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I present recent results for lattice gauge theories obtained by mean field theory with
radiative corrections (MFT). After a quick survey of the strong and weak sides of other
methods on the lattice, an introduction to MFT is given. The utility of MFT is discussed.
I report on some work in progress, and motivate some future projects.

PACS numbers: 11.10.Np

1. Results

Let me show you some results for a start. Some of you may not know what they are
all about; do not worry, I will explain soon. All I ask you to understand now is that dots
are results of lengthy computer calculations, lines are results of apalytic calculations,
so-called mean field theory (MFT) plus radiative corrections. See Figs. 1, 2, 3 and 4.

Now the explanation: Consider U(1) lattice gauge theory [7}; instead of d-dimensional
continuous Euclidean space-time, we have a d-dimensional hypercubical lattice with
lattice spacing a. A function ! — U; € U(1) from the links of the lattice and into the group
U(1) is a field. As in continuum field theory, there is a classical action S mapping any
field configuration into a real, possibly infinite, number: {U;} = U — S(B; U). This defines
a classical field theory. This classical field theory may be quantized using path integrals.
The simplest path integral encountered in the resulting quantum field theory is the vacuum-
-to-vacuum amplitude

ZB) = § T]4dU,expS(B; U). (1.1

U(1) alll

dU; is the normalized invariant measure of integration over the group. For U(l) with

e

U, = ¢, ¢, e[—n, n] we have dU, = > B = g5%, where g, is the bare coupling con-
n
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Fig. 1. Phase plane of SU(2) fundamental-adjoint mixed action theory in 4d. AC, BC and CD are lines

of first order transitions found by mean field theory with corrections in Ref. [1]. Crosses are Monte Carlo
results with error bars from Ref, [2]

SU(2) IN 5d
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Fig. 2. Same as Fig. 1, but in 5d4. Only one M.C. result, on the Sr-axis, is available for comparison [3)

stant. Here we are considering U(1) in order to avoid a lot of indices below. We shall make

no use of its abelian nature, and generalization to non-abelian groups is straightforward.
For classical action we shall use Wilson’s form [7]:

S(;U)=8 Y Re ('g, U, 1.2

allP
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Fig. 3. Internal energy of SU(2) LGT in 4d, as predicted by MFT {4], and as obtained by M.C. calculation

[5]. Graph labelled I is the tree level mean field result for the strong and weak coupling phases. Graph

labelled III is the result of correcting the mean field approximation in the strong coupling phase with the
first three terms in the strong coupling expansion
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Fig. 4. Same as Fig. 3, but for SO(3) in 4d [4, 6]
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where P stands for plaquette, i.e. an elementary square formed by four links of the lattice,
IT --. is the product over four such links / € 6P forming the boundary 6P of the plaquette

le¢P
P, and Y is the sum over all plaquettes in the lattice. The Wilson action (1.2) is just one
P

out of several interesting actions. It is particularly well-suited for MFT, since it is linear
in all link variables U,. What is said below may be generalized to other actions, however.
With reference to statistical mechanics, the vacuum-to-vacuum amplitude (1.1) is often
called the partition function, since j [14U, can be read as a sum over all states, i.e. field
U il
configurations, and exp S(8; U) can be read as the Boltzmann factor exp (— % E(U)),
Why do we do lattice gauge theory? Because it is a nice, regularized version of con-
tinuum gauge theory, which for its part is believed to describe the real world of the strong
interactions, when quarks are included and the gauge group is SU(3), as opposed to U(1)
considered here. A particularly nice feature of the lattice regularization is that it is defined
without reference to perturbation theory, as opposed to other regularization schemes.
That was why we do lattice gauge theory. Now, ow do we do it? Le. how is the vacuum-
-to-vacuum amplitude (1.1) and other path integrals calculated ? There are several methods,
all of which have their own strong and weak points:

A. Strong coupling expansion

Taylor-expand Z(f) and other path integrals around B = 0:

@

1
zp) = Z o Z7(0)p". 1.3)

n=0

This is a highly precise method for low values of f. The various Taylor series obtained
have finite radii of convergence, however. This is a serious problem, since information
about the continuum theory is obtained from the behaviour of the path integrals for g
approaching infinity. Advanced methods exist that will identify and circumvent the sin-
gularities in the complex f-plane which are responsible for the finite radius of convergence
of the Taylor series. The utility of such methods is limited by the rapidly increasing amount
of work required to calculate Z®(0) for increasing values of n. Z™(0), or rather the coeffi-
cients in the Taylor series for log Z(B), have been calculated for some groups up to n = 16
[8,9].

B. Numerical methods (M.C.)

Put your lattice in a box, and get rid of the surface of the box by identifying opposite
faces. Then you have a finite lattice, and consequently a finite number of variables. This
is a problem suited for your computer. You can calculate Z(8) and other path integrals
numerically using Monte Carlo (M.C.) techniques. You do not have to calculate expansion
coefficients, you do not have to worry about finite radii of convergence. This is the strong
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side of M.C. calculations. Instead you worry about the finite size and speed of your
computer and calculate budgets. That also gives an upper limit to the f-values accessible!

The largest 4d-lattice that has been used in M.C.-calculations is to my knowledge
one with 162 sites [10]. The string tension (a non-local quantity) of SU(2) has been measured
on this lattice, using data up to B = 2.75 [10]. Local quantities can be calculated with
precision on much smaller lattices up to much larger f-values, for example the internal
energy for SU(2) on a 4* lattice to f larger than 5 [5].

C. Weak coupling expansion

When B is large, f~1 ~ g2 is small. On every link / = (x, u) expand
U, = exp (iagod,(x)) = 1+iageA,(x)+ ... (1.4)

Plug it into the (gauge fixed) lattice action and expand again in go. Plug the resulting action
into the Boltzmann factor and expand for the third time in g,. This is ordinary perturbation
theory in go, but on the lattice. As opposed to the strong coupling expansion and M.C.
methods, the weak coupling expansion thrives on large f. It takes a lot of work, however,
and yields only perturbative results [11].

D. Variational method

Variational methods apply to lattice gauge theories. The quality of the results depends
on the sophistication of the variational ansatz for the wave functional. One rather simple
ansatz for the vacuum wave functional gives results identical to those of mean field theory
(MFT) without radiative corrections (see below), when applied to the Wilson action [12].
A more advanced ansatz has been applied and yields the average plaquette energy, the
string tension, and the mass gap for a few groups in 3d with good numerical precision
[13, 14]. 4d and more sophisticated ansatzes are too complicated to handle analytically.
For this reason, weak and strong coupling expansions, MFT, and duality argumeants
have been applied to expressions based upon variational ansatzes [15, 16, 17]. Yet another
variational crossbreed occurs when a variational family for the wave functional of the
first excited state is formed by applying appropriate operators to the “‘exact” ground state
wave functional obtained numerically by M.C. methods, see Ref. [18] and references
therein.

E. Mean field theory with radiative corrections

This method seems to be the natural perturbation theory on the lattice. It works
equally well for B small, where it reproduces the strong coupling expansion with nothing
new to add, and for 2(d—1)B large, where it has simpler Feynman rules than the weak
coupling expansion, and gives much better results {1, 4, 19, 20]. Actually, its results for
2(d—1)B large may be thought of as a partial summation of the weak coupling series.
No nonlocal quantities have been calculated yet at large § using this method, and it may
very well be the weak point of this method that this is impossible.
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2. How to do mean field theory with radiative corrections

Consider the partition function (1.1). We cannot calculate it by integrating over
the link variables U, since these couple to each other in a complicated way through
S(B; U). 1t is also ill-suited for a perturbative evaluation due to the constraint U, e U(1)
on the integration variables. Using Lagrange multipliers, we rid ourselves of this con-
straint as follows: rewrite the Boltzmann factor as

exp S(B; U) = | l:[ AVVdvPsRe Ui~ V0)5(Im U~ VP exp S(B; U)  (2.1)

with ¥, = VIV +iV®. Now it is the real integration variables {V{", V{®} that couple
through S(B; V). The group elements U; do not couple any longer, and in order to integrate
over them we write the delta functions

5(Re U;— V")é(Im U,—V»)

da(l) d (2)
= '[ o o — exp (ia{"(Re U;—~ V) +iaP(m U,~ V?)) 2.2)
T

=00
and introduce the function

w@®,a®) =1n [ dU exp (ia™ Re U+ia® Im U)
u1)

do I
=In J 5 eXP (ia? cos §+ia® sin 0) = In Io(+/ — (@ +a®?). 2.3)
n

Then the partition function (1.1) can be written

@

daf® daf®

Z(p) = j. avav® — exp S(B; V, o) 24
i B o 2m
~w alll
with
$(B; V., o) = S(B; V)+ ¥, (w(af®, af)— iV Vaf? - iV Pa?). (2.5)
[]

Eq. (2.4) is an exact rewriting of Eq. (1.1). It may, however, be thought of as the vacuum-
-to-vacuum amplitude of a field theory in its own right, defined by the classical, albeit
complex, action §. A field is in this theory four real numbers (V{V, V{?, af", a*) attached
to every link in the lattice, whereas a field in the original theory was two real numbers (Re U,
Im U)) attached to every link, and with the constraint (Re U))>+(Im U;)* = 1. We see that
in passing from S to §, at the cost of doubling the number of variables, we have arrived
at a field theory with unconstrained, i.e. independent, variables. The integral in Eq. 2.4
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is evaluated perturbatively, using the stationary phase or saddle point method. § is station-
ary at field configurations satisfying

, ow
Vi = =i @it a),  j=1,2 (2.6)
: () as :
iaf’ = —5 (B V), j=1,2. X))
H

Due to the local gauge invariance of S and consequently S, any local gauge transformation
applied fo a non-zero solution of Egs. (2.6)«2.7) leads to another solution, i.e. the non-
-trivial saddle points of § are gauge degenerate. Consequently, before applying the saddle
point method to a non-zero saddle point of S, we must either fix the gauge or perform
an exact integration in Eq. (2.4) over the gauge degenerate saddle points. The latter strategy
has been employed by Alessandrini, Hakim and Krzywicki in a very recent paper [21],
and boils down to path integral quantization of § in background field gauge. This is a very
nice approach, since results are explicitly gauge invariant functions of the saddle point
(PO, 7P oM a1 We shall use the former strategy, however, and fix the gauge. This
is technically simpler, at least for the low order considered here, of the expansion around
the saddle point. In Eq. (1.1) we fix U, to equal one for all links in a given direction. Call
this direction the time-direction (though we are really considering a euclidean theory)
and this gauge the temporal gauge. Then all formulas given in this section up to this point
are valid, also in temporal gauge, as long as “link” is read everywhere as “spatial link”.
We assume Eqgs. (2.6)+2.7) are solved by a constant field on the spatial links. Then global
gauge invariance and Egs. (2.6)(2.7) allow, respectively require, this field to have the form

VO, VD, gD, o) = (1,0, i, 0) (2.8)

with ¥ and « real and satisfying

S ow
V= =i (=% 0) = Li(@)/l), 29)
o« = 28V(1+(d-2)V?). (2.10)

Since « is real, a{!’ is imaginary, i.e. the contour of integration for a{* in Eq. (2.4) must
be shifted off the real axis in order to pass through the saddle point of § found from Egs.
(2.8-10). The qualitative behaviour of the solutions (V(f), a(f)) to Egs. (2.9)-(2.10) may
be read ia Fig, 5. Eq. (2.9) gives V as a function of a. Eq. (2.10) gives « as a function of V'
with an overall factor #. For small values of § the graph (a) of a(¥) intersects the graph
V() only for (V, a) = (0, 0). For intermediate values of B the graph (b) of a(V) inters.cts
that of V() at three points, and for larger values of f, (¢) only at two points. V{J) of these
solutions to Eqs. (2.9)-(2.10) is sketched in Fig. 6. The field configurations (2.8) with
(V(B), a(B)) perturbatively stable solutions to Eqs. (2.9)-(2.10) are classical ground states,
or vacua, of the field theory given by S and quantized in Eq. (2.4). The classical, or tree
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Fig. 5. Graphical representation of Eq. (2.9) (full line) and Eq. (2.10) (dashed line) for small (), inter-
mediate (b), and large (c) value of 8
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Fig. 6. Qualitative behaviour of solutions V(8) to Egs. (2.9-10). Full lines are perturbatively stable solutions,
dashed lines perturbatively unstable solutions

approximation, to its vacuum energy equals the classical action S of the vacuum con-
figuration (2.8) with (V(f), «(f)) determined from (2.9)-(2.10):

F™*(B) = log Z***(B) = S(B; V(B), «(B))- (211)

The qualitative behaviour of this vacuum energy is shown in Fig. 7. This tree approximation
is identical to mean field theory. It predicts a first order phase transition at §,, and not just
for the gauge group U(1), but also for SU(2), SU(3), SO(3), U(N), probably for all com-
pact semi-simple groups, provided d >3 and we use the Wilson action. We should not
trust this prediction, however, since it is based upon the tree approximation. It is an almost
trivial comment that the tree, or classical, approximation to a quantum theory is not
necessarily a good approximation to that quantum theory. It certainly is not the case
in question here, as we see by comparing our result F***(f) = 0 for low values of § with the
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result of the strong coupling expansion: F(B) oc 2+ 0(83). We conclude that in order
to make reliable predictions we must take into account radiative corrections to the tree,
classical, or mean field result.

The radiative corrections are given by the machinery of standard perturbation theory
as a loop expansion. We still have to find out which diagrams to evaluate and which to
neglect when a given approximation is desired. When calculating radiative corrections in

FA
F(p)

Br )~ Bt _
e, B

Fig. 7. Qualitative behaviour of vacuum energy density/free energy density given in Eq. (2.11)

the vacuum characterized by (V(B), a(f)) = (0, 0) the natural way of doing this is by
countiag powers of f in a given diagram. In this way we recover the strong coupling
expansion, which is gratifying since it is a check of MFT, but it does not add to
known methods. When we calculate radiative corrections in the vacuum characterized
by (V(B), «B)) # (0,0) we count powers of !, where « is given in (2.10), a ~ 2(d—-1)B.
Notice that in the interval [B,, B,] (see Fig. 6), both vacua exist and are perturbatively
stable. We can have both f small and o' small in this interval and therefore calculate
perturbatively the free energy starting from both vacua, and compare the results. Here
is what we find [4]: The tree result (Figs. 8 and 9, graph I) for the free eunergy of the vacuum
characterized by (V(B), «(8)) = (0, 0) is shifted by radiative corrections to graph III. The
tree result for the vacuum characterized by (V(B), «(B)) # (0, 0) is shifted by radiative
corrections to graph II. For the gauge group SO(3) and a 4d-lattice we find a first order
transition at f, = 2.62, where graphs II and III intersect. This is 6% above the M.C.
result M€ = 248 [6, 2, 22]. The error on graph III in Fig. 8 is negligible, so graph II
must lie below the exact free energy of the phase it represents. Graph II is the result of
a one-loop approximation, and, counting power of a~!, we believe only the two-loop term
can shift graph II sufficiently upwards to shift f, down 6%. For SU(2) in 4d (Fig. 9),
graphs II and III do not intersect. Moreover, if graph II is shifted upwards by two-loop
corrections by approximately the same amount as we have just learned it should in the
case of SO(3), then graphs II and III in the case of SU(2) lie practically on top of each other
in the interval [8,, B,], where both are defined. This indicates that the free energy is one
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Fig. 8. Free energy for SO(3). Graph labelled T is Fig. 9. Same as Fig. 8, but for SUQ)

the zeroth order mean field results for the strong and
weak coupling phases. Graph labelled II is mean field
approximation plus one-loop corrections from the
isospin 1-channel for the weak coupling phase. Graph
labelled IIT is the result of correcting the mean field
approximation in the strong coupling phase with the
first three terms in the strong coupling expansion [4]

analytic function, which we have approached perturbatively from two different starting
points. Consequently, MFT with radiative corrections included predicts absence of a phase
transition for SU(2) in 4d, in full agreement with M.C. results. Predictions by MFT with
radiative corrections for lattice gauge theories with Wilson action and various groups
have been collected in the table (Table I).

The following variant action for the gauge group SU(2) has received much attention
during the last year [2, 27-34, 43] because it interpolates between the Wilson actions for
Z(2), SO(3), and, most interesting, SU(2):

S(B; U) = EP: (Be 5 Tt Up+B4 5 ((Tr Up)*—1)),

Up=T[ U, U,eSUQ). , (2.12)
ledP
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TABLE 1
Transition points f; for various Wilson lattice gauge theories
4d 5d
MC MFT MC MFT
_ — g .
SUQ) none | none 1.642+ .015 [24] 1.77
SO3) 248 16, 22, 2] | 2.62 not available 2.03
ZQ2) 0.4407 [23] 0.440 not available 0.329
(analytical result)
u) 1.01 (second order) [25] 1.03 [21]
U(o0) 0.75+0.05 [26] 0.74 [26]
(extrapolation of MC :
beyond U(6)) |

For U(co) it is lim N-2f(N) that is given.

N= o
This action has also been studied by mean field methods with radiative corrections. The
main results were shown in Figs. 1 and 2. For details on how these results were obtained,
see Ref. [1].

3. What is so good about these results?

We saw that MFT with some radiative corrections will predict and locate first order
phase transitions for gauge groups and actions that have such transitions. It will also
describe the internal energy as a function of §. The accuracy is agreeable, and we believe
it can be improved to fine by taking into account two-loop vacuum bubbles in the vacuum
(V, o) # (0,0). This is interesting because:

(I) It is worth money: As Korthals Altes has told you in his lecture at this school,
M.C. investigations of lattice gauge theories with Wilson and other one-plaqﬁette actions
may not have reached the scaling region, i.e. may not represent the physics of continuum
gauge theory [35]. A straightforward way to settle this and other issues of the continuum
limit is to repeat the M.C. calculations for larger values of §. This is not possible with
computers and budgets available today. So, since you cannot bring § to the scaling region,
you must bring the scaling region to 8. For this reason, people these days design actions
supposed to scale at lower values of f than one-plaquette actions do [36, 37]. Once you
have written down such an action, or a family of actions, you do not have to spend your
computing budget investigating it. MFT will put you out of business faster and cheaper
by locating the thing that will put you out of business: a first order transition in, or pointing
to, the p-region where you hoped for scaling behaviour®.

(I1) Reproduction of M.C. results is a check on MFT. First order transitions and
crossovers do not really interest us. We want to work in the large f limit, far away from
such reminiscents of strong coupling. Neither does the internal energy truely interest us.
It is large Wilson loops, glueball masses, and eventually hadron masses, we would like

! T thank R. B. Pearson for drawing this application to my attention.
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to evaluate by MFT. We have attempted nothing of that sort, and such projects will cer-
tainly require a creative application of the method to succeed. What we have done is to
show that the method passes the natural first small test one should submit it to before
attempting anything more ambitious with it.

(I It confirms that MFT with radiative corrections is the natural perturbation
theory on the lattice. The plaquette energy of SU(2) provides a convincing illustration:
MFT to tree level gives graph | in Fig. 3. This graph fits the M.C. data better than weak
coupling perturbation theory to order 82 does [44], and is considerably easier to obtain.

4. What is next?

(I} The contribution to the free emergy from two loop diagrams in the vacuum
(V, a) # (0, 0) should be evaluated to order o, since ignorance of this contribution is
the major source of error in MFT for the moment. This is a tedious, but straightforward
calculation, which has been started.

(IT) Bachas and Dashen have recently suggested that lattice gauge theories in 4d
having one-plaquette actions with non-trivial, local maxima, as a consequence hereof
have first order phase transitions [38). Theories with Wilson action and gauge group
SU(2) in a representation with isospin J > 1 are examples of such theories. And indeed,
they all seem to have first order transitions [39]. Moreover, it seems possible to check
the role of the non-trivial maxima of the one-plaquette action directly. It seems possible
to isolate and remove by hand the contributions to the partition function from the non-
-trivial local maxima of the one-plaquette action. The resulting partition function is close
to the one obtained for I = 4, so it probably has no phase transition. If this is so, we
have confirmed the Bachas-Dashen hypothesis by direct inspection and manipulation of
a set -of lattice gauge theories.

(IIT) Application of the machinery of MFT with radiative corrections to lattice gauge
theories with finite physical temperature seems straightforward, though technically more
complicated, and should enable one to locate first order phase transitions, when they
are there {40].

(IV)) The Wilson loop and the string tension are the next things to consider, if the
two-loop calculation mentioned in () really proves MFT a high precision method for
evaluation of local densities. It is not at all straightforward to apply MFT to this, nor any
other, nonlocal object. It nevertheless seems to be the natural next step to take, if possible,
on the way to calculations with dynamical fermions in the continuum limit.

(V) Mean field theory has already been applied to calculations with dynamical fer-
mions for zero and finite § values [41, 42). See Zinn-Justin’s lectures at this school. At
large values of B, only MFT without radiative corrections has been applied [42). Consid-
ering the striking agreement found between experimental hadron masses and those
calculated with the rather crude approximations of Refs. [41] and [42], T am convinced
that we will hear more about this project in the future.

I thank the organizers for a pleasant summer school and for a solid introduction to
contemporary Polish.
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