (58). If x, is chosen as

q
xl(q) = = 2—53

then equations (58) are equivalent to

qe = D (59)
and

w=-20% (60)

q
Equation (59) is the diffusion equation, the general solution of which can be found. Ulti-
mately equation (60) gives the desired solution of Burgers’ equation.
This solution was found thirty years ago by Cole and Hopf, who produced the trans-

formation (60) out of the blue. It was not until 1975 however that Estabrook and Wahl-
quist discovered the prolongation method.

5. The direct method

The direct method of Hirota is another systematic method of constructing solutions.
In this method too use is made of the Lie-bracket (43a), which in this case however serves
to define an antisymmetrical operator acting on an ordered product a(x)b(x). The definition
is as follows

0 d
D.a:b = lim (—— ~ — Ja(x)b(x") = a,b—ab, = {a, b]. (61)
x'—x ax 3x
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Powers of this operator are defined by

d c\"
D'a-b = lim (- ~ i) a(x)b(x"). (62)
x'x ox ox
In particular
D*a-b =a,b—-2ab.+ab,, and D2a-a=2a.a—asa,). 63)

In order to explain this method more clearly we shall now deal with the non-linear
Schrédinger equation:
ipe = —pa—lyl*y. (64)

In this equation the function —|yp|*> plays the role of au attractive potential. In other
words the wave function moves in the trough which it digs for itself. The idea ot the direct
method is now to replace %(x,t) by

g(x, 1)
p =
f(x, 0

and then to derive for g and f equations that are simple to solve. In so doing use is made
of the easily demonstrable formulas

with f real (65)

0 (g\ D.gf
=(7)- 7 ©
and
o\’ (¢g\ _Dig-/ g Diff
(a) (7) S P

By substituting (65) into (64) we now get

Dg-f Dig-f Dif- glgl?
,fgz + ;2 —%-fz—ﬂ?%—:o. (68)

The essential element in this bit of juggling is that (68) does not change if g and f are mul-
tiplied by the same factor. The result is that if g(x, ¢) and f(x, 7) are now defined as a solu-
tion of the equations

iDg-f+Dg-f=0 (69
and
Dif-f =g, 70

these two equations are bilinear and therefore easier to solve than the original equation (64).
A special solution is obtained if it is assumed that |g|> = constant = 2a? and that
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f = f(x—ct), which goes to infinity with |x| - o0, so that y(x, t) then approaches zero.
The solution of (70) is then f(x, t) = cosh a(x—ct), after which (69) becomes a simple
linear equation for g(x, t). Ultimately the wave function becomes

e a\/iexp[%ic(x— <—;— —z%z)tﬂ-
f

cosh a(x—ct)

p(x, ) (71)
This is a complex soliton, the envelope of which propagates with velocity ¢ but with differ-
ent phase velocity. Two- and multi-soliton solutions of (69) ahd (70) can be constructed
as well. A more systematic way of working is to expand g and f in powers of a formal
parameter &, which is later made equal to one, and to equate terms of the same order in e.
In this way one obtains linear equations for the expansion coefficients. In some cases the
two series will break off; then an exact solution has been found.

In addition to the transformation (65) there are two other transformations which
are often used with success. The principle of the direct method however is the same in
all cases.

6. Moving poles

In the systematic method described below an attempt is made to construct a solution
of the partial differential equation as a finite sum of terms which are singular in the points
x = x,(t). The t-dependence of the solution is entirely accounted for in the poles x,(z)
The Ansatz for Burgers’ equation is now taken as

1
u(x, t) = uy Z =) (72)

i=1
It will not be difficult for the reader who has some dexterity in splitting partial fractions
to show that after substitution into (43) and with 4, = —2D the equation becomes equi-

valent to the following scries of ordinary differential equations:

5:,=2DZ ! (i=1,2..,n). (73)

Xy— X

j=1
The singular term must be omitted from the sum. Once more differentiating with respect
to time gives

1 v
%, = 8D? = - — 74
H Z (x.i—xi)3 0x; 4

J=1

with

1
= —2D2 -
V(X1 oo %) = —2D E oyl (15)
i#tj
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This shows that Burgers® equation, at least for solutions of the type (72), is equivalent to
the problem of n particles on a line, the interaction of which is described by the potential
(75). This problem from classical mechanics still looks daunting. Here too it is possible
to linearise it and to transform it into an n x n eigenvalue problem. For this purpose two
nxn matrices L and M are first defined by

1 ) -20 .
Lii = 2D = X, Lij = (l # J)’ (76)
xj—x, x,—-x,
M, = 2D Lo omy= 22 xp (77
i = (xj_xi 2 ij = (xi_xj)z ) 1) )

Some rather tedious but elementary calculation shows that L and B form a Lax-pair in
the sense that
L=[M, L] (78)

The problem .of calculating x;(t) with given x;0) is now formulated as follows. Define
the nxn matrix
Y(t) = R (DX(RQ), (79

where R(¢t) is a transformation of the diagonal matrix X;;(¢) = J;;x,(t). This R(t) is defined
as a solution of the equation

R=MR where R(0)=1. (80)

The sought-after quantities x;(¢) are in fact the eigenvalues of Y(¢) and the original problem
is therefore reduced to a (linear) eigenvalue problem. This method is only of real use if
the matrix Y(¢) can be calculated for every . Now this is just what is made possible by the
existence of the Lax-pair. Differentiation of Y(¢), as given in (79), and substitution of
(80) yields

Y(t) = R-Y{X ~[M, X]}R. @81
Now it follows simply from (76) and (77) that
L(t) = X~[M, X], (82)
so that
Y= R-'LR. (83)
Differentiating again leads to
Y=RYW-[ML}R=0 (84

because of (78). The solution of this differential equation is the known matrix
Y(1) = Y(0)+tY(0) = X(0)+tL(0), (85)

the eigenvalues of which are the desired functions x;(f).
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7. What remains to be done

Readers whose hunger for solitons is not yet satisfied may be able to fill their bellies
by reading the now famous article by Scott, Chu and McLaughlin [2] with its 267 references.
The article deals with a large number of examples including the Toda lattice and contains
a derivation of the equation for inverse scattering devised by Gel'fand, Levitan and Mar-
chenko. The above-mentioned authors also discuss the stability of solitons. The dynamic
reason for stability is linked with the mutual compensation of dispersion and non-linearity.
In addition it holds that stability is always connecled with the existence of a conserved
quantity. This can be a “charge” which is coupled to a continuous symmetry via the Noe-
ther theorem, or it can be a topological charge like the swing in the line of pendulums
described by the sine-Gordon equation. Nevertheless, a single soliton may be stable, and
yet when two such solitons collide inelastic effects occur [3]. Stable solitons only occur in
multiple dimensions in special circumstances. Generally they will be unstable, according
to a theorem of Derrick [4] and Hobart [5]. For the time-dependent N-dimensional sine-
-Gordon equation

Axd(F) = sin ¢(r) (85)

this theorem can be proved quite simply. Eq. (85) is the Euler-Lagrange equation that
follows from the action principle d4 = 0 with

N
Al¢l = |3 {k; (0d)*+4sin? L ¢p}dyr = I, +1,.

Neither I, nor I, is negative. Let ¢(F) be a solution with finite energy. Now consider a class
of trial functions ¢,(r) = ¢(Ar) which are obtained from the real solution by scale enlar-
gement. The appropriate action is

Ay = A7V 4070,
Then it must hold that (d4,/dA),~, = 0, or that
(N=2I,4+NI, = 0. (86)

For N >2 Eq. (86) can only be satisfied if I, = 0, which implies that ¢(*) = 0. There
is therefore no solution with a finite energy.

There is no doubt that soliton theories can be applied in practically all areas of physics.
There is no point in reproducing (reproduction is forbidden anyway) the review articles
by Bullough [6, 7] concerning applications. Magnetic monopoles as solitons and the connec-
tion with instantons are discussed in a simple way in the .articles by Parsa [8] and Rebbi
[9]. The reader is also referred to the work of Schneider and Stoll [10] on the statistical
mechanics of nonlinear lattices. The systematic methods which have been touched upon
in the previous sections are discussed more fully in the following references.

Calogero [11] considers the method of inverse scattering as a generalisation of the
Fourier transformation.

The authors of references [12-14] are strong supporters of the prolongation method.
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Hirota [15] is the best prophet of his own direct method, whereas several persons
[16-19] have devoted their efforts to moving poles.

The work of AKNS [20] has not been discussed at all here, although these authors
give a large class of integrable equations.

Those who are interested in learning more about the prolongation method and about
the link between solitons and the geometry of a space with a negative curvature [21] are
advised to first master the formalism of the differential forms.

Finally the authors of this article should draw his own conclusions or at least give
some encouragement to anyone who wants to plunge into the sea ot solitons. Since the
author does not have sufficient time, energy or space he hopes that readers will be content
with what has been offered above. Those who persevere would do well to consult three
books on solitons which have been written recently [22-24].

It is a pleasure to thank Mrs. S. M. McNab for translating this paper from Dutch
into real English. I am grateful to Miss M. Hollander for the {ast and accurate typing
job she did.
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