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The formulation of fermion path integrals as transition amplitudes is discussed for
gauge theories. Fermion states are specified by products of Grassmann variables, which form
an orthogonal and complete basis. The expression for the Hamiltonian operating on the
products is derived. In an application to Green functions, the fermion propagator is derived
for a variety of boundary conditions at t = + o0.

PACS numbers: 11.10.Np

1. Introduction

We live in a world made out of quarks and leptons, interacting via gauge fields. Clearly
a proper understandiag of the fermion interactions is a prerequisite for describing the phys-
ical phenomena. However, beyond perturbation theory that becomes a highly non-trivial
task. The fermion degrees of freedom manifest themselves via a determinant, which is
a noun-local functional of the gauge field {1, 2]. Even an approximate evaluation of the
determinant is very difficult. This has recently been emphasized by numerical calculations
with lattice gauge theories [3].

The problem posed by fermion interactions can be seea most simply in QED. (The
situation is quite analogous in non-abelian gauge theories like QCD.) The generating
functional Z of QED Green functions is [4]

ZU, % 1] = § D(ADDB, p) exp [i f d*x(ZL +T - A+ Tp+PD); )
where J(x), x(x) and j(x) are sources and the Lagrangian is
& = 3 F P+ (i —ey* 4,—m)y, 2

F,,=0,4,~0,4,

Any Green function can be obtained by differentiating Z w.r.t. the source of each external
leg, and then putting J = y = ¥ = 0. Thus an N-point Green function is just aa expec-
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tation value of the product of N fields,

1
Gy = —— | HA)DB, ) A... P... p... exp [ijd‘x.?]. (3)
Z[0] — s
N fields
The path integral in (1) and (3) is a product of integrals over each field component

at all space-time points:

3 4 20

Jo2@. » =111 TI | 44,9 [ dp.(dp ). @
X p=0a=1 -

The crucial difference between Bose and Fermi fields now appears. The photon field 4,(x)

is an ordinary number, whercas the clectron fields v, { are anticommuting Grassmann

numbers,

{9a(x), we(»)} = 0. 5)

The “integrals™ over Grassmann variables in (4) have little to do with ordinary integrals.
The rules are

fdyp =1, [dyl=0. 6

Thus the integral removes the integration variable (once it has been anticommuted to the
left). If the variable does not appear in the integrand, the integral is zero. Since p2 = 0
by (5), the rules (6) are sufficient for calculating any Grassmann integral. A turther discus-
sion of Grassmann calculus can be found in [1].

The usual procedure for evaluating Green functions in QED is to expand Z in powers
of the coupling e. The Grassmann integration rules (6) give rise to the same perturbation
expansion as obtained in the operator formalism. This verifies the path integral represen-
tation (1) of Z.

Ordinary perturbation theory can be regarded as an expansion of the fields around
the vacuum (zero-field) configuration [2, 4]. Other field configurations which minimize
the total action can equally be used as the starting point of a perturbative expaasion.
An example of such a non-trivial classical solution is the instanton in (the pure gluon
sector of Euclidean) QCD [5].

In QED, the classical field equations for photons are the Maxwell equations. Because
photons carry no charge, the photon sector of QED is trivially solvable in terms of freely
propagating plane waves.

The inclusion of electrons, on the other hand, introduces qualitatively new features.
A naive minimization of the action I = [d*x¥ in (2),

ol
04,(x)

= 9, F" —epy’y =0 Q)

evidently does not make sense, as (7) mixes ordinary (4,) and Grassmann numbers (y, ).
The mistake in (7) was to apply standard differential calculus procedures to the non-
-standard Grassmann iategration (6).
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In order to find the minimum (w.r.t. 4,) of the effective action in the presence of elec-
trons, the electron fields must be integrated out. This gives [1]

Z[J, % x] = § %(A) Det (7 + iey*d,+im)exp [i f d*x(—=1 F, F*™+J . A)]
xexp [—i § d*xd*y3(x) (18 —ey’d,— m)”" 'x(»)]. ®)

When j = x = 0, the integrand is an ordinary functional of 4, which can be minimized
using the rules of standard calculus.

The catch is, however, that we have traded the (Gaussian) Grassmann integrals for
a very complicated functional of 4,. The determinant in (8) should be taken over space-
-time as well as Dirac indices. Hence we are dealing with a determinant of an infinite
dimensional matrix, whose functional dependence on A4, is hard to visualize. Even a nu-
merical evaluation, for a given ficld configuration A,(x), of the finite determinant corre-
sponding to a discrete space-time is by no means trivial [3].

The purpose of these lectures is to show that the determinant, or more precisely the
generalized determinants corresponding to expectation values of products of Grassmang
variables as in (3), nonetheless have some simple properties. In particular, we shall work
out the dependence of the determinant on the time interval covered by the path integral
in (4) (for ordinary Green functions onc integrates over the fields at all times, — o0 < ¢ < ).
We arrive at a picture of the determinant as a transition amplitude from one fermion con-
figuratioa to another in the given time interval, and in the presence of an arbitrary back-
ground field 4,(x).

The transition amplitude formulation for fermions differs in an important respect
from that for bosons. The initial and final states for bosous are specified by the functional
form (over space) of the boson field (at the corresponding times) [4]. This cannot be done
for fermion fields, which are Grassmann variables. As we shall see, fermion states are
specified by products of field variables, i.e., by the form of the Green function (3). This
also ensures that the occupation number of fermions can be only zero or one, as required
by the Pauli principle.

The fermion transition amplitudes satisty a “‘time evolution” equation, which can be
expressed in terms of a Hamiltonian operating on the product ot Grassmana fields (fer-
mion states). In an application of this equation, we show how it implies the usual equation
of motion for the fermion propagator. The form of the propagator solution depends also
on the boundary conditions imposed on the fermion states at ¢ = + 0.

A shorter version of the calculations to be presented below has already been published
elsewhere [6].

2. The determinant in 0+ 1 dimensions

The technique we shall use is most simply illustrated by considering the time depend-
eace of a system defined at a single space point. The fermion part of the QED Lagrangian
(2) then reduces to

Zy(t) = PLid,—eA()]y, 6]
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where (), P(t) have only one component (there is no spin degree of freedom). The mass
term has been absorbed in eA(?).

We begin by considering the determinant

b ty
1, 1)1, £,y = § D(P, v) exp {-‘I dip(t) [0,+ ieA(t)]w()}

= Det [§,+ieA()]. (10)

The bracket notation in (10) is used to emphasize our interpretation of the determinant as
a transition amplitude. The convenience of this notation will soon become apparent.
The *“1” appearing in |1, ¢,> and {l, t,| refers to the boundary conditions at the initial
and final times ¢, ¢t,. (It is the factor multiplying the exponent in the integrand of (10),
see below.)

The path integral in (10) extends over the fields §(¢) and () for ¢, < ¢t < ¢,. To define
it properly we must first make the time interval discrete then comsider the limit of con-
tinuous time development. Thus we divide the iaterval 4t = t,—1, into n parts, separated
by the discrete times to =1, t; = t,+At/n, ..., t, = t,.

There are several possible choices for the differential operation &, when time is discrete.
We use the *“‘centrel derivative”

n
(at)k,l = 52; (Ox+ 1,1“5k,t+ ) (k1=0,..,n), (1)

which has the virtue of keeping the discrete Lagrangian hermitian. Other choices, such
as the “forward derivative”,

n
(0t)k,l = Z;(au 1.1—5k,t) (12)

would lead to a different evolution equatioa. The difference presumably resides in the
formalism rather than in the physics, however.
The determinant (10) is thus defined as

Lty = [(TT dfidvo

24t
X exp [" Z P (5k+ 10— 0k i1t " ieAk‘sk,t) 1/’1:] s (13)

o

where A, = A(t), etc. For finite n this is a well-defined function of the gauge field A,
k=90,..,n

We wish to find the change in the determinant induced by a small variation of 1,
(or #,). Hence we expand it into subdeterminants, which implies doing some of the Grass-
mann integrals in (13). Remembering that the exponent can be written as a product of
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factors,
exp (; PiBuyy) = H 1+ P Buyy) (14)

it is easy to see that the k = 0 integratioa in (13) gives

_ . 24t
<1, tblli ta> = J( dIPkdl/}k) <¢1w1+ —';" ler)
i A,

k=1

x exp [~ “ZJI el ). (15)

Doing now also the k = 1 integral we obtain

_ 24t _ 24t \?
<1, tbll: ta>= dtpkd?pk 1— n lerwzwz'{" Tie AOAI}

x exp [~ “iﬂ Bl il (16)

At this point we observe that the first term in the brackets of (16) is nothing but
<1, til, 2+ %>, the original determinant with a shifted initial time. Bringing this
term to the Lh.s. and letting n — oo we have the evolution equation

d
di,

The last term in (16) can be neglected, being 0(1/n%). The initial state [Py, t,> in (17)
implies of factor §(s,)y(f,) in front of the exponeat, as seen from (16).
An analogous calculation for the amplitude {1, #,|{Pyp, t,> gives

<13 tblls ta> = ieA(ta) (1’ tbl@'p: ta)' (17)

d
25 L 6lPys ta) = eA(te) <1, 11, ta). (18)

Together with (17), this gives
Ltlt, 1y = 3 (z+277),
z = exp [—ie tfth(t)], (19)
L 4lBy, 2y = 3 (z—271), -

where we anticipated the initial value (23) for ¢, = t,. Hence the determinant can be cal-
culated exactly for arbitrary A(¢) in 0+1 dimensions.! Needless to say, this will not be
the case in more realistic situations.

Anticipating the case with several space dimensions, let us introduce the following

! This has been noted before. See, e.g., Ref, [7].
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notations. A general amplitude will be denoted (C,, #,|C,, t,>. Here C,(C,) specify the initial
(final) fermion configurations, and are products of v, § fields at t = 1, (¢t = t,). In the
above examples we encountered C, = 1 and Py, and C, = 1. In 0+ 1 dimensions there are
actually only four possible products,

C=1Ly,% or Py 20

Any linear combination of these basis states with complex coefficients also defines a con-
figuration.
The amplitude is defined as the n — oo limit

<Cb’ tblcm ta> = lim I(k];lo du_’kdwk)cltca

odd n—w

n

24t
X exp [— E Py (5k+ 11— Ok pe1+ M ieAkak,l) 'Pt] > (#2))]
Ki=0

1l

where n takes odd values. C* is obtained from C by “Grassmann conjugation’ or “invo-
lution” [1], which interchanges? y and y (p* = y, p* = 9) and reverses the ordering of
the fields (like hermitian conjugation). Any numerical coefficients in C appear complex
conjugated in C*. For example, (i+yy)* = —i+pyp.

The Cj convention in (21) makes the initial value of the amplitude for ¢, — 7, assume
a simple form. When A¢ = t,—t, - 0 we may drop the last term in the exponent of (21).
But then the evolution is trivial: The effect of an even number k of integrations is to replace
C.(¥o> Wo) by Co(wi, wi) (Eq. (16) was an example of this). After n—1 integrals we thus
have

<Cba tlcw t> = j‘(k—];[ : dﬁkd"pk)cl’:ca €Xp (Wn¢n—1 +lpn'pn~l)' (22)
Now the k = n—1 integral equals the coefficient of y,.,9,-; in the integrand. If y,_,
andfor y,_, is missing from C,(y,_,, ¥.—,), it must be taken from the exponent, and
brings with it a p, and/or u,. The k = n integral is nonzero only provided Cj(w,, v,)
times the previously obtained factors , and/or y, equals +v,u,, i.e., C, = +C,. Because
of the reversal of the ordering of the fields in Cj the sign is positive,

{Cy, tiCyy 1) = 8(C,, Cp), (23)

where C, and C, are assumed to be any of the basis states (20) (single products with unit
coefficient).

The evolution equation for a general amplitude can be concisely expressed in terms
of a Hamiltonian defined by

d

dt <Cb’ tblca, ta) = <Cb’ thiH(ta)ICa’ ta> = i<cb’ thH(ta)Cm ta>' (24)

2 The rule in 3+1 dimensions is given in Eq. (35).
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In 0+ 1 dimensions,

H(t) = eA@D)p(n)pir) + ()0, (25)
where ¢ is the Grassmann derivative, which acts [1] like the integral (6):
opy=1, 0l =0 (26)

From H - 1 = eApy and Hyy = eA one varifies (17) and (18). Moreover, Hy = Hyp = 0
so that

-)

d {
. <Cb’ tbl 7}’ » ta> = 0 (27)

dt,

as can also be obtained by a direct calculation.
The Grassmann representation of the adjoint field ¢+ is obtained by noting that

<Cb9 tl'l’Ca, t> = <aCbs tlcaa t>

according to (23). This implies [1, 2]
yr =0 (28)

which is consistent with {y*, w} = 1. Hence the Hamiltonian (25) is hermitian,

H+=H (29)
and we have

d
I {Cps tCas ;) = —IKCH(t)Cps t]C, 1) (30)
b

By direct inspection we also note, for Grassmann conjugation,
(HC)* = HC*, (3D

3. Evolution in 3+1 dimensions

In a system with many space points the fermion coafiguration is specified as in (20)
by products C of p, p fields, which now carry both space and Dirac indices. To keep the
notation clear (and the products C finite) it is convenient to assume space to be discrete.
In applications involving only configurations that can be labelled by a finite number of
points (e.g., the two-point Green functions of Section 4), the continuum limit can then be
directly taken.

We shall here work with a naive discretization of the continuum Lagrangian (2).
Hence gauge invariance will be lost but should, just as rotational invariance, be recovered
in the continuum limit.

For the space derivative on a cubic lattice of spacing @ we take the “central” difference

R T .
4)x,y) = Z[é(x-%—a,,y)—é(x—aj,y)] (i=1273), (32)
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where a ; 1s a vector of length a pointing in the J-direction, and & is the Kronecker delta

function.
A general amplitude is now defined as the n — o (continuous time) limit

<Cba tblcav ta> = dhm JJ(Wa zs‘))Cb(: exp{ z Z Z ‘Pa(tm x)
odd n—

kiI=0 x,y af=1

-+ >0 2At - > - s
X | (O 1,1"5k,1+ Jo(x, Yy — T Oy - A(x, y)

24t . I i -
+— i(m+ ey’ A, (ti, X))51,10(X, y)] ve(ti, y)} s (33)
where n is odd and
b n 4
f2@,v) = ka I:I I_Il dp,(ti X)d.(ti> X)- (34)

As in (21), the Grassmann conjugated C* is obtained from C by reversing the field ordering
and identifying

PRt %) = 9, X0 [, D]* = y0p(t, X). (35)

Ordinary numbers in C appear complex conjugated in C*. All  and y variables appearing
in the products C,(C,) of (33) are evaluated at # = £, (¢t = ).

The evolution equation is obtained just as in the 0+ 1-dimensional case by explicitly
doing the k = 0, 1 integrals in {33). Keeping track of the space and Dirac indices one
finds (24), where the Hamiltonian is now

H() = 3, [iy - 4R, 3)+(m+ey'4,(t, )G, )17

x5y
x [Palt, D)pp(t, ) +00 (8 X548 85 (1, 1)] (36)

(a sum over repeated Dirac indices is implied).

It is straightforward to show that just as in 0+ 1 dimensions H is hermitian, H* = H,
and real under Grassmann-conjugation, (HC)* = HC*,

The value of (C,, t,|C,, t,> in (33) for 1, — ¢, is also obtained as in the 0+ 1-dimen-
sional case. The result (23) shows that the basis states |C, t) are orthonormal, where C
is any single product of y, p variables with unit coefficient. The relation

; <Cb’ tblcs t> <C’ tlcm ta> = <Cb! tblcw ta> (37)

shows that the basis states also form a complete set. To prove (37), we show first that the
Lh.s. is independent of ¢,1i.e., its time derivative vanishes:

lz <Cbs tb‘HC’ t> <C, tlcaa ta)'_i Z <Cb, tb!cly t> <HC’, tlca’ ta> = 0' (38)
C c
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{Here we used also the evolution equation w.r.t. the final time, Eq. (30).) There is a pairwise
cancellation of terms in (38). Corresponding to an arbitrary term in {C,, t,|HC, t> of the
form

[i7 - 4%, §)+(m+ey* 4)5(%, 1)I? <Cy, 1Bt Dvy(t, Y)C, 1
there is a term for C’ = y, (¢, 55)%(2, Y)C in (HC', t|C,, t,> which cancels it:
[—i7* - A, X)+(m+e(r* 4,095, ) (Bp(t, 5Py 0u(t, $)C', 11C,, 1,
= [iy - 4(x, D) +(m+ey*4,)8(x, N7 <C, 1|C,, 1,).

Thus the Lh.s of (37) is independent of t. Now we may choose t = ¢, and use the ortho-
normality (23) to prove the completeness relation (37).
We conclude this section by showing that the standard relation

<Cb9 tblca’ ta> = <Caa talcba tb>* (39)

applies to our amplitudes. Because the amplitude is an ordinary number Grassmann con-
jugation equals complex conjugation,

<Ca’ talcba tb>*

= lim [9(p, ¥)CiC, exp {'*‘ Y Pty -J;)Yg’p [(5k+ 10— O+ DX, me

odd n— 0

24t . oo 241 N I L
- 7 5k,1y . A(x’ y)'" —1’1— l(m+e(‘y A).)*)ak,l(s(xa .V) yau"pa’(tk’ X) s (40)

where the overall sign change in the exponent was due to interchanging the limits in the
time integral. The expression (40) is equivalent to (33).

4. Green functions

Green functions are of the form (3). Here we shall be concerned only with the Grass-
mann part of the path integral. Thus the fermion propagator in an arbitrary background
field 4, is, in our notation,

Daﬁ(x, }’) = <C0’ + l'l/‘a(x)%()’) ICO: - OO>/<C0, + CO!CO, - w>
= [ D(P, PICH(+ ©)p(X)Pp(y)Co(~ ) exp {— 3, B[... ]9}
x{Cqy, + 0|Cq, — 0>~ = D(Cy), 41)

where the exponent is as in (33).

It is clear from (41) that the propagator can only be calculated given the boundary
configurations C, at t = + co. This is analogous to the situation for bosons, where the
boundary conditions [2] specify the type of propagator (e.g., retarded, advanced or Feynman
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propagators). In the path integral formulation little attention is usually paid to the boundary
conditions for fermions, however.

We have seen above that for fermions the boundary conditions are specified by prod-
ucts C of the Grassmann variables. “Now it is not immediately obvious which “vacuum”
configuration C, should be used in (41). However, we would expect any bare vacuum
to satisfy (H, = H(A4, = 0)),

(i) HyCy = EyCo (time transiation invariance). (422)
(if) Space translation invariance (on the lattice). (42b)
Since the vacuum should be “neutral”, it is furthermore natural to impose

(ii}) C§ = C,. (42c)

Cousider first the 0+ 1-dimensional case. The eigenstates of the Hamiltonian (25)
with eA(t) = m are 1+yy, p and y:

Hol4py) = £m(1+py),  Hoy = Hop = 0. (43)

Note, in particular, that C = 1 is not an eigenstate.
It is straightforward to calculate from (41) the free propagators in 0+ l-dimensions,
corresponding to the states Co in (43). For C, = w we have

D(y) = 8(x~y) <y, xip ey, »>—00r—x) <, yIp(p()lp, x> “49

since {y, + |y, —0) =1 and the vacuum develops trivially wuntil perturbed by
w(x)p(y). The first term in (44) vanishes since p*(y) = 0. From

Hopy = m,  Hopy = mPpy
we find, when the number of time intervals in y—x is odd,
D(y) = ~0(y=x) {yy, yl exp [—i(y— x)Hollyy, y> = —8(y—x) cos m(x—~y). (45)

Thus the boundary condition Cy = p leads to an advanced propagator. Similarly oac
finds a retarded propagator for Cqy = v,

D(y) = 0(x—y) cos m(x—y). (46)

On the other hand, when Cy = 1+{y the propagator is nonzero for both x > y
and x < y:

D(1 £ yy) = 0(x—y) {y, x|y, DK Ly, x|l Ly, y>
—0(y—xXp, i, XD+ 9y, y|l Lpy, x). 4n

Using <y, x|y, y> = {, ylp, xp = | and {Lxpy, x|l £py, p> = 2 exp [Fim(x—p)] we
get

D(1+py) = + e(x—y) exp [Limlx—y|]. 48

The change of sign at equal times (x = y) is a characteristic of Feynman-type propagators.
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The eigenstates v,  can be trivially generalized to 34 1-dimesions,

[Ty and  []5.(2 %), (49)

where the products run over all space points and Dirac components As seen from the
Hamiltonian (36), these states have zero eigenvalue They again give rise to retarded and
advanced propacgators. We shall not consider them further here.

The following states satisfy all the conditions (42), i.e., they are translationally in-
variant, ‘“‘neatral” eigenstates of Hj:

Ca(t) = exp [+ T (e ) (1, %)), (50a)
Co(t) = exp [F, PRB( Dyy(r, 3)]. (50b)

In (50b), P(x) = =+1 is a sign which alternates over the lattice points: P(x +a P= —P(X).
From (36) we find, in the case of an arbitrary gauge field 4,1, x),

HOC (1) = 142 eA%1, X)C (1), (51a)
H()C(1) = Y, [~2eA(t, X) - 7101, wy(1, X)Cpl0). (51b)
x.a,8

Hence Cp is an ecigenstate of H only when A=0.

Consider now the fermion propagator (41). To show that it satisfies the eqaations of
motion we may differentiate it w.r.t. x° or »°, and use (24) on the state w(x)C, (if x° < »°)
or p(»C, (for y° < x°). The vacuum states (50) satisfy, for any 4,

[H, v@]Cs = F L1°KEz )p(F)Cs, (522)
[H,$@)]C. = F gw(?c)K,.(ic’, 2)y°Cs, (52b)
[H, 9@]Cr = ~ L1°KiG B PR, (52¢)
[H, 3@)]Cp = ~ T, FERPEW KX, 27°Cr, (52)
where ]
Kz, %) = iy - Az, D) +[m+ey* 4,(2)]6 G, X). (53)

We define the p° derivative as the discrete time difference (11) (which also appears
in the Lagrangian of (33)):

4 ooy = (s 2 _p(e— 2
dyOD(y)—ZAt[D(y+n) D(y "):l (54)
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Then from (24) and (52b) we find that the tree (4, = 0) propagator (41) satisfies, for
Co = C:t’

d -
0 Dy(x,y) =1 Z D ,(x, 2)Ko(z, Y)7°, (5%)

3
where 2° = )°. The F sign of (52b) is compensated in (55) by the fact that dD /dy°, accord-
ing to (54), is evaluated at odd times compared to D(y°). From the Lagrangian of (33)
one readily sees that a shift of one time interval implies

P(°%, Y)C:(°) > TP <}’0+ 'A;ta }) Cy (.Vo'*‘ f:;) +0 ("11") . (56a)
For the Cp vacuum of (50b) a shift of one time interval gives
PO% IO - ~FG)p 57+ f'n—’y) o (y°+ %) vo (,—1,) (s6b)
Thus using (52d) the free propagator with boundary coundition Cy = C, satisfies
d‘;d Dp(x, y) = i Z De(x, 2)Y°P(2)Ko(z, YIP(Y) = i z Dy(x, 2)Ko(Z, y° (57

i.e., Co = C; and C, = C, lead to the same equation of motion.
In deriving (55) and (57) we assumed x° > y° (the same equations result for x° < 3°).
For x° = y° we have, using the orthogonality condition (23),
Co, — oo>

d n -1 V. § S _ 4t o
;i?D(x, y) = QE<CO, + oo|p(x°, %) [tp (x°+ — y) —w(x"— — y)]

- h - =
x {Co, + ®|Co, — 00)™! = — 2—A;7°5(x, »)- (58)

As n — 00, this becomes —y°3(x°—y°)3(%, ¥). Hence for arbitrary x and y the tree lattice
propagator satisfies

ik% D(x, yy° = — Z D(x, 2)K oz, y)—10(x° — y*)3(x, ¥)- (59)

As is well-known, there is a fermion species multiplication on the lattice. This is also
evident from (59). Due to the symmetry property
Koz, y) = P@)Ko(—Z, —1)P() (60)

there is, corresponding to any ‘‘smooth” propagator",D(x, ») a related, “oscillating” one
P(x)D(%, $)P(y), where & = (x°, —X). (Actually, there are 2* degenerate solutions of (59),
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corresponding to sign oscillations along any combination of lattice directions.) A unique
propagator can be found in the continuum limit by imposing a momentum cut-off (smooth-
ness in x).

In the continuum limit the propagator equation (59) redaces to the standard one,

D(x, y) (if,+m) = —id*(x—y). (61)

To find out how our propagators (41) are related to the standard Feynman propagators,

d*k exp[—ik - (x—p)]

G K—mizie &M (62)

Di(x,y) =i

we should study their behaviour for x° — y°. Using (23),

4
<7°¢(X)Co, X°|p(y)Co, x° — —n—t>

lim D(x,y) = li : = 3y%(x, ),
x"-:g“iOi‘ (x y) ngg) (CO: + w|CO’ - UJ) 27 ( y)
lim  D(x,y) = —3v%(x, ) (63)
X0~ y00—

for any choice of C, = C,, Cp. Comparing this with
lim [DF(x, »)+D5(x, »)] = £7°6°(x~)) (64
0%

x0-30

we conclude that in the continuum limit,

D(x, y) = 7 [Dr(x, )+ Dr (x, y)]. (65)

It is interesting that a formalism based on this half retarded plus half advanced propagator
was studied long ago by Wheeler and Feynman [8]. Their “absorber” could correspond to
the nontrivial boundary condition C, # 1.

5. Conclusions

The path integral formulatioas tor fermions and bosons are formally very similar.
The fact that the fermion variables are Grassmann numbers leads, however, to qualitative
differences in the interpretation of the integrals as transition amplitudes. The boundary
conditions for bosons are specified by an ordinary function over space: the field con-
figuration at a given time. For fermions, the occupation number (0 or 1) at each point
should be given instead. With fermion states labeled by products of Grassmaan variables
(cf. Eq. (33)) this is indeed the case. The time evolution of a fermion state is completely
determined by the background gauge field, and expressed in terms of the Hamiltonian
(36) operating on the Grassmann product.

Just as for bosons, the boundary conditions imposed at ¢t = + oo affect the type of
Green functions one obtains. The requirements (42) of time and space translational in-
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variance and g <> y symmetry severely restricts the possible choices. We found three
“vacuum’’ states (50) satisfying these conditions. They all led to the same free propagator
(65), which is the average ot the Feynman propagators with +ic proscriptions. Hence it
seems that perturbation theory with the above lattice regularization method will be differ-
ent from the staadard one (4 Je prescription). Presumably the results for physical quan-
tities (S-matrix elements) will be the same, however.

The evolution equation (24) expresses the dependence of the fermion determinant
on the gauge field. Hence it may be useful in determining the extrema of the effective
action, with the fermion degrees of freedom integrated out. In particular, the connection
of such *classical” solutions to the fermion bound states should be investigated.

1 am grateful for informative discussions with. C. E. DeTar, Y. Frishman and L. Mc
Lerran. The kind invitation by the organizers of this school is warmly appreciated.
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