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After a brief review of experimental data on lepton pair production, I describe the
perturbative calculation of this process in QCD and the exponentiation of soft gluon effects.
Results of numerical calculations for the “K-factor” are compared with experiment.
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1. Introduction

In the past few years, a considerable amount of work, both theoretical and experi-
mental [1-3], has been devoted to the study of lepton pair (I*1°) production in hadronic
collisions.

H;+H, - ("'M)+X, M

where H; and H, are two hadrons. As I will be interested in what follows in reaction (1)
only, I'll call for the sake of brevity o(H,H,) the cross-section for this reaction.

One of the main interests of lepton pair production is of course that its cross-section
can be computed in perturbative quantum chromodynamics (QCD), provided effects
to be mentioned below are not too important. The topic I'll be interested in is the theoret-
ical computation and the comparison with experiment of the cross-section do/dQ3dy
where Q2 is the mass of the pair squared and y its rapidity!. Instead of the cross-section,
one often uses the so-called “K-factor”, which is the ratio of do/dQ?dy to the Drell-Yan
(DY) cross-section (to be defined in the next section):

do/dQ*dy

K@% y) = daT/d_de—y .

(2
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! Instead of the rapidity, one could also use the Feynman variable x, which is however technically
less convenient.
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I'll not discuss the transverse momentum dependence of the cross-section, which is an
important, but technically somewhat different, subject [4]. I'll also ignore possible difficul-
ties with factorization which were pointed out by Bodwin et al. [S]. The theoretical status
of this problem is at present unclear, and it is quite possible that these difficulties do not
appear at all, because of Sudakov [6] or other effects [7].

The plan of these lectures is as follows: in Section 2, I recall the so called naive Drell-
-Yan (parton) model [8], and in Section 3 I give a brief (and biased) review of experimental
data. Then in Section 4, I examine the first order perturbative calculation in QCD, while
in Section 5, I turn to the problem of soft gluons. A summary of the theoretical results
and a discussion will be found in Section 6.

2. The naive Drell-Yan model

More than ten years ago, Drell and Yan (DY) proposed a parton model for the descrip-
tion of lepton pair production [8]. In this model, as is well known, the virtual photon
v*, whose decay gives the lepton pair, is produced via the annihilation of a quark-antiquark
pair (Fig. 1). It is clear from Fig. 1 that an absolute prediction for the cross-section is

Fig. 1. The Drell-Yan mechanism

obtained once one knows from deep inelastic electron and neutrino scattering the proba-
bilities gy(x) and Gu(x) (which I call quark distributions in what follows) of finding a quark
or an antiquark of fractional momentum x in a hadron H. These quark distributions are
available if one considers pp or pp collisions. Conversely, in the case of n*p collisions,
since there are no deep inelastic scattering experiments on pions, the Drell-Yan model
allows to extract the pion structure functions from the cross-section for reaction (1).

To be more precise, let me define the kinematics of reaction (1). Since one does not
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observe the final hadromic system (X), the kinematics is completely defined by:

/s = center of mass energy of the H H, system
Q? = (mass)?

y = rapidity of the (I*17) pair.
g, = transverse momentum

In addition, useful information is provided by the decay of the virtual photon. This decay
is described by the angles @ = (0, @) of emission of the I* (for example) in the rest frame
of the pair, with respect to some axis.

Instead of s, @2, y, it is convenient to introduce variables x;, x, and 1:

2
x; =41 x;= 1, 1= — = XX 3)

It is easy to convince oneself that in the case of the Drell-Yan mechanism, x, and x, are
nothing but the fractional momenta of the quark and the antiquark (Fig. 1), but the defini-
tion (3) will be used in the general case. Notice the kinematical limitation:

2

mxt
(1=x;) (1=x;) > 5’;— . )
where my is the mass of the final hadronic system (X), which leads to:
téxl, X2<1. (5)
The Drell-Yan cross-section?:
dol¥ 1
iy s R G ) ©)
is then given by:
DY dno® IN2 /i i i i
op (X1, X2) = 907 (eg)” (T, (> )qr,(%2) + g1, (*1)Tu,(X2))s )

where ¢ is the charge of the quark of flavor (i) and « the fine structure constant. In order
to simplify the notations, I will consider the case where there is only one type of antiquark
in hadron H, and one type of quark in hadron H,: this is almost realized for n—p collisions,
where the dominant mechanism is the annihilation of an anti-up quark in the n— with an
up quark in the proton. It will be also convenient to define the constant 4:

dmo®
A= Q_QZ— e:. (8)

2 In order to maintain a clear distinction between hadronic and partonic cross-sections, all hadronic
cross-sections will receive a subscript H.
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The predictions of the Drell-Yan model are well known:

(7)) Scaling: Q%R*(x;, x,) is a function of the scaling variables x, and x, only.

(ii) The average transverse momentum of the pair is of the order of the average
transverse momenta of partons in a hadron: {gq,)> ~ 300 MeV/c.

(i) In the absence of transverse momenta of the partons, the angular distribution
of the I* follows a (1+cos20) law, where the z-axis is chosen parallel to the collision axis.

Notice also that, in the case of a ©—p collision for example, the cross-section decreases
very rapidly when t — 1. In fact, taking into account the dominant mechanism, and
assuming a parametrization of the form:

Va®) ~ (1=, u(x) ~ (L—x)™ ©))

for the u-distribution in the pion and the u-distribution in the proton respectively, we get
at fixed s and for 7 — 1:

deBY 4na . _ - - -

—_— ~ ——5 ~ (=Dt~ (1= ST 10

100y, = et § DD ~ (=B~ (1= ) (10
Equation (10) shows that the statistics will be poor at large values of Q2. Indeed most of
the statistics is contained in the range:

M2 Qs M:

(for 0% < Mﬁ, it is likely that the Drell-Yan mechanism is in competition with other
effects).

3. Review of experimental data

A summary of experimental results available at present is given in Table 1. This table
is borrowed from the review of Burgun [3] and will need updating when the new results
from CERN (NA3, NA10) and Fermi-lab (E-537, E-615 and E-605) are released (probably
at the Paris Conference).

The main comments on Table I are that data are available for a variety of incident
particles (p, p, %, K¥), energies, and targets (heavy targets being preferred because of
statistics). The cross-sections are measured essentially around y = 0 (ISR, CFS) or for
positive rapidity. The main domain of Q2 which has been explored lies between the ¢
and the Y, for reasons explained previously.

The conclusions, on which experiments must agree, are [1-3]:

({) The cross-section depends linearly on the atomic number A, in agreement with
a partonic interpretation.

(if) The average transverse momentum (g, is much larger than the ~ 300 MeV/c
of the parton model. In the case of n~p collisions it is even much larger than that predicted
by the first order QCD calculation [4].

(iif) The data are consistent with scaling. However, due to the uncertainties in absolute
normalization and lack of overlap between different experiments, one does not really
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TABLE 1
Experiments on lepton pair production
Collaboration Inc. V/s (ISR) or Target XF Q Number of
part Pap (GeV) events
ABCS p 28, 53, 62 P —2-5.2 4-18 103
ISR | cHFMNP p 62 p —1->.5 | 5-25 | 2.5x10°
CFS p 200, 300,400| Be, Cu,Pt| —.1-.1 5-20 2%x10°
Fermi L. {CIP n* 225 C, Cu, W 0> 1. | 4-85 | m :2x10°
MNTW p 400 Fe -2 1, | 4-18 10°
1SI L 150 Be -2->.8 4-8 1.5x 103
Q K% =% pt | 40 w 2-3 ~ 10*
NA3 K*, =%, p* | 150400 H, Pt -3> 1. | 4-14 |m:5x10*
CERN ot 2% 103
p : 105p : 300
NA10 T~ 280 C, W, Cu 4-14 2x 103

Other experiments in progress: E 537 (p, 125 GeV/c), E-615 (%, 225 GeV/c), E. 605 (p, 400 GeV/c) etc. ..

expect to see scaling violations. It is possible that high statistics experiments at large
02 will bring new information on this subject.

(iv) The angular distribution of leptons has been studied in many experiments. How-
ever the errors are still large, and no clear-cut conclusion has emerged yet.

(v) The K-factor (2) is found to be around 2. The cleanest way to measure K is to look
at the cross-section difference

a(p P)—a(p PY)

as in the NA3 experiment, because this difference depends on valence quarks only, whose
distribution is rather well measured in deep inelastic scattering. Taking the CDHS para-
metrization of structure functions [9], the NA3 collaboration finds:

K =23404.

This result has been confirmed at the 82-Moriond meeting by the preliminary results of the
E537 collaboration (Fig. 2). A summary of data on the K-factor is given in Table II (borrow-
ed trom D. Decamp, Ret. [3]). One can see that there is a rather good (too good?) agree-
meat between various experiments.

One can also remark that the data on an hydrogen target are similar to those obtained
on a nuclear target, thus excluding a nuclear effect. Of course sea distributions are needed
when one does not take cross-section differences, and for this reason the results for pp-colli-
sions are less conclusive. In the case of np-collisions, the pion structure functions are of
course unknown, but Adler’s sum rule gives a strong constraint on the normalization of
the dominant valence quark contribution.

(vi) Assuming that the mnaive Drell-Yan cross-section can be simply rescaled with
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Fig. 2. Proton structure function from Drell-Yan. Dotted line: prediction from CDHS structure functions
multiplied by 2.3. Circles: NA3 collaboration. Squares: E 537 collaboration

TABLE 1II
Experimental values of the K-factor

Collaboration Reaction DPab (GeV) K-factor
NA3 (®-p) Pt 150 23+ .4
NA3 (m—rt) Pt 200 22+ 4
NA3 H, 200 24+ .4
NA3 pPt 200 23+.3
Q W 40 24+ 4
Q (T —nty W 40 22+.25
SISI ~C 150 28+.6
CFS pwW 200400 19+.3
MNTW p Fe 400 1.61+.3
ISR pp Vs =62 ~18
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a constant (Q? and y-independent) K-factor, one can determine the pion and kaon struc-
ture functions. As already mentioned, the most reliable results are obtained by looking
at the cross-section difference:

o(n” P)—o(n” Pt) ~ Vo(x)ui(xz), (11

where in the case of a Platinum target u2(x) is given from the valence quark distributions
u,(x) and d(x) in the proton by:
ud(x) = 0.4u,(x)+0.6d,(x). (12)

The valence structure function V,(x) is constrained by Adler’s sum rule:

1
fdxVy (x) = 1. (13)
]
One often uses the Buras-Gaemers parametrization for valence quarks:
Vi(x) = Ax"(1—x)’ (14
and tor sea quarks:
Su(*) = A, (1—x)'=. (15)

At an average value of Q2 Q? = 2 = 25(GeV)?, the NA3 collaboration finds [3]:
a, = 045+0.10, B, = 1.05+0.10, B, = 5.440.2.

The corresponding curves are given on Fig. 3.

10~ -

Fy (X’I
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X1

Fig. 3. The pion structure function Fx(x), as determined by the NA3 collaboration. Full line: valence
+ sea, Dotted line: valence only
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4. The first order calculation

4.1. General structure of the cross-section

Before proceeding to the calculation of the first order correction to the Drell-Yan
process, I first rewrite the naive D-Y cross-section (7) in a form which is suitable for gener-
alization:

173

x {Aé (1— fl) 5 (1— x—’)} (16)
t, 1,

where the quantity between brackets is the partonic cross-section for the process §+4g — y*

o, 2%):

1 1
dt, {dt, _
on (%, X3) = J"i—l j' qu,(t)qu,(t2)
1
X1 x2

6”¥(21, 25) = A6(1—2,)8(1—2z,) (17

with z; = x,[t;. The hadronic cross-section appears as a double convolution of the partonic
cross-section with quark distributions gy, and gy,:

oR (X1, X2) = [(@u,qu,) * 0”1 (%1, x2). (18)
As we shall see in what follows, the generalization of equation (16) including QCD correc-

tions will be given by:

1 1
dty (dt, _ _
ou(xy, X2) = j—t—— N qu,(t1, Q¥)au,(t2, 0%)6(zy, z2)
1 2
X1 X1

= [(Gu, (@D qu(0%) * &1 (x4, X,). (19)

Notice that in equation (19) the quark distributions depend on Q2 The convolution in
equation (19) can be transformed into a product by taking double moments®:

ou(Ny, Ny) = H dxldxlef‘"lx;v" 10'H(x1’ X3) (20)

and similarly for 6(zy, z,). Then equation (19) gives:

ou(Ny, N2) = gu,(Ny, QZ)QH;(st Q@%)(N,, N,), 21
where the moments of the quark distributions are defined as usual by:
1
gu(N, @) = (f) dxx" " *qu(x, Q7). (22

3 gy and o depend of course on @2, but I have suppressed the dependence with respect to this variable
in order to simplify the writing.
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4.2. Factorization of mass singularities in deep inelastic scattering*

The essential tool for the derivation of the QCD formula (19) is the theorem on fac-
torization of mass singularities. Let me first review the use of this theorem in the case of
deep inelastic scattering [14]. According to it, the structure function gy(x, Q%) can be
written as (see Fig. 4):

“2 R Q2
au(x, Q%) = | qa* T (=7 | * 4 | (8®); =5 ) | (). (23
A 7
In equation (23), u is a “factorization mass” which is taken to be equal to the renor-

malization mass g (it is quite possible to make a different choice, but nothing is gained
by doing so0); gg is the “bare” structure function, and the factorization of the partonic

al -1

Fig. 4. Deep inelastic scattering. The dotted-dashed line is a unitarity cm

cross-section allows to write it as the convolution of two pieces I' and ¢. I' depends on the
regularization mass A, and contains the mass singularities when A — 0 (if one uses dimen-
sional regularization, I contains I/¢ poles [15]. Finally g, which is independent of A, can
be expanded perturbatively into powers of the strong coupling constant «g. As already
mentioned, the convolution in equation (23) can be travsformed into a product by taking
moments:

AW Q?
gu(N, @%) = qa(N)T (N, 7) q (N 5 os(?), 7) (24)

Since the hadronic cross-section is regular in the limit 1> — 0, the mass singularities
of I must be absorbed into ¢J, and one defines a function F(N, u?):

2
F(N, 4*) = ga(N)T (N, %) 25)

4 For the sake of simplicity, I consider only non singlet distributions.
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which is free of mass singularities and obeys a renormalization group (RG) equation:

dF(N, 1) as(u®) as(u?) :
u? duz“ = “S;t [qu(zv)+ 52“ Pf,q\N)+0(a§)]. (26)

1+x2
P, (N)isthe N ® moment of the Altarelli-Parisi function CF( 1+

) (Ce =4/3inSU(3),),

while PG)(N) is given by the calculation of the anomalous dimension to second order [15].
The perturbative expansion of g reads:

2 2
s;” )[ (V) I %2— +C(N)] +0(2). ©n

a(N, Q%) = 1+

It is clear that one should choose Q% ~ u*: otherwise the coefficient of a5 would be
large and the perturbative expansion would not have any meaning. The *‘coefficient func-
tion” C(N) depends on the regularization and factorization scheme. However in all reasona-
ble schemes one finds an infrared singular tactor which is dominant when N — o0:

C(N) y~, Crin N. (28)
The precéding discussion is summarized by writing the moment g (N, Q%) of the quark
distribution as:

. 2
au(N, Q%) = F(N, u*)q (N ; as(p?), %) . (29)

where F(N, u?) obeys the R. G. equation (26), while ¢ has the perturbative expansion (27).

Finally I must be more accurate in the definition of gu(x, Q2), since there are many
structure functions, which are equivalent to leading order, but differ by terms of order
og. It will be conveaient to choose (with standard notations):

qu(x, Q%) = vWy(x, @*)/x (30

so that gy (for valence distributions) obeys Adler’s sum rule:

i
§ dxgu(x, Q%) = 1. (31)
0
As already mentioned, this sum rule is very useful to constrain the pion structure function.

4.3. Lepton pair production

If T wanted to compute naively the QCD corrections to the parton model, I would
start from the expression (see Fig. 5):

ou(xy, X;) = [(‘ln,‘h{z) * 0] (x4, X3), (32)

or in terms of moments:

ou(Ny, N3) = QH;(N 1)QH,(N 2)0(N,, N,), (33)
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where a(N,, N,) is computable in perturbation theory with an infrared regulator A2 (Fig. 5).
However ¢ contains mass singularities, and we have to use again the factorization theorem
which allows to rewrite equation (33) as:

2
ou(N, N,) = qg,(Nl)qu(Nz)f (Np %)
2 2
xI <N2, %) 8 (Nl, Ny; as, %) (34)
— 2
92'7 *@ J> }
= —_——* ———t.
1 2

H, H,

Fig. 5. Lepton pair production. The dotted-dashed line is a unitarity cut. Wiggly lines represent gluons
and dashed lines photons

where the functions g and I' are the same as in deep inelastic scattering. We then obtain,
using (29)

2
ou(N;, Np) = F(Nx, HZ)F(Nz’ #2)3 (Nl» Nj; o, %) (35)

The cross-section & has a perturbative expansion similar to that of ¢ (Eq. (27)).

Q2

2
il )[(qu(Nl)'*'qu(Nz)) in 2+, Nz)] +0(a§)}. 36)

2n

6=A{1+

(Note again that Q2 ~ u?, since otherwise the perturbative expansion does not make
sense.) The last step is to express F and F as functions of gy and gy using equations (27)
and (29), which lead immediately to:

“s(ﬂz)
27

ou(Ny, N3) = Agy,(Ny, QZ)QH;(Nz: 0% {1 +

x [C(Ny, N2)—C(N,)—C(N2)]+ 0(@!3)}- (37
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Coming back to x-space, equation (37) can be written as:

ou(xy, X3) = [(‘?H,(QZ)Q}!z(Qz)) * 6] (x4, x2), (38)
where:
C(Ny, N3) = C(Ny, N;)—C(N1)~C(N,), (39)
and [13]:

- C 2 2
C(z,, 2,) = 8(1—z\)6(1 —z;,) [1+ a-sz—F(1+n2+ —;«t—)]
[

aSCF 1+Z§ 222 3
+ —6(1— 1 + -2-3 ler2
2n ( 21)[1—22 nl'*‘zz 2(1—2z5)4 2|tded
osCy 142322 2z,z, ]
+ — (1422 )[ - 40
w P Qv (-2 U-2)ler | @tz @)
The principal value distribution 1/(1—-2); is defined as usual by:
1 1
d f(2)—-f(1
f@dz _ (f@~/W) @

(1-2), 1—z
0 0

and similarly in the case of two variables.

4.4. Comments

The long expression for C(z;, z,) needs some explanations.
1) The term of order zero in og(d(1 —z,)6(1 —z,)) corresponds to the naive D.Y. model,
with Q2%-dependert structure functions: this is the leading logarithmic approximation.
2) Integrating over y, one gets the cross-section doy/dQ?:

d dt, d
"“ ﬁ fu 2 qH,(t,,Q)qa,«z,Q)

T
C(};Tz)’ 42)
2
c@ = sa-a)| 1+ 5 (ﬂu (3 -1))]
T 3
+ = [1 In(1- z)+2(1_z) -3—2z]+ 43)

3) It turns out that numerically C(z,, z;) is well approximated by:

c C 1
C(zyy 22) = 6(1-2:)5(1—22)( %2,: "2> + asn - [A-z)(1—-2z2)]+4 @9



169

where the last term (infrared singular) is important only whea 7 — 1. The “r-term” in

equation (44) comes from the analytic continuation of a Dirac form-factor from space-like
27
(deep inelastic) to time-like (1*17) values of ¢%. One may wonder about the —— term in

equation (40) which looks important, but is compensated by other terms, so that the correc-
tion to the approximate formula (44) does not exceed 109. Notice that in equation (43),

the last term contains a (+) prescription, so that its z-integral is zero. Then the first term
2

7[ - .
contains in addition to 72, a term (-3—— -—%)whlch however is very small.
4) In terms of double moments, the infrared singular term gives, as expected, a doubly

logarithmic contribution:

C
B F I N, In N, (45)
T

while, when convoluted with the quark distribution, it leads in the region x,, x, = 1 to:

osCr
n

In (1=x,) In (1=X2)3n, (%1, @*)an,(%2, @*) “6)

5) The argument of «g is u? ~ Q2 but it is not possible to be more precise at this stage
of the calculation. The standard choice is u? = Q2, but there are no compelling arguments
for it.

Fig. 6. Initial gluons and Compton graphs

6) If one does not consider cross-section differences, such as o(n—p)—o(tp), it is necessary
to take into account not only sea quarks, but also initial gluons (Fig. 6), which leads to
the so-called ““Compton graphs’. There is another contribution to ayx(x;, x;) which reads:

o1, x2) = A[(8n,(Q%) (21,(Q") + 71, (%) * T'] (%1, x2)+(1 = 2) “n
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with C'(z4, z,) given by [13]:

— T; 2
C'(z4,25) = 6(1—22)?§_f[(zf+(1—21)2 In —* +1+621(1—z,)]
27 142z,

osTr 25(1+2,25) [zlzz+(1—zlzz)2 zf(1+z§+2z1z2)] 48

T (2142 L(A+z)(1-z), (z;+2,)*

and gy(x, Q?) is the gluon distribution in hadron H.
T) 1 give in Fig. 7 numerical results obtained for K(Q?, y) in =p collisions. These results
are obtained with the following parametrization of ag(Q%):

25

2y —
Q) = T oTa 127 “49)
Akt y)
194
7.7+
15+
1 1 i I ] | -
-2 -08 -04 04 08 12y

Fig. 7. K(Q?, y) to first order in perturbation theory for == p collisions, at Q2 = 25 (GeV)?, s = 563 (GeV)?

and the “old” value of A : A = 500 MeV. The nucleon structure functions are taken
from the CDHS collaboration [9] while those of the pion are assumed to follow counting
rules at Q% = 25 (GeV)?:

xVy(x) = 0.75x%(1—x)
xS,(x) = 0.1(1—x)*
xg(x) = 2(1—x)?

One notices that there is an important effect of initial gluons for negative rapidities: with
initial quarks only, the K-factor is almost flat in y.
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8) Finally I give in Fig. 8 some results on angular distribution of the leptons, integrated
over q,, in the Gottfried-Jackson frame [16). The angular distribution is parametrized as:

do _ do 1
dQ%dydQ ~ dydQ? 4n(1+A/3)

{1+ A4 cos? 0+ sin 20 cos g% v sin” 6 cos 2¢}. (50)
A
— 1.0 —
mp
T wlilntes it L
-10 10 y

Fig. 8. Coefficients 4, w,v as defined in the text (equation (50)) for = p collisions, Q* = 25 (GeV)?,
s = 735 (GeV)2. Solid line :4; dotted dashed line: p; dashed line: »

One can see that, contrary to the case of the K-factor, the first order QCD correction
is small: 4 is of order 1 and g and v do not exceed 10%.

5. Exponentiation of soft gluons

The theoretical prediction of the first order calculation K(y, Q) =~ 2 is in qualitative
agreement with experiment and is often considered as a success of perturbative QCD.
However one can ask two questions:

1) Since the O(xg) term is of the same magnitude as the Born term, can we really trust
the first order calculation?

2) Assuming that one is able to control the higher order terms of the perturbative expan-
sion, will the agreement between theory and experiment persist in a quantitative way?
In particular one should be aware that the predictions in references [10] to [13] were com-
puted with a value of the QCD parameter A = 0.5 GeV which is certainly too large by
present standards.

The answer to the first question has been given by Parisi [17] and Curci and Greco
[18], and in more detail by Chiappetta et al. [19]. The large terms in the first order calculation
are, as we have seen in the previous section:
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osC . . . .
(i) an ( ; F)nz term which comes from the analytical continuation of a form
n

factor from space-like to time-like g¢?;

(i) an infrared singular term which is important when 7 — 1.

Many authors [20] have given convincing arguments that the factor of 72 in (i) expo-
nentiates, so that Il restrict my discussion to the eXponentiation of the infrared singular
term in equation (44). I'll compute the cross-section for the emission of n soft gluons in
a quark-antiquark collision (Fig. 9):

4(p1)+4q(p2) — n soft gluons (k)+7*(q) (51)

Fig. 9. Soft gluon emission in a qq collision

where py, P2, k; and ¢ are the 4-momenta of the anti-quark, quark, soft gluons and virtual
photon respectively. The kinematical variables 5, 7 and y will refer to the qq reaction:

S=(p+p)s T=0%5, z,=+v1&, z,= Jie? (52)
and I will use a Sudakov parametrization for the k,’s:
ky = ayp; +Biprt+k;, &X))
which leads to:
¢’ =301-Ya) - YA k)’ =51 Fa) A= T ), (54)

since k2, = 2,8, and a;, §; < 1 in the soft gluon limit. Moreover if I call g, and g- the
light cone coordinates of g in a reference frame in which p,(p,) has only a + (—) compo-
nent, I have:
1-) «
g+ Zt: !

- 1-%B
The kinematical d-functions in the calculation of o(zy, z,) are thus:
2 1/2 2 1/2
(o-(58) ) (55))
5 q- S 44

= 6(1—2,—~ ¥ 0)s(1—2z,— Y. ). (56)

i

e, (55)
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It has been shown recently [21] that the matrix element squared, |M|?, for the emission
of n soft gluons is given by:

- aCr 1
IM|? = I I SnF;,—j; (57)

in the region strongly ordered in angles and momenta:
o < Oyy
0; <00y of iy <6
where 6, is the emission angle of the gluon with respect to the quark®. Collinear singular-
ities occur when 6; ~ 6;,,, but they are cancelled by similar singularities of virtual graphs
(vertices and propagators), and, as a final result, one builds the running couplig constant

ocs(k’fl = og(Q%xB,) [21]. Taking (56) and (57) into account, one obtains the cross-section
for real gluon emission:

1 (T [dad
or(zy, 22) = A Z mJ'H[ ::ﬂfii
n=0 i=1
2 2
S8 e (e L),
i i

4na’el
9Q*

where the 1/n! takes care of the ordering. I have introduced an infrared cut-off Q3 (for

example a gluon mass) which leads to a 6-function of kinematical origin in equation (19).

Adding the virtual contribution which is given by the Sudakov form factor and taking
the (N, N,) moments [ getS:

2 2
o(Ny, N2) = Aexp Ui“—df (e MM P 1) 1@ )G )CFe(a - Q_g)] (59)
of n 0

It is convenient to rewrite the expression of the Sudakov form factor F? (given by the
(—1) in equation (59)) as [22]:

E

2 2
dadp o(Q*4f)Cr , (aﬁ_ %;)} (60)
n ]

F? = A(Q% Q5) = exp l:— J
o

3 This result is established in an axial gauge where the gauge vector n, is parallel to pay: ny = pay,
so that there is no radiation from the quark line in the soft limit. The final result is of course gauge invar-
iant [22].

¢ Equation (59) has been obtained independently by Ciafaloni (private communication).
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We can then rewrite equation (59) in a convenient form:

4040

= el 61
A( Q2 Qz) ( )
N,N,’ =°

o(Ny, N3) =

An analogous calculation in the case of deep inelastic scattering on a quark target
gives for the quark distribution imside a quark {22]:

4% Q)
0* .\
A X7 2
(€.«
Equation (62) is equivalent to the modified Altarelli-Parisi equations proposed by

Amati et al. [23]. Using equation (62), we can eliminate all dependence with respect to
Q% by expressing a(Ny, N,) in terms of g(N, 0?):

QZ

Ty * Qé

4
AQ%, Q0) (Nx

q(N., Q%) = (62)

o(N,,N;)=4 5 53
A( Q ,Q?,) 4(9%, Qo)
N,N,
2
4 (—I%-z— . Q%)
- 2 2
bt A(Qz, Q(z)) q(Nla Q )q(NZA Q )' (63)

This formula is valid in the large (¥, N,) limit. The double moments oyx(N, N,) are also
given in the same limit by equation (63), provided one replaces the quark distributions
inside a quark by those inside a hadron, gu(N, 0?).

5.1. Final results

The final formula, which is studied numerically in Section 6, is obtained in the following
way from the first order calculation {equation (40)):
(i) There is an overall

(as(Qz)C,, z)
(.43 "‘-—2'7‘—""?5

factor, corresponding to the exponentiation of the first order result;
(ii) The term (see equation (46))

C
I:l + “_sn__g In(1—x,)In(1 "'xz)]‘ﬁl,(x;, QZ)QH,(?‘z, 2%
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is exponentiated following (63):

Cr Q*(1~-xy) «(Q%) Q*(1—x,)
exp l:—- prs (ln 2 In (1 —x)) +In yE

M) o)X Q) )]
A(Q*(1~x,)) A? Q7 (1—x,) (1-x2))

X Gery (%1, Q%) qn, (%25 0%) = SP(xy, x25 QB)Fu,(x1, 0*)qu,(x2, %), (64)

where I have used the leading logarithm approximation for the running coupling constant:

1
2
- S
W0 = o (65)
and I have made in the double moment formula (24) the substitutions:
1 1
—_— 1—x1, N—_*l—“xz (66)

1 2

which are valid in the limit x;, x, — 1. Finally I keep all terms of order g which have
not been exponentiated, and I choose u? = Q? for the scale of the coupling constant.
The final formula thus obeys the following criteria:

1) if expanded into powers of o, it reproduces correctly the first order calculation (7);
2) the leading infrared behaviour is correctly given in the limit x;, x; — 1.

1 conclude with some remarks on the coupling constant. Since I have a well defined
prescription for higher order terms in the perturbative expansion, there is in principle no
ambiguity about the choice of the coupling constant. In particular in the exponentiated
terms, the argument of the coupling constant is unambiguously determined to be Q* (of
course the ambiguity persists for those terms which are not exponentiated, but this is not
really a problem since they give a small (~ 10%) contribution).

However, in order to choose A, some amount of guesswork is needed. If we compare
our approximations to those which are used in deep iuelastic scattering, we see that we are
very close to a leading logarithm (LL) approximation for the evolution of structure func-

2
X In(l —x):’
-3 .
term. Notice that we are using the LL approximation (26) of the strong coupling constant.
The guess for the choice of A is then [24}:

A~ ALL o~ 100—200 Mev.

tions, except of course in the region x — | where we take into account the[ I

6. Discussion

The exponentiation of soft gluons which is described in the previous section is not
unique: only the infrared singular part is completely determined. In reference [19], an alter-
native method of exponentiation, which treats in a different way infrared non-singular



176

terms has been given. Both methods agree numerically within 109, and in fact the difference
between the two methods can be reduced to almost nothing, provided one uses suitable
values of A [19]. In what follows, I give only the numerical results of the method described
in the previous section, and refer to [19] for details on the other method.

The numerical computations have been performed for the cross-section difference

o{m Pt)—o(n* Pt)

at an incident momentum p,, = 280 GeV/c. The structure functions at Q? = Q2 = 25
(GeV)? are parametrized as follows:

XV (x) = A,x%40(1—x)93, (67.2)
xu,(x) = A" (1—x)"7°, (67.b)
xdy(x) = Agx**3(1—-x)>7°, (67.c)

Let us recall that experimentalists define the K-factor as:

aﬂ(xh x2)
Aql‘h(xla Qz)qﬂz(xZ’ Qz)

namely they do aot take into account the evolution of structure functions, while theorists
would probably prefer:

chp(xh xl) = (68)

ou(xy, X3)
Ay, (x1, 0%)gu,(x2, 0% )

I have plotted in Figs. 10 and 11 K(y, 0?) at Q* = 25(GeV)? and Q? = 80 (GeV)?
respectively for 3 values of A : 4 = 0.1, 0.3 and 0.5 GeV. One can see that at @ = 25

Ku(xy, x3) = (69)

2
Kexp(Q 137

24
'.-‘.‘_,--——-.—. o GEUWD & WEMD & SRANG ¢ SEEED § W

2.0
-—‘_a.-—-—--— — D GURD W S WA S s

16 o

- ' -

1 y

Fig. 10. Kexp (@2, 3} for [o(r p)—o(r* p)] at @ = 25 (GeV)?, s = 525 (GeV)?. Full line: 4 = 0.1 GeV.
Dotted line: A = 0.3 GeV. Dotted-dashed line: 4 = 0.5 GeV
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Fig. 11. Same as in Fig. 10 except that Q2 = 80 (GeV)?
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(GeV)? the K-factor is almost flat in y, while there is some curvature at 0% = 80 (GeV)?.
This curvature is largely due to the definition (68) aud reflects scaling violations. As dis-
cussed in some detail in reference [19), such scaling violations have implications on the
determination of the pion structure functions.

The infrared singular term dominates when t — 1 (Fig. 12), and there is a dramatic rise
of K, in this region”. Unfortunately the statistics is very poor there, and there is little hope
to see this rise experimentally in the near future.

Kun (@%.5)

sk

300

1 ] -
400 500 Q%(GeV)?

Fig. 12. Kin(Q?, ») as a function of Q2 at y = 0, for [o(wp)—o(ntp)] and s = 525 (GeV)2. Full line:

A = 0.1 GeV. Dotted line: A = 0.3 GeV. Dotted-dashed line: A4 = 0.5 GeV

7 This rise was first predicted by Curci and Greco, Ref. [18].
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To conclude, let me say that the large terms in the first order calculation are well
under control, and that we.can be reasonably confident in the theoretical predictions.

The numerical calculations show that, with the values of A which are suggested at
present by deep inelastic scattering experiments, the predictions seem to be somewhat
too low (K ~ 1.8 instead of 2.4 £0.6 experimentally). It would be very interesting to reduce
the experimental errors to see whether the discrepancy is real, but this depends of course
on difficult normalization problems.
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