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The Ernst equations for the stationary Einstein-Maxwell fields are shown to be con-
nected with the field theory of harmonic map from the Riemann three-space (M, k) into
a Kihler symmetric space SU(2,1)/S(U(2) X U(1) i.e. the non-linear g-model on symmetric
space of the covariance group of these equations; similarly, the vacuum Ernst equations
can be interpreted as the o-model on SU(1,1)/U(1). The formulation of Ernst’s equations
in terms of SU(2,1)-valued field subject to a quadratic constraint, which realizes an embedding
of a Kihler symmetric space into the covariance group is given. For the axially symmetric
fields it is shown that Ernst’s equations are integrable. The Zakharov-Shabat null-curvature
representation of these equations and the corresponding linear system of equations is pre-
sented. It is conjectured that an infinite-dimensional group of transformations acting on the
solution space of the Ernst equations, which appears naturally in this approach, is connected
with the Geroch-Kinnersley group.

PACS numbers: 04.20.Cv

1. Introduction

The highly nonlinear character of the Einstein equations makes it difficult to obtain
a sufficiently general class of exact solutions in General Relativity. However, the physical
applications of the theory depend largely on the possibilities to find such a class of solutions
to the field equations. During the last decade a substantial progress has been made in
establishing the structure of vacuum and electrovacuum fields which have Killing vectors.
1t has been found for this case that ficld equations have a large hidden symmetry group
{5, 8, 16-18, 30]. The stationary and axisymmetric vacuum and electrovacuum solutions
to the field equations aroused much of interest, because of their relevance in astrophysics.
A large class of transformations which permit to generate a new stationary and axisymmetric
solutions from a given one is now known [16, 17, 24-27, 13-15, 34].

Ehlers and Harrison [8, 18] were the first to discover such transformations for vacuum
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and electrovacuum solutions, respectively. The complex potential formulation {12, 13]
of stationary and axisymmetric field problem introduced by Ernst made the covariance
of the field equations under the internal group G of transformations transparent. Geroch
in his excellent paper {16] has shown that the hidden G = SO(2,1) = SL(2, R) = SU(1,1)
symmetry is a remarkable feature of all stationary fields. Geroch noted also, that for the
stationary and axisymmetric fields there appears the group A = SL(2, R) of linear transfor-
mations which acts in a two-dimensional vector space of commuting Killing vectors.
This created a possibility of extending the internal covariance group G = SL(2, R) to the
infinite-dimensional Geroch group K [17]. Kinnersley [24] has shown that the electrovacuum
Ernst equations are covariant under the G = SU(2, 1) symmetry group. It turned out
that for the stationary, axisymmetric electrovacuums an infinite-dimensional Kinnersley
K’ group may be introduced, having the Geroch group K as a subgroup [25-27]. The
appearance of such a rich internal structure of the field equations has been systematically
explored to produce solution generating methods [22, 25-27]. The structure of K(K')
group was examined in detail by constructing a convenient representation for it and its
Lie algebra [12-15, 25-27]. Currently, the effort of research on stationary and axisymmetric
vacuum and electrovacuum solutions concentrates on two lines. One approach is that of
Ernst, Geroch and Kinnersley. It tends to find all (asymptotically flat, at least) solutions
to the field equations by using the K(K') group representation which has been worked
out in the complex Ernst potential approach [12-15, 25-27]. Numerous interesting solu-
tions to the field equations have been found in this approach [6, 22, 25-27}. A second
approach is based on the inverse method of Shabat and Zakharov [2, 3, 1, 32, 37] and the
Backlund transformation method [20, 29, 34]. It seems that all these methods are somehow
related [6, 28]. As it is well known, a number of two-dimensional field theories can be
integrated by means of the inverse method [31]. This is the case when field equations
can be represented as compatibility conditions of a certain pair of linear equations. Zakha-
rov and Mikhailov [31] and Zakharov and Shabat [37] have shown that very general
class of integrable models appears when one considers a null-curvature conditions for
affine connections in certain fiber buadles. The Einstein and Rinstein-Maxwell equations
for stationary, axisymmetric fields have been integrated in this scheme [1-3].

The purpose of this paper is to show that the Ernst equations for vacuum and electro-
vacuum fields may be interpreted as g-model equations on the symmetric spaces of non-
compact type SU(1,1)/U(1) and SU(2,1)/S(U(2) x U(1), respectively. We will develope
the G (G') group covariant formalism for the Einstein and Einstein-Maxwell equations
for stationary fields. The effective Lagrangians covariant under G (G’) groups describing
three-dimensional gravity coupled to nonlinear o-models will be presented. The Ernst
equations can be derived from these effective Lagrangians. First of all, we observe that
these effective Lagrangians are covariant under the nonlinear homographic representations
of G and G’ groups. This reminds us o-models on the complex projective spaces CP(1)
and CP(2) defined in terms of nonhomogeneous complex coordinates. Recently the vacuum
Ernst equations were considered in the context of -model connected with the pseudosphere
(Lobaczewski geometry) {4, 21]. However, this result is contained implicite in the Matzner
and Misner paper [30]. They have shown that the stationary, axisymmetric vacuum Einstein
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field equations are connected with the harmonic mapping between R3/SO(2) and the hyper-
boloid in Minkowski 3-space (for the definition of the harmonic mapping we reffer the
reader to the paper by Misner [33]). We will show that the Ernst equations can be describzd
as the principal o-model equations restricted to invariant submanifolds of their covariance
groups SU(1,1) and SU(2,1) for vacuum and electrovacuum case respectively. We introduce
also the projector formalism developed previously for Grassmannian g-models {9, 31},
for o-models on the hermitian hyperbolic spaces SU(1,1)/U(1) and SU(2,1)/S(U(2) x U(1)).
The Shabat-Zakharov pair of linear equations for the Ernst equations will be introduced
The Emnst equations for stationary and axisymmetric fields are represented as compatibility
conditions of these linear equations. It turns out that one has to solve the homogeneous
Riemann-Hilbert problem on a two-fold Riemann surface in order to generate solutions
for the Ernst equations. The solutions of this problem present an infinite-dimensional
representation of a hidden symmetry group of the field equations [31, 37, 38}].

The paper is organized as follows: in Sect. 2 we briefly introduce the Ernst equations
for electrovacuum case. We present the effective action for these equations. Subsect. 2.1
presents the formulation of Ernst’s equations as the Kéhler o-model. We discuss shortly
the isometry group G [7] of the Kéhler manifold connected with this model. It turns out
that the group G is a covariance group SU(2,1) of the Ernst equations. The Ernst potentials
may be regarded as a certain map on the Kihler manifold ## [33], which is proved to be
a homogeneous space of the isometry group G. In Subsect. 2.2 we discuss Ernst’s equations
in the framework of theory of symmetric spaces. We show that the Kahler o-model discussed
in Subsect. 2.1 can be described in terms of a single G-valued field g which is subject to
a quadratic constraint. This constraint realize an embedding of symmetric space ¢ into
the group G. In Sect. 3 we consider the case of axially symmetric fields. The Shabat-Zakha-
rov null-curvature representation has been found for the Ernst equations. We present
the solution generating for Ernst’s equations using their equivalence to the g-model on
a symmetric space. This method is essentially due to Zakharov and Shabat [37] and Ward
[38] in another context, also. An infinite-dimensional group acting on the space of solu-
tions arises naturally. In Sect. 4 we conclude our discussion of the Ernst equations.

2. The Lagrangian formulation of the field equations

We consider the Einstein and Einstein-Maxwell equations for stationary fields. These
equations have a large hidden symmetry group {16, 17, 24]. Using the formulation of these
equations given by Ernst [10, 11] and Israel and Wilson [23] we show that there exists
a Lagrangian formulation of the Ernst equations, which makes their inner symmetry
transparent. As it is well known, these equations may be written as equations in a three-
-dimensional space (M, hy) for the Ernst potentials [10, 11, 23, 24]. The Ernst potentials
appear as an immediate consequence of the fact, that a part of the Einstein and Maxwell
equations can be interpreted as integrability conditions.

Below we consider the clectrovacuum case, considering the vacuum case as a special
case of the former, by setting the complex electromagnetic potential y equal to 0. The
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Einstein-Maxwell equations written in terms of the Ernst potentials & and y yield [11, 24]

V% = (Ve4+2Vy) - Ve, @.1)
fV2yp = (Ve+2¢Vy) - Vy, (2.2)
fRy = &8+ Ve, i)+ PE 9,1y — 2Reey ;P 1), (2.3)

where V and “-” denote the covariant derivative and scalar product in the three-space
(M, hy) respectively. f is given by the formula

f=Ree+yp. 2.4

These equations can be derived from a variational principle!. Consider the following
action integral

S = Sg+S,, 2.5)
where S; is the Einstein-Hilbert action for the three-dimensional gravity
Sg = [ Jhd*xR (2.6)

and S, is the action of a certain field theory model of purely geometrical nature, namely
the Kahler g-model [27]

= ~1 [ Jhdxf *(Vs - VE+2yVe - Vp+2Ve - Vy—4Re eVy - Vip).  (2.7)

One can easily check that Egs. (2.1) and (2.2) follow from the action §,, because Sy does
not depend on € and p. Eq. (2.3) can be derived from the action §. Taking variations
of S with respect to A* one gets the three-dimensional Einstein equations with the “energy-
-momentum tensor’” of the “matter’ fields ¢ and y on the right-hand side

oL
Rik—_;' huR = — <_Tk _% hlkLa> . (2.8)
oh
. . ik . . . ik aLa
Contracting Eq. (2.8) with ™ and using homogeneity of L, i.e. A Shk = L, we have
R+L,=0. 29

Using this in (2.8) we obtain Eq. (2.3). Thus we have proved that the stationary Einstein-
-Maxwell equations are equivalent to the three-dimensional gravity coupled to certain
nonlinear fields. Similar results hold for the vacuum case. Eq. (2.3) may be considered
as a constraint for solutions of Eqs. (2.1} and (2.2). In general this constraint is too compli-
cated to be solved explicitly apart from the axisymmetric case when it becomes trivial
in this case Eq. (2.3) turns out to be integrable by quadratures.

! The Lagrangian formulations of vacuum and electrovacuum cases were studied by Ernst [10) and
Carter [39], respectively.
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We shall prove now that the action integral (2.7) is that of the nonlinear o-model
on the symmetric space £ = SU(2,1)/S(U(2) x U(1)). For the vacuum case the symmetric
space 3 turns out to be the SU(1,1)/U(1) symmetric space. We shall consider the model
(2.7) from several different points of view, taking into account the following formulations:

2.1. The Ernst equations as equations for the Kdhler o-model

Let us consider an almost complex manifold 5# with a Hermitian metric k,5. The
metric on # may be written in local coordinates as follows

ds® = kogdz°dz". (2.10)
A complex Hermitian manifold is a Kabler manifold {7] if it admits a closed nondegenerate
2-form o related to the imaginary part of k,

o = %k,;dz“ A d3P, .11)

dw = 0. 2.12)
The condition (2.12) is equivalent to the equations

Ok _Okyp  Okep _ Ok

= ) . 2.13
éz' 9" 0z o7’ (2.13)

Then the Kahler o-model is determined by the action integral [35, 36]
S = cf Jh d’xkgVz* - V7, (2.14)

where ¢ is a real constant and “.”” denotes the scalar product in 3-space (M, h,;). We shall
prove that (2.7) describes the g-model on a Kahler manifold s# of a noncompact type.
The Ernst potentials € and p may be interpreted as local coordinates on #: z; = ¢,z, = .
Putting in Eq. (2.14) ¢ = —1/2 we can see that the metric k,; related to (2.7) has the form

e 2y _ zt+3! 22 “2/1 222 )
() =7 (211") -—2(e+é))—( 2 +”> (252 _atey) G

One can show that the metric (2.15) is a Kahler metric. The metric k,; can be represented
in @ more symmetric form by means of a holomorphic transformation of local coordinates
Zz% = 1,2). This form enables us to identify the isometry group of the manifold 3 as the
SU(2,1) group. The new coordinates are introduced by the following holomorphic map
2 = WP, a = 1,2

1 2
w—1 2 w

1‘=— 2= —_——,
wi1’ wi+1

(2.16)

They are related to the field variables studied by Kinnersley [24]. We denote the coordinates
wl, w? by £ and % respectively. The action integral (2.7) in terms of & and 7 takes on the



224

particularly symmetric form

= =2 [ Jh Ex(EE+nii—1)"*(VE - VE+Vn - Vi

—(&Vn—nv§) - (EVii—7VE). 2.17)
Hence, the Kahler metric k,; on 2 in the new coordinates w* has the form
__ o f1-ni nE
ko) = (E&+nii—1 ’( i ) 2.18
(kap) = (§¢+nii—1) g 1- ¢ (2.18)

Now, we will study the isometry group G of the comlex Kéahler manifold # endowed
with the metric (2.18).

Holomorphic transformations of local coordinates w* which leave the metric invariant,
form an isometry group G of the manifold 5#. Here a composition rule of mappings of
M onto itself plays a role of a group product. It turns out that the metric (2.18) is invariant
under the rational, homographic maps of 5 onto itself

oo W uiw?+ud 2 uiw +uiw’+uj )
W = =3 3.2,.,3° =31, .3 .3, ,3¢ (2.19)
uiw Fuwitusz uiw +usw+u;3
where the matrix u = (1), u, v = 1, 2, 3 satisfies the following condition
utnu = 1, (2.20)

*“4” denotes hermitian conjugation of a matrix and % = (3,,) is the diagonal matrix
n = diag (1, 1, —1). The transformations (2.19) present a nonlinear homographic realiza-
tion of the isometry group G. It is clear that the phase factor in u is immaterial and we
can choose u to satisfy the condition: det ¥ = 1. The conditions stated above imply that
the isometry group G of ¢ is isomorphic to SU(2,1). It should be noted that the action
integral (2.17) is determined by the SU(2,1)-invariant Kihler structure on 2.

The isometry group SU(2,1) acts on 3 transitively i.e. it can transform a point on #
into an arbitrary point of . We take a fixed point p, of s with the coordinates
w'(po) = wi = (0,0). Then an arbitrary point p of # can be represented by p = up,,
where u is an element of G = SU(2,1), or in the local coordinates w*

u
w! = 5 wh=—3. (2.21)

Hence, 3¢ is a connected homogeneous space of a noncompact Lie group G = SU(2,1).
Consider the isotropy subgroup H of the point p,. H is a subgroup of G which leaves
Do fixed i.e. H = (h: hps = po). Two elements u and ¥’ of G represent the same point
of o if ' = uh, where h belongs to the subgroups H. Then the space 5 is diffeomorphic
to the left coset space G/H. One can show that the isotropy subgroup H of the point p, is
isomorphic to S(U(2)xU(1)) e.g. Ha hyh,, where h, € U(2), h; e U(1) and deth = 1.
Let us note, that the global group G acts linearly on suitable coordinates on G/H. We
could regard w4, p = 1,2,3 as the homogeneous coordinates on G/H = .
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Thus we have proved that the action integral (2.17) describes the nonlinear g-model
on the homogeneous space ) = SU(2,1)/S(U(2) x U(1)). Similarly, the analogous result
holds for the vacuum case when we have = 0, and the isometry group of # is isomorphic
to SU(1,1); »# is the homogeneous space SU(1,1)/U(1) for this case.

Finally, it should be noted that 2 is not only a homogeneous space but a symmetric
space also. One could in principle study the moedel under investigation formulated in terms
of another coordinates on G/H, in which the group G acts linearly on the coset space G/H.

2.2. The o-model on a symmetric space of the Kinnersley group G

The theory of symmetric spaces provides a convenient framework for disscussing
the inner symmetries of the g-models. Description of the model (2.17) in the language
of symmetric spaces has many attractive features. It enables us to apply the results obtained
recently for the clussical two-dimensional o-models [9, 31] to an analysis of the problem
of complete integrability of the Ernst equations for the axisymmetric fields.

We shall study the action integral (2.17) in the new coordinates v*, u = 1,2,3 on
M defined by

»N

1

v
1 2
w =-§’ w o=

(2.22)

<
t:u! <

w* are the standard coordinates on the space of equivalence classes of complex vectors
v = (v, 2, t®) # 0. We say that two vectors v, v’ are equivalent if there exists a complex
number ¢ such that v" = cv. The action of isometry group G on # is now linearized by
means of introduction of the homogeneous coordinates v* on #: v = uv, where u belongs
to the linear matrix representation of the group G = SU(2,1). A homogeneous space
# = G/H is diffeomorphic to the space of equivalence classes of complex vectors with
the SU(2,1)-invariant metric structure. The action integral (2.17) takes on the manifestly
SU(2,1)-invariant form

S = —dc [ Jhd*x{v, 9) " *({v, v) {Vv, Vo) — (v, Vo) (Vp, 1)), (2.23)

where {u, v> denotes the SU(2,1)-invariant scalar product in the space of complex vectors
v= (%03 #£0

(u, o) = w'n,o's 0 =(n,)=dig(l,1, —1). (2.24)
A complex vector v determines the projector P
P = v®0/{v, v, (2.25)
where
D=1, B, = 0, (v®§)‘; = p"vg. (2.26)
In virtue of (2.25) P satisfies
TrP=P' =1, (nP)*' =yP, P> =P (2.27)
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P transforms under the SU(2,1) linear transformation as follows
P =uPut if ¢ = uw. (2.28)
Using the identity
3T (VP - VP) = v, v) "2 (v, v) {Vo, Vo) — (v, Vo) (V, v)), (2.29)

one can write Eq. (2.23) in the form

= —2¢ [ Jhd’x Tt (VP - VP). (2.30)
We introduce the matrix g [9, 31]
g =1-2pP, (2.31)

where I is the unit matrix. It follows from (2.27) that the matrix g should satisfy the condi-
tions

g=1, gmg=1n g =ngy (2.32)

One can sce now that g is an element of G = SU(2,1) satisfying a quadratic constraint.
This leads us to the conclusion that the o-model (2.17) may bz described in terms of matrix
G-valued field g which is subject to a quadratic constraint. Substituting g to Eq. (2 30)
one obtains an action integral for the -model on the symmetricspace SU(2,1)/S(U(2) x U(1))

S = —1/2¢§/hd>xTr(Vg-Vg™"). (2.33)

To conclude this section let us describz the relationship between the present formulation
of the g-model (2.33) and the previous one (2.17). As it was shown in Subsect. 2.1, the
action integral (2.17) describes the nonlinear o-model on 3 = SU(2,1)/S(U(2) x U(1)).
The constraint (2.32) realizes an embz=dding of symmeiric space into the group SU(2,1)
as a closed totally gzodesic submanifold of the later. As an immediate consequence of this
we have that the space of solutions of the o-model on the symmetric space of G is a subspace
of the space of solutions of the principal g-model on G. In other words the constraint
(2.32) is compatible with the Euler-Lagrange equations of the action integral (2.33) [9, 31].

Define the symmetric space of G as the coset space G/H, where H is a fixed subgroup
of an involutive authomorphism of group G. Then the embedding of G/H into G is realized
by the map

9:GH->G, G>ag= ¢(Hu) = o(u)gou, (2.39)
where ¢ is an involutive automorphism of G and g, is a fixed element of G satisfying

800(go) = A1, 2.35)

where 4 is a real or complex number. From Eqgs. (2.34) and (2.35) it follows that g satisfies
the quadratic constraint

go(g) = AL (2.36)
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H is that subgroup of G which leaves g, invariant
go = e(h')goh, keH, .37
or H is a fixed subgroup of G invariant with respect to the involutive automorphism
o u—a(u) = g ou)go. (2.38)

In the case under consideration an involutive automorphism g is trivial i.e. ¢ = id, ¢ is
the identity map. The following choice of g, defines an involutive automorphism such
that the subgroup H of G = SU (2, 1) is isomorphic to S(U(2) x U(1))

go = diag (=1, 1, 1). (2.39)

This proves that the quadratic constraint g2 = I realizes the embedding of s into
G = SU(2,1). Finally, it should be noted that the choice of g, (Eq. (2.39)) corresponds,
by Eqgs. (2.22), (2.25), (2.31), to the choice of a fixed point p, on 3 with the coordinates
wg = (0, 0).

3. The null-curvature representation of the Ernst equations for the axisymmetric fields

We shall study the Ernst equations for the stationary and axisymmetric Einstein-
-Maxwell fields. One could consider the Ernst equations as the equations for the nonlinear
g-model on symmetric space SU(2,1)/S(U(2) x U(1)). As it is well known, the 2-dimensional
principal g-models as well as o-models on symmetric spaces can be integrated by the
method developed by Shabat and Zakharov {31, 32, 37). It turns out that this method
can be applied to the 3-dimensional o-model with axial symmetry [3, 32].

In Sect. 2 we have shown that there exists a natural SU(2,1)-invariant formulation
of the Ernst equations in terms of SU(2,1)-valued field g, restricted by a quadratic con-
straint.

The action integral for the Ernst equations takes on the particularly simple form

S=-—3cfod®xTr(0,g0,8™"), un=12 (3.1)

if one considers axisymmetric fields; g is SU(2,1)-valued field, which is subject to the
quadratic constraint (2.32). The field g satisfies the 2-dimensional Laplace equation

8,0,0 = 0, (3.2)

where x* are local conformal coordinates on a 2-space of orbits of the isometry group
generated by two Killing vectors [16, 17] i.e. the coordinates x* are chosen on a 2-space
of orbits in such a way that the metric has the conformally Euclidean form. The action
integral (3.1) leads to the field equations

0,(00,8)g ' —0d,gg ‘0,88 " =0. (3.3)
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These equations can be written in the more concise form when one introduces the right-
-invariant current on G/H

A, = 9,88 " (3.4)

A, may be considered to be an element of the Lie algebra of G. The “curvature” F,, of

A4, is equal to zero

F, =0,A4,-0,4,—[A,, A]] =0. (3.5)

It follows from Egs. (3.3) and (3.4) that the field equation expressed in terms of 4, field
takes a simple form

8,(04,) = 0. (3.6)

One could solve Eq. (3.5) by the *‘inverse” method. The procedure is as follows:
(i) Construct a set of sufficiently locally regular G-valued fields g on a 2-space.
(i) Insert the constructed field g into the formula for the current 4,. The assumption
of proper regularity of g ensures the solution of Eq. (3.5) to be sufficiently regular.
The point is that the Egs. (3.5) and (3.6) may be solved by the same procedure if one
is able to cast them into the null-curvature form. The idea is to find an appropriate system
of linear equations with compatibility conditions equivalent to Egs. (3.5) and (3.6).
It is convenient to introduce complex coordinates {, and {,

{y = Xy +ixy (o = & = x,—ix,. 3.7

Then, Egs. (3.5) and (3.6) can be written in the form
Fip = 0;4,—0,4,—[A,, A} = 0, (3.9)
8,A2+0,A4,+07 (0,14, +0,24;,) = 0, (3.9)

where A, are components of the connection in the new coordinates. We can now introduce
a one-parameter family of currents 4,(4) depending on a spectral parameter A as follows

A (L) = AAA,, (3.10)
where the matrix A(4) is given by
_{w+D)7! 0
A(R) = ( 0 —u-1"1) (3.11)
u depends on the spectral parameter 2 and the harmonic functions ¢ and z
u =) = o 'O+iz+J(A+iz)’—@?). (3.12)

where z is the harmonic conjugate function of g

zy = —igy, Z,=1iQ,3- (3.13)
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The spectral parameter A is defined on the two-fold Riemann surface £ with branching
points at 4 = —¢; and 4 = &,, where

& = o+iz, & =& =g—iz. (3.149)

It is not difficult to verify, using Eqs. (3.10), (3.11), (3.12) and (3.13), that the field equations
(3.8) and (3.9) must be satisfied iff 4,(4) has a null curvature

Fo (8 = 0,4(N—8,4,1)-[4,(4), AMN] (3.15)

The partial-fraction decomposition of F, () with respect to u yields two terms which
must vanish if 4, satisfies (3.8) and (3.9). It turns out that (3.15) is a compatibility condition
for the system of linear equations

0.9(2) = A(A)y(4). (3.16)

Thus we have found the Zakharov-Shabat null-curvature representation for the field
equations of nonlinear o-model (Eq. (3.1)) i.e. for the Ernst equations (2.1), (2.2).

It should be instructive to present another formulation of the Zakharov-Shabat pair
of linear equations for Eq. (3.3). This formulation is similar to that presented by Bielinsky
and Zakharov [3]. The compatibility condition of the following linear system is equivalent
to the field equations (3.8) and (3.9)

Lp(p) = AP, 3.17

where p plays now the role of a spectral parameter and the linear operators L, are defined
as follows

u—1 0

Ly =d,— —— 3.18
1 -e eluu T (3.13)
u+l 9
L, =0,—¢ 0 b — (3.19)
p—1op’
L, and L, commute if ¢ is a harmonic function
[Ll’ Lz] = 0 if 9.12 = 0. (3.20)

One can easily check that certain relationship between solutions to Egs (3.16) and (3.17)
holds

L) = 098, P(u(A) = v(4). (3.2

In general, one would expect the solution y of (3.16) or (3.17) to be an element of the general
linear group GL(3,C). One should find restrictions on the solutions y of (3.16) implied
by the conditions that g is an element of SU(2,1) group subject to a quadratic constraint.
It follows immediately from (3.17) and (2.32) that the matrix function § should satisfy
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the conditions
1 - .
gP (;) = PCA) 1P (—pn = P (w), (3.22)

where C(7) is a matrix subject to a certain constraints implied by Egs. (3.12), (3.21) and
(3.22). Let us note that the involution in the complex u-plane

1

p- —

, (3.23)
I

defines the involution * on the two-fold Riemann surface

i A% p(%) = ;(17) (3.24)

One can see that the relationship between u and A holds

1
A=3o (;H- ;) —iz. (3.25)

Then, from (3.12) and (3.25) it follows that * means the change of the sheet of &. In virtue
of this we have that the conditions on (1) implied by (2.32) may be written in the form

gy(2*) = p(CA), n 'y (=D = y7'(A). (3.26)

With each solution to the field equation (3.3) there is associated the solution (1) of the
linear system (3.16) satisfying the conditions (3.26). The remarkable property of the system
(3.16) that one can obtain a solution of (3.3) having a solution of (3.16) is the basic point

of procedure we describe below. In fact, we can show, using (3.17) and (3.22), that g is given
by the formula

g =P0), g=y(wo), (3.27)

where we have chosen the appropriate sheet of #, such that the point u = 0 is mapped
at A = co.

We shall describe, following Zakharov and Shabat [37], a method for generating
exact solutions of the Ernst equations. We choose a closed analytic contour I' on the
Riemann surface #. Hawing chosen a special solution g, of Eq. (3.3) we can find the
“current” A42(1). AJ(%) is singular on & at the branching points A = —¢,, &. Consider

a piecewise holomorphic gauge transformation of the current A2, depending on a spectral
parameter 4

AL = 1 ' DALDY (D~ v1 (D0p:(D), (3.28)

AZA) = v3 ' (DAL D (D)~ vz (Do, (A), (3.29)
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where ¥, and v, are matrices holomorphic inside and outside the contour I' respectively.
Then, the new current A4,(4)

AX(2) inside the contour I’
A) = {Af(i) outside the contour I, (3.30)

is everywhere holomorphic on # apart of singularities at the branching points A = —¢&,, &,.
1t is easy to see that the gauge transformed current 4,(4) has a null curvature F,4(4). Hence,
the gauge transformation generates a new solution of the field equations (3.8) and (3.9).
We demand A, to be defined on the contour I' by

A £ AN £ AL, (3.31)

where L denotes equality on the contour I'. It is seen from (3.16) that the formulas (3.28)
and (3.29) for the current A4, can be written more consisely introducing two matrices
w and o’

A,(A) = 89Ny~ (W), (3:32)
AXA) = 99’ DY T (), (3.33)

where
(D) = p1 Ave(d), YD) = v3 ' Dyo(d). (3.34)

Since the current A4, satisfies (3.31) one would expect to obtain a certain relationship between
the matrices y; and w, on the contour I'. In fact, taking into account (3.31), (3.32) and
(3.33) we have

8.y ') £ 0. (3.35)

We define on the contour I' a matrix Go which, in general, cannot be continued analyti-
cally outside a small vicinity of I on- &, as follows:

G £ v' T {(Ap(d),  9,G(4) = 0. (3.36)

The homogeneous Riemann-Hilbert problem emerges: having a given contour I' with
a matrix G defined on it

G() £ po(DG(Dys (D), (3.37)

we have to “split” G
G() £ p(Dy1 ' (A, (3.38)

where ¢, and y, are matrices holomorphic inside and outside the contour I' respectively.
Now suppose we begin with the solution g, of (3.3). Then we have to solve the homogeneous
Riemann-Hilbert problem (3.38) for a certain contour I' endowed with the matrix Gj.
The transformed solution g is given in terms of solution of the underlying homogeneous
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Riemann-Hilbert problem
g = v; '(0)go, (3.39)

where the appropriate sheet of # should be chosen carefully.

We would like to be sure that the transformed solution g is an element of SU(2,1)
group constrained by (2.32). The procedure described above produces a solution of (3.3)
consistent with the constraint if the contour I and the matrix G, are chosen properly.
A discussion of the freedom involved in the construction presented above shows that
without loss of generality one can choose the matrix G, to satisfy

Go ') £ 07 G5 (—pym, (3.40)
or
Gs'() £ n7'Gg (=T, (3:41)
and
Go (.E) £ Gow), Go(A® £ Gy, (3.42)

where G, denotes the generating matrix for solutions of (3.17) and Go(k) = Go(A(n)).
Finally, it should be noted that the contour I' cannot be chosen arbitrarily. It must
be preserved by two involutions in the complex u-plane

1
u-o —j, p- ’E (3.43)

as one can see from (3.40) and (3.42). There is some freedom in the choice of matrix G,
also

Go b d CGoc,, (3-44)

where C and C’ are SU(2,1) matrices depending on A and are subject to a certain constraints
implied by (3.41) and (3.42).

To summarize, the choice of a closed contour I endowed with matrix G, determines
completely a transformation of a given solution of (3.3) into a new one. The idea is to solve
the Riemann-Hilbert problem. Then, the new solution is given by (3.39). The Ernst poten-
tials are related to g by the formulas:

P} P?
{=-—35, n=—=, for electrovacuum case (3.45)
P 3 P 3

and

W

, n =0, for vacuum case. (3.46)

e
i
’ﬁl"c

(SRS
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4. Conclusions

The equivalence of Einstein’s equations for the stationary axially symmetric case
to the two-dimensional nonlinear ¢-model on a symmetric space # enables us to apply
the solution generating techniques developed earlier {31, 32, 37]. We have succeeded in
finding the null-curvature representation of the field equations. It is cosiderably easier
to study the properties of solutions of (3.16) than those of (3.3). The reason is, as it was
pointed out by Geroch [16], that the solutions of (3.3) are labeled by boundary conditions,
because it is a system of an elliptic partial differential equations, while the solutions of
(3.16) arc labeled by contours on the Riemann surface #, endowed with a matrix satisfying
certain conditions. Furthermore, a very rich structure arises — an infinite-dimensional
group of transformations acting on the space of solutions of (3.16). This group acts linearly
on the space of solutions of (3.16) by means of matrix multiplication and is generated by
the solutions of the Riemann-Hilbert problem. If one chooses the generating matrix
G, and the contour I' properly, the Riemann-Hilbert problem has a unique solution.
We obtain in this way, that the elements of the hidden symmetry group of Eq. (3.3) can
be represented by the matrices Gy, defined on the closed contour I'. The difficult part of
the above solution generating procedure is to find solutions of the homogeneous Riemann-
-Hilbert problem. In particular, the Riemann-Hilbert problem is equivalent to a certain
singular equation with the Cauchy-type kernel {14, 31, 37] which, in general, is too difficult
to be solved explicitly. It seems likely that the approach presented here is closely related
to these which are presently known [6, 12, 14, 28].

I thank Professor Andrzej Staruszkiewicz for helpful discussions.
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