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The role of spin in hadron-hadron collisions at large p, is investigated. The short
distance diagrams and the end-point (x —> 1) contribution give phenomenologically similar
results for the elastic nucleon-nucleon differential cross-section but differ significantly when
looking at the spin-spin asymmetries. The spin analysis suggests the dominance of the end-
-point diagrams at large angles and present energies. The limits on the nucleon wave function
are obtained from the comparison of spin effects in exclusive and inclusive reactions. Higher
order results in exclusive channels are reviewed. In the inclusive production we propose
a simple mode! of baryon polarization at large transverse momentum which accounts qualita-
tively for all experimental data in these processes. Other models are also reviewed. The whole
investigation suggests that the spin effects are a relatively clear probe of the complicated
hadron dynamics. .

PACS numbers: 13.85.-¢

1. Introduction

When looking at the complicated structure of hadron-hadron scattering it is important
to investigate all possible observables which characterize these processes. It may turn
then out that some quantities define uniquely the underlying dynamics whereas the others
come out similar in various calculation techniques. The following paper is devoted to the
investigation of the role of spin observables in hadronic collisions. Most of the work
concerns exclusive processes and in particular elastic scattering. In these channels it is
believed that we are able to separate the hard part of the process at large momentum transfer
t, in analogy to deep inelastic scattering. We present three, potentially important contribu-
tions to elastic scattering. They differ by the way the soft and hard parts are separated.
In the first one [1] the hard process contains in the lowest order all valence quarks which
exchange far off-shell gluons. The second contribution [2] — a special configuration of the
first one — occurs when all interacting constituents scatter with the exchange of equal
momentum transfers (pinch contribution). These diagrams are absent in the formfactor
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calculation. The third one comes from the configuration when one of the constituents in the
hadron carries almost all its momentum (x — 1), the hard part contains in this case only
the fast constituents (end-point contribution [3]). The extension [4] of Drell-Yan-West
relations to elastic scattering follows from the last contribution. In the situation when
the relative normalization of the mentioned terms is not fixed — it is given by the unknown,
soft part of the process — the importance of each term is determined phenomenologicalily.
It turns out that the calculated spin-spin asymmetries form a clear-cut test of the underlying
dynamics.

Another process investigated in detail is the large p, baryon production. Here again
the spin quantities turn out to show up interesting effects, in particular the hyperon polariza-
tion which increases with the transverse momentum.

Both the spin-spin asymmetries in elastic scattering and the hyperon polarization
were a challange to the theorists [5], after their measurements were first published [6, 7].
As a matter of fact their unexpected behaviour caused the author to get interested in the
spin effects of hadron physics.

The paper is organized as follows. In Section 2 we review the short distance expansion
applied to the exclusive processes starting with the electromagnetic formfactor of the meson
where the situation is best known. We also discuss the elastic scattering concentrating
on the spin-spin asymmetries. Section 3 is devoted to the pinch singularity diagrams of
elastic scattering and its role at large ¢. The Drell-Yan-West relations following from the
end-point region are recalled in Section 4. They are also extended there to the elastic scatter-
ing. In the last case one is also able to calculate the explicit form of the amplitude in the
leading order, so we compare it with all elastic NN, NN and n N data obtaining very good
agreement. The crucial step is the evaluation of the spin-spin asymmetries which suggest,
when compared with the data on A,, [6], that the end-point contribution dominates
the large c.m. angle region at present energies. As we already mentioned the results in
elastic scattering depend partly on the soft wave function. We test this dependence in the
last part of Section 4 by comparing the information coming from deep inelastic and elastic
scattering. A definite pattern of SU(6) symmetry breaking in the nucleon wave fonction
emerges.

Higher order corrections are briefly reviewed in Section 5. They are fully under control
in the pion formfactor but some conjectures are also made for the elastic amplitude. One
of the theoretical diseases, which makes our phenomenological analysis legitimate, is the
lack of information on the scale in these processes, in particular on the one governing the
Sudakov effects.

In Section 6 we skip to another type of hadronic processes where the spin effects show
up in a nontrivial way. We propose a phenomenological simple mechanism of baryon
polarization at large p, based on multiple quark scattering which accounts qualitatively
for all existing data and present its predictions. Other existing models are also reviewed.

Summary and conclusions follow in Section 7. We stress there once more the role
of spin in large momentum transfer collisions. Its effect is very pronounced in the hard
part of scattering and survives in a comparatively clean way the convolution with the soft
part.
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2. Short-distance amplitudes in exclusive processes

Recently it has been shown [8] that some exclusive processes can be analyzed in per-
turbative QCD. This means that one is able to factorize the large scale (Q?) dependence
from the soft momentum scale (p?) in the corresponding amplitude 7 (Q?, p?):

1
TQ% pY) = o [T@%1?, 2 (1) ®F (1?, P*)+R(Q?, p)],

where N is the dimension of &, R is power-suppressed with respect to the convolution
T ® f and p is the boundary between large and small momenta. Full control over the pertur-
bation expansion means that the renormalization group equation is valid for the coefficient
function (hard part of the process). Up to now the latter step was proven [8] only in the
case of meson formfactors. In other processes, like the baryon formfactors or fixed angle
elastic scattering higher order corrections, essentially Sudakov effects (discussed in
Section 5), can spoil the validity of the leading order results,

A. Formfactors

The pion formfactor to leading order in mz/ Q? (m, is the quark mass) and all orders
in Q% A2) takes the form [8] (see Fig. 1a)

F(Q*) = [ [dx] [dy]® ™ (x, 0)Tu(x, y, Q)O(», §,) 2.1

with

-~

Qx = @ - min (x)

. 0 (a?)

o o

Fig. 1a) The meson formfactor; b) the kernel V of Eq. (2.3) in lowest order
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and

2

fdx] =6(1— Y x) ﬁ dx;.
i1 =t

Ty is the hard scattering amplitude for the process y¥qq — qq. It can be expanded in powers
of a, with the leading term being

2
T = 16nCs 22 [ “o & ][1+O(ozs)] 2.2)
0 X2Y2 X

where ¢; is the charge of the i-th quark.
The distribution amplitude

&k,
o 0 = 16n° HJd 03 J' H 167° (Z k“) #lkas %)

obeys “the evolution equation’ analogous to the Altarelli-Parisi equation [9] for the
structure function

2
o(x, Q) = “ﬁ )

0

dylV(x, y)@(y, Q). 2.3
3oz O J[y] (x, »2(y, Q) (2.3)
The kernel ¥ stands in the leading order for the one gluon exchange bztween the qq pair
(see Fig. 1b). Substituting Eq. (2.2) and the solution of Eq. (2.3) into Eq. (2.1) one obtains
the leading order in o, and m,/Q? expression for the pion formfactor which asymptotically,

as Q% = o0, reads [10]

2

F(Q?) = 16nf} ——= ’(Q ). (2.4

The normalization is known in Eq. (2.4) because the unknown matrix element {0|J%|n)>
has been expressed by the ® weak decay constant f,.

Analogical result was obtained [11] in leading order for the baryon magnetic form-
factor, At asymptotic Q2

2\"12 2\ —4(33-2n¢)/9
Gu(@) 4oz, [“’gﬁ | <ln %) @5)

where n; is the number of flavours.

At finite Q% more terms contribute to (2.5) and the precise shape depends on the
distribution amplitude @(x, Qo) at some Q,. For example [11], with ®(x, 2 GeV?)
~ 8(x;—1/3) - 8(x,—1/3) the resulting curves for various choices of Aqcp are shown in
Fig. 2 together with the data [12]. One sees that the corrections to the old dimensional
counting rules [13] are not seen, which means that only very small Aqcp is acceptable.
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Fig. 2. The magnetic formfactor Gy [12] together with the predictions of Ref. [11]

Another lesson from Fig. 2 is that one does not expect the formfactor to be well described
with hard scattering techniques for 0% < 5 GeV? — this value of the momentum transfer
seems to be a borderline between soft and hard scattering.

The spin structure of the formfactors is very simplified in the short-distance region.
Because of hard interaction at each QCD vertex one arrives at total helicity conservation
in the process, the helicity flip amplitudes being suppressed by mi/ Q2. This implies e.g.
power suppression of the Dirac formfactor F,(Q?) as compared to Gy(Q?), analogically
the transition formfactor G,, with helicity 3/2 is power suppressed as compared to that
with helicity 1/2.

B. Elastic scattering

The outlined scheme can be applied to elastic scattering at large angles [14]. At fixed,
large c.m. angle 6., and large Mandelstam variables s and ¢ one can write the elastic
amplitude for the process AB — CD in terms of the hadronic distribution amplitudes
&y(x, Q%) and the hard scattering amplitude M(x;, s, 1) (see Fig. 3a)

H(s, 1) = Ii I;I . (% i.l.)¢;(xd’ POM(x;, 5, )P p(X, P1)Ps(Xss p).
=a,b,c,
In leading order, M(x;, s, t) contains the sum of all connected valence quark diagrams.
The external quark lines are nearly on shell and colinear with the corresponding initial
and final hadrons (Fig. 3b). One easily sees that the number of possible amplitudes M is very
large (e.g. in baryon-baryon scattering one finds about 10* different diagrams). This makes
their exact computation very improbable. However one can still make some predictions
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in particular concerning the power behaviour of the cross-section at fixed 6, ,, . All leading
order amplitudes M fall as a(a,/s)”/*>~2 where » is the total number of constituents in the
initial and final states together. Knowing the behaviour of the distribution amplitudes,
following from Eq. (2.3) one obtains [14]

do [T 2/ p2\ 2 L™
37~[ s ] ('“ 717) f6em), 2.6)
DA D
B D 8 YE EZ 1)
al

i

b) c)

Fig. 3a) The decomposition of the elastic scattering amplitude; b) and ¢) The hard part of the elastic
scattering diagram in leading order

where for mesons y; = 0 when their helicity # = 0 and y; = —4/9(33—2n,) when |h| = 1
and for baryons y; = —2/9(33 —2#n;) when |#| = 1/2 and y; = —~2/3(33 —2n,) when 4| = 3/2.

C. Spin effects in elastic scattering

The spin structure of elastic nucleon-nucleon scattering can be analyzed by looking
at the polarization P and spin-spin asymmetries A;;, i = (n, 1, s) (the independent helicity
amplitudes @;, i = 1, ..., 5 and the spin quantitics P, A,,, 4y, A, 4, are defined in the
Appendix A). The measurement of

_ do/di(11)+do/di(l])—da/dK(1])—da/dt(]T)
" do|dt(11)+do/di(} ) +do]di(1})+do/dt(}1)
2019,-9,9))
@412+ 1P, + 10,17 + |9, ]2 + 4|24

.7

(spins of the initial protons projected perpendicular to the scattering plane) in pyp; = pp
atlarge angles and p; = 11.75 GeV/c ([6], sce Fig. 4) caused some excitement when it turned
out that at §., = 90° protons with spins parallel scatter 4 times more often than with
antiparallel spins. The calculation of the spin cffects within lowest order QCD followed
soon thereafter [15, 16]. The crucial point in both analyses is the helicity conservation
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at each quark-gluon vertex. Taking into account the quark interchange diagrams of the
type shown in Fig. 3b and summing all possible quark routings the nonzero unsymmetrized
proton amplitudes are

Moy pri(s,t) =(No +Ni_+N§, +NI) - f(s, 1) =35 f(s, 1)
Moo (5,0) = Ny Nyo +2N4 No)f(s, 1) = 5 f(5, 1)
"”—++—(s’ t) = _((Nu+_Nu—)2+(Nd+—Nd—)2)f(s’ t) == —15'7".{(5! t)’ (28)

L
L Py py— PP 4
| p =1L75GeV/c

ot

L Apn 7]
o—t+—t—t+—+—+—+

- Al =Ass |
-Q5 | f Il | 1 |
4 6 8 10
-t[GeV?]

Fig. 4. The large angle data on Aa, at pr. = 11.75 GeV/c [6] together with the predictions of short distance
diagrams [15, 16] on A,n and Ap

where f(s, t) contains the colour and momentum dependent part of the amplitude and
N, is the number of g-type quarks with helicity A in the proton. Symmetrization of the
amplitudes (2.8) leads to

®,(s, 1) = 5 B1f(s, ) +311(s, W),

D,(5,2) =0 |

D4(s, 1) = + (14f(s, )+ 17f(s, v)),

D4(s, 1) = 5 (= 17f(s, )~ 14f(s, w)),

ds(s, 1) = 0. 29

Analogous expressions for the np — np scattering are given in Appendix B.
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Using (2.9) in Eqs (2.7) and (A.2) one obtains at 90°

Ann = —All = "'Als = %’ . (2-10)

The above values do not change by more than 2 9, when going to lower angles [15]. A char-
acteristic feature of the quark interchange diagrams (Fig. 3b) is vanishing of &, due to
helicity conservation and consequently

A= —A,. (2.11)

The predictions (2.10) are in disagreement with the pp experiment at 11.75 GeV/c (see
Fig. 4). To cure them one can assume other important contributions to the amplitude
at these energies and momentum transfers. The interference of the amplitudes (2.8) with
instanton exchange diagrams [15] or pinch diagrams with o-meson exchange [16] is able
to increase the value of A,,. However none of these two contributions is needed to describe
any other effects in elastic scattering.

Not all QCD diagrams have been included in the above analysis. In particular the
ones with the gluon exchange between the interchanged quarks (Fig. 3c) cannot be expressed
with the same function f(s, t) which was used in Eqgs (2.8). The interference of these two
types of diagrams can potentially increase the value of A4,,. A simple example of such
mechanism is presented in Ref. [17]. However large value of the spin-spin asymmetry is
there accidental and occurs only at energies close to 12 GeV/e.

3. Pinch diagrams in elastic scattering

An important contribution to elastic scattering was first noticed by Landshoff [2].
It occurs when all constituents in the initial hadrons have approximately equal light-cone
momentum fractions x. In such configuration an on-shell scattering of all constituents
with the exchange of equal momentum transfers is possible. Its power behaviour at fixed

§:
0;
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Fig. 5. The meson-meson scattering in the pinch region

c.m. scattering angle suggests the dominance of these diagrams over the ones governed
by the dimensional counting rules [2].

We sketch the calculation in the case of meson-meson elastic scattering. The amplitude
can be parametrized in the infinite momentum frame as in Fig. 5 [14]. Momentum conser-
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vation gives then
xa+xb = xc’*‘xd,
ka+ kb_' kc— kd = (xc _xa)r.l.+ (xd_ xn)qJ.'
In general the intrinsic transverse momenta k; (i = a, b, c,d) are large. However for
A A
(xc—xa) S— and (xd_xa) <—, (3.1)
L q:

where A is a scale characterizing soft interaction, all the transverse momenta inside the initial
and final hadrons are small. Such a contribution is enhanced by the hadroaic wave function
which is peaked for small k;. One can calculate the energy denominators connected with

the diagrams of Fig. 5. (In fact they appear in the Feynman rules in the infinite momentum
frame and light cone gauge [14].)

Dy & (X=X} 4 (xg—%)q3 +2ka—ky) - G, +2(k—Ky) - 7L +O(A) +ie  (3.2)
Dy & —Df+0(A%).

Adding the diagrams one obtains a J function coming from the sum of the denominators

%l + 'l; = =2mié(A.Ir,|+44lq.]),
where

4o = (xe—x) Irl+20kpe—K) 7L
and

Ay = (%4— %) 1qul+2(kya—k1a) - 4u-

The scattering amplitude, proportional to

1
"”xs ~ j dxadxbdxcdxd 'Pl’;(xd) 'Pé(xc) lIIA(xa) YIl!(xb)
o

X %“Mz WO(Aclr ]+ 44]q,1)o(x, + xp — X — X4)

4ril .
fdx WX PEx,) Pa(x,) PalxIME (X, 5, 1)
N

where after the change of variables we integrated over 4, and 4,4 up to the scale A.
Knowing the dimension of the quark-quark amplitude M_, (in lowest order it is s°) one



248

obtains

do (1)
dt r

SO

which is one power less as compared to the prediction of the dimensional counting rules.
Consequently this contribution may dominate the elastic scattering at highest energies
and momentum transfers. Analogical derivation gives in the case of pp scattering

do al(t)

— = A—f(0.n) 33
a - Sf(Ocm) (3.3)
In fact it is argued [18] that the function f(4,,,) is approximately a constant. One again
sees that the cross-section (3.3) decreases slower at fixsd 6, , than the ‘dimensional
counting rules” result do/dt ~ 1/s'°. The region where it dominates the cross-section depends

06 LENRN R Rt R B B B
® ——
o PTPP ns-2788 Gev
"un o s= 754 GeV
w07 * es= 379 GeV |

107 |-

%tg (pp—=pp) lmb/GeV2}
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10'" 1 TR I BT AN
5 0 15

~t[GeVY

Fig. 6. do/dt in pp elastic scattering at large ¢ [19). The curve represents 1/¢® behaviour [18]

on the exact value of the constant A. Its phznom:znological estimate and comparison of
Eq. (3.3) with the data [19] suggzst that thz region of 3 G:V? < j#| € s is wzll described
by the pinch diagrams (see Fig. 6). This contribution, which is indzpandant of energy at
given ¢, is negligible then at large angles where |#| & s.

In the case of n N elastic scattering pure pinch singularity diagrams are not possible —
at least one of the interacting quarks is far off-sh:ll in thz in:erm:diate state. However
hybrid diagrams [18] of the typ: showa in Fig. 7 give still dominant power behaviour
(do/dt ~ 1/t7).
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From the above arguments one sees that the pinch singularity does not play any role
in spin effects at large angles. For completeness we give however the resulting asymmetries
in pp elastic scattering corresponding to the case with one gluon exchange in M, [20, 16]

Ay = _Ass = 4_9f ~ 0.22,
A" = - Zi ~ —0.56.

M £ M

B _ S B

A A

Fig. 7. The meson-baryon elastic scattering diagram in the pinch region [18]. The crossed line is far off shell

The smallness of 4,, is again due to helicity conservation at each vertex (only &, ¢, and
@, are nonzero).

All the presented results are valid in the lowest order of perturbation calculation.
Possible corrections are discussed in Section 5.

4. End-point contribution to exclusive processes

The idea of the end-point dominance in an elastic event was first suggested by Feynman
[21] and was based on the assumption that the interacting parton carries almost all of the
hadron momentum. In such a case the initial and final configurations were alike and
consequently one obtained an elastic transition.

A quantitative formulation of this idea used to relate the behaviour of the form-
factor at large @2, the structure function and the wave function at x close to 1 is known
as the Drell-Yan-West relation [3]. We sketch their derivation for the meson formfactor
in order to be able to use the same physical argument to extend the relations to elastic
scattering.

It is assumed in this Szction that the wave function at the end-point is dominated
by soft effects.

A. The formfactor

The main idea in the end-point region is to keep the intrinsic transverse momenta
of all constituents small, both in the initial and final state — such a contribution is enhanced
by the soft wave function which is peaked at low k. Parametrizing the amplitude as in
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Fig. 8 and making use of the momentum conservation the intrinsic transverse momenta
for the upper quark line are &k, and (1 -y)g,+k, = (1—x)g,+k, in the initial and final
state respectively. Requiring both of them to be less than a scale A, characterizing the soft
process, below which there is no suppression of the above diagram by the wave function
we obtain the condition

A
(1-x) < < @.1)

(0,q)

(x,ky) (x,xq +(1=-x)q+k 1)

(1,0) m@ ém: (1,9)

(1-x,~k,)=(1-x,(1-x)q-(1-x)q-k.)

Fig. 8. The n formfactor in the end-point calculation

The formfactor is proportional to the overlap of the wave functions
F(Q?) = [ dxdk, ¥*(x, ky +(1 —x)q ) ¥(x, k,). “4.2)

One can make use of (4.1) in the integration of (4.2) over k, and the result does not depend
on q,, except of the integration limit

1
F@>»~ | | ddl¥, I
1- =
q.

The behaviour of the formfactor depends now on the tail of the soft wave function near
= 1. Similar calculation relates the structure function to the wave function at x — 1.

The Drell-Yan-West relations can thus be written in the following form:

If

Y(x, k) ~(1—-x)* for x-—1
then
F(Q*) ~ (A%[@?’*1? for Q%>
vWo(x, Q%) ~ (1-x)** for x - 1. 4.3)

The derivation of these relations for the baryons goes in a similar way with only slight
modifications due to a greater number of constituents. The relations read in this case:
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If
Y(ix, k) ~({1—-x)’ for x-1

then

Gu(@%) ~ (21Q*Y*" for Q>

yWy(x, 0%) ~ (1-x)'*?* for x-1. 4.4)
One notices that an appropriate choice of § (6 = 1/2 for the pion and 1 for the nucleon)
leads to the agreement with the data. One also reproduces the “dimensional counting
rules”’, however not from counting the dimensions of the calculated quantities but from

the hadronic wave function which may be soft (for a recent analysis of the end-point
contribution to elastic formfactor see Ref. [22]).

B. The elastic scattering — the Drell-Yan-West relations

The end-point dominance in elastic scattering is based on the same principle as in
the formfactor calculation — small transverse momenta are required inside the hadrons
[21]. This is obtained in the configuration where the constituents which exchange large
momentum carry almost all the momentum of the hadrons. The remaining constituents
with x & 0 are allowed to interact softly, this interaction howecver can be shifted to the
hadronic wave function.

(1-Xg (1-xg Hreq)-kg ) = (1-xc,(1-xc)r-kc)

11,req) {17}

(Xa ,Ia{r'q)‘kq} ('c:xc reke

(xg Xgqkg)

11,0)

7

(1-2y o= ky ) . (1-xy4 , (1-x4)q-kgql

Fig. 9. The meson-meson elastic scattering in the end-point region

As a first example we calculate the meson-meson scattering amplitude. Assuming
the valence quark dominance of the process the amplitude may be parametrized as in Fig. 9.
There are two large variables in this process: r, and q,, r, - g, = 0. They are related to the
Mandelstam variables by

2, 2 _ 2 .2
s=ry+q, t=-—q), u= —r.

Making use of the momentum conservation for the noninteracting lines we obtain
X, = X, = X,

Ya =) (4.52)

2
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(l_x)q.l. = kn_kc’
(1-y)q, = kg—k. (4.5b)

The equations (4.5b) mean that the intrinsic transverse momenta k; (i = a, b, ¢, d) are
small if

A
-»=2(1—-x)<—
4

a relation analogous to (4.1).
The scattering amplitude reads

“”(s’ t) = 5 dxdydk,dkaz(x, ka + (1 _x)ql.)q’l:;(y’ kb +(1 —y)q.l.)
* M(x, y, 11, 4)¥ (%, k) P8(3, ks), (4.6)

where Wix, k,) is the wave function of the i-th meson, M(x, y,r,, ¢,) — the fast quark
scattering amplitude and we have made use of the momentum conservation. The integrals
over the transverse momenta can be performed up to the scale A which characterizes
the soft interaction, this region being enhanced by the wave functions. The integral factorizes
in this approximation and gives

1

1
M, )~ [ dxPEx, WV, D) [ dyPp(y, )Py, d)
1-2/q) 1-2/q4

sMxmyrx l,s1) “.7)

One recognizes the integrals as the meson formfactors, they coincide with those discussed
before when A = C and B = D. The amplitude M(l, 1, s, t) represents hard scattering
of on-shell quarks. In this factorized part of the process one can use the dimensional
counting rules [13]. They give the dimension of M(1, 1, x, ) as (energy)®. As a result
the meson-meson amplitude #(s, t) behaves as follows

(s, t) ~ (energy) 2~ @atintictin)

up to logarithmic corrections. ; (I = A, B, C, D) is the power of the (1—x) behaviour
of the I-th wave function. The extension of the Drell-Yan-West relations to the case of

elastic meson-meson scattering can be thus formulated in a following way:
If

Yix, k) ~1A-x) for x-1
then

do 1

4+ +dg+dctdp
-~ (—) f(6...) for large s, t and tfs fixed. 4.8)
s
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Choosing in the case of znm scattering 4; as in Subsection A we obtain

d 1\°

((1=Tp J1-xp )k - Ko )= (1T 1 =X g ) (1-Ty NT=x4)q- kg~ Ky )

Fig. 10. The meson-baryon elastic scattering in the end-point region

To calculate the meson-baryon or baryon-baryon amplitude one proceeds along the
same lines. The factorization occurs in analogy to Eq. (4.7) the baryonic vertex produces
then (see Fig. 10)

§ dxy(1=xy) j dvdk, Pp (xy, Tos ky+(1—X)q,)¥s(%s, Ts Ks)
l -~ o~
~ f dx(1—xp)Pp(Xp A ¥p(Xp, A), (4.10)
1~2/qy

where

1
‘1’1; (xps DY Pp(xp, 4) =o" dfb'f’; (Xp> Tos A)Pp(Xps Tos 4)-

We recognize the baryon formfactor in this expression. The Drell-Yan-West relations
extended to this case look as follows:
Mcson-baryon scattering (A,C-mesons, B,D-baryons):

da, (1)5+6A+63+&c+50

-~ S(6em)- 4.11)

N

With the previous choice for §;

do 1\8
LN (;) FOum): “.12)

Baryon-baryon scattering

da 1 6+3A+3p+dc+dDp
o) /6. @1
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with §; fixed before (§; = 1)

do 1\*
T~(3) SO (@19

Both results (4.12) and (4.14) coincide with the dimensional counting rulés. However
we stress once again that they do not follow from the hard subprocess but depend crucially
on the behaviour of the hadronic wave function.

One problem is new when extending the Drell-Yan-West relations to elastic scattering.
One is dealing in the present case with two variables r, and ¢,, both of them being large.
In the large angle region where r /g, = ¢ = 1 both conditions (1 —x) < /g, and (1—x)
« A/r, assure small intrinsic transverse momenta. Consequently one is facing the problem,
which of the two variables determines the integration limits in Eqs (4.7) and (4.10) or in
other words, what are the arguments of the formfactors which appear in these expressions.

C. Elastic scattering — the differential cross-section

Very simple form of the amplitude in the end-point region allows its explicit calcula-
tion, at least in the leading order.

We begin with the nucleon-nucleon elastic scattering where the amplitude can be tested
with respect to its energy and angular dependence or its flavour and crossing properties.
The hadronic amplitude .#(s, t) is related to the hard, on-shell quark-quark scattering
amplitude M5, 1) with s = (x> - (¥>-sa sand f = {x)- {p)>- t~ ¢. In leading order

+ 0(a?)

Fig. 11. The hard part of elastic scattering diagram in leading order

h

M(s, t) contains one gluon exchange, with interchanged legs (see Fig. 11) to allow for
colour singlet exchange in the t-channel. It is interesting to notice that the simple quark
interchange diagrams (without interaction), typical for the Constituent Interchange Model
[23], do not contribute to the end-point singularity.

The two independent quark amplitudes are in leading order

s t
M, i, t)=4na, —, M_,.,_(51) = dno, —, (4.15)
u u

where the indices + denote the quark helicities.

The mentioned problem of the proper choice of the formfactor arguments can be
solved by noticing that a single diagram (before f-u symmetrization) is approximately
t-u symmetric in the limit o, — 0. The general form of #(s, t) is thus

H(s, 1) = Gpu(D)G ()M, 1).
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It reminds of models [24] used for a long time in elastic scattering, in our case however
the formfactors have different arguments and the form of the quark-quark amplitude
is strictly defined.

The exact expression for .#(s, t) depends on the spin configuration of the nucleons
and combinatorical factors following from different ways of interchanging quark lines
[25]. In the case of pp scattering the amplitudes read:

Moigii(50) =5 [BIM 441 (s, )+ 1AM (s, D]GM(GM(),
My (s,1) = 5 [1TM 44— (5, )]GM()Gm(w),
Mo (50) =g [BIM o (s, ) +14M 4 1 4 (s, D]GM()Gm(),
Mgy (s,1) = 5 [1TM_, 4 (5, D]Gm(Gu(u),
Moo (5,0 =0 (4.16)

The remaining amplitudes are related to the above ones due to parity conservation, time
reversal invariance and identical particle relations (see Appendix A). The appropriate
t-u symmetrization completes the construction of the PP scattering amplitudes (see Appen-
dix A). The spin structure of Eqs (4.16) is discussed in more detail in the next subsection.
For the nucleon formfactor we take the standard dipole form.

The resulting curves for the differential cross-section do/dt as a function of ¢ for
s = 28.6, 33.5, 37.8 and 41.8 GeVZ and |t] > 5 GeV?2 are shown in Fig. 12. The large angle
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Fig. 12. do/dt of pp elastic scattering at large angles [26] together with the end-point prediction
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data [26] at these energies are also plotted showing very good agreement with the calculated
cross-section. The only free parameter is the overall normalization. It can be expressed
through the strong coupling constant o, which is kept fixed. Its estimate gives too large
value of «, suggesting a possibility of additional soft interaction among the hadrons [27].
It may be particularly important in the end-point region where even some of the valence
quarks have x ~ 0, but is expected to influence only the normalization of the process.

* 11GeV/c

107+

d6/dt (mb/GeVz)

12GeV/c

i » Yo o Vi 2
0 -t 5 GeV

Fig. 13. The same as in Fig. 12 but for np elastic scattering

Having the full shape of the proton-proton amplitude including its fixed normalization,
we can test its flavour and crossing properties. The neutron-proton scattering amplitudes
are obtained by interchanging u and d quarks in one of the nucleons. The resulting ampli-
tudes are given in Appendix B. Their comparison with the 11 and 12 GeV/c np data [28]
shows good agreement (see Fig. 13).

The pp amplitudes are obtained by crossing which means in this case the interchange
of the Mandelstam variables s and . Again the agreement with the data [29] is very good
(see Fig. 14).

The meson-nucleon scattering can be treated in full analogy. One important change
occurs here only in the choice of the arguments of the formfactors. The previously used
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Fig. 14. The same as in Fig. 12 but for pp elastic scattering

argument does not hold in this case and we chose ¢ as the variable in both formfactors.
(For the = formfactor a simple 1/|t| form is assumed). The amplitudes read as follows

-I(+ +(S, I‘) = % [2M“+ ++ +(S, t)+2M1_+_(S' t)+M‘-ll-+++(s’ t)+M‘:....+_(S, t)]GM(t)Fu(t)

My (5, 1) = % [8M% 4+ (s, t)"Mi ++-(5, )]GM(OF (D

with the nonzero quark helicity amplitudes

M3 = 4n, =
Tea4(8 1) = ”“s;

o u
M+_+_(S, t) = 4na,—s-
in the case of ntp — ntp and

: u
Mi_, (s, 1) = 4no, —
N

M5 = dno, —
++44(5, 1) = dmay "

in the case of m~p — m—p. We present do/dt together with the large angle data [30] in
Fig. 15.

Other exclusive processes (e.g. n~p — n°n, pp —> pA) can be analyzed casily along
the same lines.
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The agreement of the derived end-point contribution is remarkable. It is obtained with
a special choice of the powers §; which leads to dimensional counting rules. In lowest
order their modification is only by &2, too gentle to be detected in quantities with high
powerlike behaviour. On the other hand the short distance amplitudes of Section 2 go with
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Fig. 15. The same as in Fig. 12 but for 7p elastic scattering

the same power of energy. Although the QCD logarithmic modification is much stronger
there and it is possible that the phenomenological success of this contribution may be
destroyed, there is no way to tell which of these two terms dominates at present energies
unless the unknown function of c¢.m. angle in Eq. (2.6) is calculated.

To solve this problem we advocate for the investigation of spin effects in elastic
scattering.

D. Spin effects in the elastic scattering [31]

The end-point region requires special treatment when the spin is taken into account.
We are not allowed to assume the s-channel helicity conservation at each vertex in the
situation when only part of the process is hard. In particular in the interaction among the
slow quark lines the ratio of the effective mass to the energy of the subprocess may be quite
large.
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The most important step consists in the impulse approximation. The hard process
which is factorized and builds up M{(s, #) is short on the time scale as compared to the soft
interaction within the single nucleon. One can therefore cut out the hard part of the nucleon
amplitude (as in Fig. 16) and calculate easily its spin structure (s-channel helicity conserva-

o

Fig. 16, The impulse approximation in the end-point region. The cut-out part of the elastic amplitude
is short on time scale

tion in M(s, t)). The quarks which do not interact in the cut out diagram propagate freely

and conserve their spin projections. To make both these conditions consistent one has to

assume the helicity conservation in a frame where these quarks move along straight lines.

The construction of the amplitude consists thus of the following steps:

— take the known quark helicity amplitudes M(s, 1) (Eqs (4.15))

— rotate them to the frame (called the Gottfried-Jackson frame [32]) where the spectator
quarks move along straight lines

Mip(s, 1) = Z Aot (6655 (001 (05555 (0a) Moy g (s, ).

y&

The angles 65, are fixed by the kinematics and the nucleon mass my [33]

st
0oy = + . 4.18
o8 le = = \/ (s—4m3) (1—4m3) (418)

The upper (lower) sign holds for the initial (final) particles. These angles are plotted
on the velocity diagram in Fig. 17
— relate the nucleon amplitudes . ,5,4(s, t) to the quark amplitudes M,;,4(s, t) via Eqs
(4.16). This step can be done only in the Gottfried-Jackson frame where we are sure
that the noninteracting quarks do not influence the nucleon spin structure. One sees
that Gottfried-Jackson frame is a spin system where the helicity and z-spin conserva-
tion mean the same. It was extensively used in low p, scattering [34].
The above construction is complete and does not introduce any free parameters.
After performing it one can look what is the form of the s-channel helicity amplitudes.
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Fig. 17. The Gottfried-Jackson angles on the velocity diagram of elastic scattering

(To obtain them one needs to perform another rotation of the spin quantization axis by
the angles —8,). In the case of proton-proton scattering their unsymmetrized form reads:

Moy ii(s8) =5 [AT+D(s, DM 44 11 (5, D+(s, 1) M1 (5, D]Gm(Gu(w)

Maro(5,0) =F[—cls, DM 4 4 4 4 (s, )+ (= 14+d(s, DM 1 1 (5, )]G()Gu(¥)
Mo (5,8) = 3 [b(s, OM 4 4 4 1(5, )+ (s, DM _ s 4 (5, D]GM(DGu(¥)
M (s, 1) = F[c(s, DM 444 o (s, )+ (B1=d(s, )M _ 4 4 (5, D]GM(IGm(¥)
Myys(5,)=0
b(s, f) = 14—24 cos? O, +10 cos* O,
e(s, t) = —10 cos? O, sin® O,
d(s, 1) = 14—4 cos® 05,—10 cos* f;. (4.19)

The detailed treatment of spin does not influence the differential cross section. It is however
crucial for the spin-spin asymmetries. The predicted curves at py, = 11.75 GeV/c are shown
in Fig. 18. The relation A,, = — A,, is badly broken due to &, # 0. This is also the reason
for large value of 4,, at high momentum transfers. The effect is explicitly seen when using
the quark transversity amplitudes N, [35]. In this representation both the spectator and
interacting quarks conserve their transversities (the spin projections perpendicular to the
scattering plane). If the nucleons have parallel transversities only quarks with parallel
transversities can interact (only Ny, # 0) otherwise a state with spin 3/2 is produced.
If, however, the nucleons have opposite transversities both N, and N_ contribute.
Their interference in the nucleon amplitude depend on the frame in which they are related
to the nucleon amplitudes or, in other words, in which the impulse approximation
is assumed. In the Gottfried-Jackson frame they nearly cancel. This causes the scattering
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Fig. 18. The large angle data on A, at pr, = 11.75 GeV/c in pp elastic scattering [6) together with the end-
-point prediction on Ag,, An and Ag,

of protons with antiparallel transversities much weaker than that with parallel trans-

versities.

The results of similar analysis applied to np-elastic scattering are shown in Fig. 19.
The corresponding formulae are given in Appendix B.

As a final remark we stress once more the role of the spin asymmetries. Their predicted
values differ significantly in the shorti-distance and end-point regions making a clear dis-
tinction possible. The measured values of A4, support the dominance of the end-point
diagrams at momentum transfers around 10 GeVZ2. This mechanism predicts A4,,(90°)
to stay around the present value as the energy increases (e.g. at p; = 26 GeV/e
A, (90%) = 0.7).

The above analysis may be improved when another spin-spin asymmetry is aviable,
In particular the measurement of A4, at p; = 11.75 GeV/e, of which preliminary results
already exist {36}, can be very helpful in solving the problem of helicity conservation.

E. The nucleon wave function from exclusive and inclusive spin effects

In the preceding sections the nucleon wave function was assumed to be SU(6) spin
-flavour symmetric. For example the form of the spin-flavour part of the proton wave
function with the spin in + direction reads [37]

P = —11:8 [2S(u,u,d_)—S(u,u_d,)] (4.20)

Vv
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with S being totally symmetric under permutations. If we select the quark which undergoes
hard scattering in the end-point region, the remaining quarks (the spectator diquark)
can be in spin 0 or 1 state. The later one is particularly important for the procedure described
in the proceeding subsection. If the spectators had been always in S = 0 state, we could
have related the quark amplitudes to the nucleon ones in any spin frame and the asymmetries
would have been asymptotically 4,, = 1/9, A, = —7/9, A,, = —1/9 as in the case of
electron-electron elastic scattering.
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Fig. 19. The end-point predictions on A,,, 4n and Ag in np elastic scattering at pp = 11.75 GeV/c

The information on the nucleon wave function is also contained in the deep inelastic
processes. The data [38—40] on these reactions seem to suggest the violation of the SU(6)
symmetry, especially at x close to 1. Some models assume that there is no term with S = 1
diquark at x = 1, a disaster for the exclusive spin-spin asymmetries!

The problem of this subsection is to check the consistency of the exclusive and inclusive
spin effects and display the limits put on the nucleon wave function by these phenomena.
The analysis assumes that the spin effects in deep inelastic scattering are caused by the
SU(6) symmetry breaking. We are aware of other possible explanations [41], in such cases
the results of the previous subsection do not change and the analysis below does not
apply.

In the model [42], which accounts for most of the deep inelastic spin phenomena
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at x — 1, one writes the proton structure function
F3(x) = § Ao(x)+3 4,(x)

where A,(x) denotes the contribution in which the noninteracting quarks are in spin and
isospin state s. The SU(6) symmetry means A,(x) = A,(x). Following the arguments
[43] from the Regge behaviour at x = 0 the model assumes

A,(%) = a(l —x)Ao(%) @.21)

with a estimated around 3/2. Its predictions for the ratio of the neutron to proton structure

functions F3/F%, the ratio of the down to up quarks in the proton d/u and the photon-
172 372
-0

-proton asymmetry 4" = P Ty

o (6* denotes the yp cross-section with total helicity 2)

can be easily obtained

2(x) _ 1+3a(1~-x)
F5(x)  4+2a(1-x)"

g(_:_c_)_ 2a(1—x)
u(x)  3+a(l-x)’
_ 6—a(1-x)
T 6+3a(l—x)

bid

They agree very well with the existing data [38-40] for large x (see Fig. 20). (Only the
valence quarks are included, so we do not attempt to describe the whole x range).
Our problem is to translate the information contained in the above model for the
behaviour of the nucleon wave function which is used to calculate the elastic spin-spin
asymmetries.
The spin + proton wave function (Eq. (4.20)) can be written in an alternative form:

1
J54
The quark which undergoes scattering is explicitly written, together with its spin projection.
The lower index stands for the spin (and isospin) of the spectator diquark. Each B{ is sepa-

rately normalized. Remembering that A(x) is proportional to the square of the diquark
wave function Eq. (4.21) means

¥E = (V27 By* + /12 BS™ +./3 By —/6 B} —./6 B{*]. (4.22)

Bi(x) = B,(x)+7(x)By(x) (4.23)
with

1
y(x) = \/-—-1+ prrpt (4.24)
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Fig. 20. The data on a) the ratio of neutron to proton structure functions F 2(x)/F5(x) [38]; b) the ratio
of the down to up quarks in the proton d(x)/u(x) [39]; ¢) the asymmetry AYP(x) [40] compared with the
predictions of the Carlitz-Kaur model [42]

By(x) and B,(x) are the same functions of x, y- B, bzing the SU(6) symmetry breaking
term. They are assumed not to interfere. Substituting (4.23) into (4.22) we obtain

24 (27 BY* +/12 Bi™ +/3 Bi" ~ /6 Bi” —/6 BY")

" J600+4)
y

Y maper (4.25)
\/6(9+4y2)‘/ °

The wave function (4.25) is of the form

wr \/1_52 q;SU(6)+ﬁlPSU(6).
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The first term represents the SU(6) symmetric and the second — SU(6) breaking term, with

1= a(l—x)
B(x) = \/ Tral=m (4.26)

The shape of the wave function (4.25) with S(x) given by (4.26) can now be implemented
in the calculation of the spin-spin asymmetries. The important point is that the end-point
region defined by Eq. (4.1) is still quite broad at present momentum transfers (for
t~ —10GeV? x > 1—1//—t = 0.7). Assuming that the average x is somewhere in the
allowed region (x € (0.7, 0.9)) we give in Fig. 21 the predictions for the range in which 4,,

T T 1 T T I
- Py Py—=PP +
p =175 GeV/c -

I O G5

- // -
Lo
- i
0 Pt—f——+—+——
NN i
N N\
RN _
\ i
- -
-05 - -
i Pt ! h
-t 10
(Gev?)

Fig. 21. The end-point prediction on 4); and Ay, at py, = 11.75 GeV/c with SU(6) symmetry breaking in the
wave function. The data [6] on A,, are also shown

and 4, change. It is seen that the proposed form of the wave function (Eq. (4.25)) is compat-
ible with both exclusive and inclusive measurements. The prediction concerning A4,, at
higher momentum transfer changes however as compared to that from the previous subsec-
tion in the case when the above SU(6) symmetry breaking occurs. A4, is supposed to decrease
with 7 as x approaches 1.

One final remark should be added: the behaviour of the wave function at x close to
1 is assumed to be due to soft effects. Other approaches [44], which calculate this tail of the
wave function perturbatively have problems with spin-spin asymmetries as mentioned in
Section 2. They are nevertheless compatible with the deep inelastic data [45].
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5. Higher order corrections to exclusive processes

In this section we review the main results, more details can be found e.g. in Ref.
[46, 47].

As already mentioned higher order corrections are fully under control in the meson
formfactor calculation. This means that one is able to disentangle the hard and soft regions
of the amplitude and write it in a factorized form or, in other words, to use the Wilson
[48] operator product expansion for this process. Moreover the factorized hard part
(““coefficient function”) obeys the renormalization group equation (RGE). These two
conditions assure that the Sudakov effects [49] are cancelled in an exclusive process. The
effect can be seen at each order of perturbation expansion, for example in the second
order calculation of the m formfactor the Sudakov formfactor diagrams (Fig. 22a) are
cancelled by the gluon exchange diagrams (Fig. 22b). This occurs only for colour singlet

a) b)

Fig. 22a) An example of the Sudakov type diagram in second order calculation of the = formfactor;
b) an example of second order diagrams which cancel the diagrams of a)

states and far from the end-point region because the exchanged gluons transfer non-
-negligible longitudinal momentum. Consequently the end-point contribution is expected
to be suppressed in higher orders by the Sudakov formfactor

The situation is less clear in the baryon formfactor. Double flow diagrams of the type
shown in Fig. 23a lead to the failure of the renormalization group equation in this case.
Although these diagrams turn out to be suppressed when Sudakov effects (Fig. 23b) are
included, it has not been shown up to now that RGE is restored after taking into account
all diagrams.

IR S
% 3 | 3

al b)

Fig. 23a) A double flow diagram in baryon formfactor calculation which leads to the failure of the RGE;
b) a Sudakov type diagram which suppresses diagrams of a)
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The situation is even less clear in wide angle elastic scattering. The potentially dominant
pinch diagrams, discassed in Section 3, obtain a Sudakov type factor [50]

Ins(lnlns—In Xs)—In —

! 5.1
X], (5.1)

1 . . . .
where X = O (—) Similarly it seems to happen to the end point region. The exact behaviour
s

24Cy
exp| —
P 33—-2n;

at finite energy depends however on the scale put in the Sudakov factors (5.1) and the magni-
tude of the soft wave function which normalizes each of the contributions in a different
way.

Some information concerning the scale and the range of perturbative region can be
obtained from the second order corrections to the hard part of the n formfactor [51].
The problem to be solved here is the choice of the right variable in the argument of «,. It
should be the average virtuality of internal lines divided by Agcp, €.g. in the diagram of
Fig. 24

k*[Agep = <x) {x">Q*/ Adcp- (5.2)

2
K =~ xx'qz

X x!

Fig. 24. A leading order hard diagram in m formfactor calculation

Proceeding in the standard way, i.e. minimizing the correction, and additionally taking
Aqcp from other estimates one is able to learn what is the argument of the strong coupling
constant at given Q2. It turns out [51] that with currently accepted value of Agep = 0.2 GeV
the variable (k2) = 1 for Q% =~ 200 GeV?2. This means that for 0% < 200 GeV? one is not
allowed to use perturbation calculation! From Eq. (5.2) one immediately sees that the
quark lines not hit by the photon are relatively slow (x < 0.07). This is due to rather broad
n wave function and logarithmic singularities in the second order hard diagrams. One
concludes, that even starting with perturbative methods, the process turns out to be deeply
in the non-perturbative end-point region at presently accessible Q2.
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6. Spin effects in the inclusive production — baryon polarization at large transverse momentum

Baryon polarization in the inclusive production at large energies has been studied
extensively in the last few years. The measurement [7] of hyperon polarization which
increases with the transverse momentum (see Fig. 25) seemed to be a surprise — at high
momentum transfer one would expect a real, hard amplitude to dominate and consequently
negligible polarization.
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Fig. 25. The A polarization in inclusive production as a function of transverse momentum [7]

A. The multiple quark scattering model [52]

In this subsection we present a single idea which explains the observed features of
baryon polarization. From the presented arguments it follows that the data are rather in an
intermediate region of transverse momentum and one is not allowed to use the hard scatter-
ing technique. Therefore no attempt is made to give a quantitative description — it would
have been, to our experience, very model dependent.

Let us start with the A production in nucleon induced reactions. The SU(6) symmetric
A wave function consists of the ud diquark in the spin-isospin state § = I = 0 and the
strange quark s. Consequently the spin projection of the A is entirely given by the spin
projection of the s-quark and the A polarization equals the s-quark polarization. Looking
into the proton hemisphere one already has a ud|s_;-, system coming from the proton
valence quarks. During the collision the s-quark, which may originate from the proton
sea or be produced in a subprocess g — ss, becomes a valence quark and recombines to A. In
both cases its energy in the c.m. system is low. The energy is thus given essentially by the
ud-diquark energy.

Both the g, of the diquark and k&, of the s-quark contribute to the transverse mo-
mentum p, of the A. Looking for the A with a given p, one chooses in most cases a configura-
tion where the k, points in the direction of p,. Our main assumption states. that the



269

s-quark obtains its required large k|, by multiple scattering off quarks and gluons. Due to its
nonzero mass it becomes polarized in this process. One can find many different subprocesses
contributing to the s-quark scattering, it is even hard to classify the diagrams due to still
rather low momentum transfers. We approximate the procedure by assuming the scattering
off external gluoaic ficld of the form

o drng |
P(g) = lalzl, a=1,..8,

with g — the quark-gluon coupling constant, ¢ — the momentum transfer and I* — an
8-component vector characterizing the external coloured field. Polarization appears already
in the second order of perturbation calculation, in analogy to the electron scattering off
external field [53], and reads

=2Ca,mq;ié; sin® /2 - In sin 6/2 3 6.1

P 72
¢ (1 - % sin? 0/2) cos 02
€

2

where C = 1/2(d**I°I°I)/(I°I*), &, = %—, mg, k, & and 0 are the mass, the momentum,
7
. . - ];i Xiéf
the energy and the scattering angle of the quark. The unit vector v = m
i f
points in the direction perpendicular to the scattering plane. For positive C the expression
multiplying v is negative (see Fig. 26) consequently the quark is polarized in the direction

opposite to 7.
0 H 1 1 ?

| 1
0° 90° 180°
e

Fig. 26. The quark polarization as a function of the scattering angle in arbitrary units
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As we have already mentioned, there is no reason to break the calculation at the
second order. Instead of computing higher order diagrams we compared Eq. (6.1) with
the exact solution of Dirac equation in external field [54]. Both results give qualitatively
the same result, thus we use Eq. (6.1) as a guidance in estimating the effect.

Let us study the structure of Eq. (6.1) in detail. The mass of the strange quark plays
a crucial role. For m = 0 the polarization vanishes, consequently one does not expect
the protons to get polarized, in agreement with experiment {55] (the proton polarization
comes out approximately zero also from various quark-diquark recombinations which
wash out the quark polarization [56]). On the other hand the mass dependence of Eq. (6.1)
implies that the heavy baryons containing ¢, b, ... quarks should show up even stronger
polarization e.g. A, is expected to polarize to negative values with increasing p, and the
curves should be even steeper than in the case of A. The last statements assume that the
c,b, ... sea does not differ much in shape from s-quark sea [57].

The transverse momentum dependence is clearly seen in Fig. 26. Increasing k; means
changing 8 between 0° and 90°. In this range the absolute value of polarization grows —
the major success of the proposed mechanism. The exact value of polarization is not fixed —
it depends in particular on «, and the strength of the external field kept in the constant C.

Eq. (6.1) does not produce strong dependence on Feynman x. The momzantum of the
A is essentially given by that of the diquark. Our statement concerns however directly
produced A’s. The others being the decay products of other resonances (Z, Y*, ...) popu-
late lower x, and may not be polarized [58]. One should therefore see some increase of
polarization of the total A sample with increasing x,. This behaviour follows also from
kinematics. At x, = 0 2(A) = 0 so it must vary with x, if total polarization is nonzero.

Once the mechanism for polarizing the s-quark is fixed, the polarization of other
hyperons follows from their spin-flavour wave function. One expeots #(X) = —1/3#(A)
(in the Z° wave function the ud-diquark is in § = I = 1 state). This relation holds experi-
mentally without the factor 1/3 [58]. This may be a consequence of the fact that the ud
valence diquark, being very relativistic and on mass shell, prefers S, = 1 spin projection
over S, = 0[59]. In such a case (L) &~ - P(A). The lack of factor 1/3 can be also attributed
to the already used argument of resonance production [56]. The are more direct X’s than
A’s, for instance, the Y*, which has considerable production cross-section, decays in 88 %,
into A and only in 129 into X. In the E both strange quarks fecl the external field, conse-
quently both of them get polarized. One expects P(E) > #(A) (both are negative), the
equality occurring for 1009 polarization of the strange quark.

The energy dependence of Eq. (6.1) requires that the s-quark is slow, otherwise the
polarization would be negligible. This is the reason why A is not polarized. In the proton
induced reactions all its valence quarks come from the proton sea. To build up a finite
Xz the s-quark energy has to be large, on the average, and therefore the A polarization
vanishes (for xz = 0 #(A) = 0 for kinematical reasons).

The idea of multiple quark scattering can be implemented in semiinclusive processes
like [60]

K-p = KKA +pions (6.2a)
K-p —» A+pions (6.2b)
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in which the flow of strangeness is exactly traced. In both reactions (6.2) one looks at the
A polarization in the proton hemisphere. In the process (6.2a) the incident kaon scatters
predominantly by a small angle, therefore the s-quark which builds up the A in the proton
hemisphere comes from the proton sea. One expects thus polarization increasing (in magni-
tude) with p, negative with respect to the axis v = k, x&;, in analogy to the inclusive
cases discussed so far. In the process (6.2b) however, the strange quark of the kaon has to
turn back in order to build up a A in the proton hemisphere. It is then also polarized accord-
ing to Eq. (6.1) and the absolute value of polarization increases with p, (p; = 0 corresponds
to the scattering by 180° in Fig. 26). In this case however the normal vector ¥ changes sign
because of k; which points now in the direction of the incident kaon. Thus the polarization
shows similar behaviour as in the process (6.22) but is now positive (see Fig. 27)!

as ol ] I
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Fig. 27. The A polarization in the processes K-p - KKA + pions (circles) and K-p — A+ pions (squares)
as a function of transverse momentum

To our astonishment the proposed mechanism works also in exclusive processes where
simple quark diagrams are expected to dominate. Strong A () polarization which goes
to large negative (positive) values with increasing p, has been measured [61] in the process
pp = AA (pp = ZZ). The phenomenon with opposite polarizations noticed for the
reactions (6.2) shows up in the exclusive channels [62]

wp - K+Z+
K-p = n~Zt
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In the first reaction X+ is positively polarized, as in the inclusive production, whereas
in the second one the Xt polarization is negative.

To summarize this subsection we have shown a simple mechanism of baryon polariza-
tion based on the multiple quark scattering idea. It is worth noting that the proposed
approach can be easily incorporated in the known models of low and intermediate p,
scattering.

B. Other models

We review briefly two models [56, 63] which describe the phenomenon of hyperon
polarization.

In the semiclassical picture of Anderson, Gustafson and Ingelman [56] the ud diquark
inthe S = I = 0 and colour 3 state, which survives the collision as a unit, stretches a colour
flux tube. The ss pair, needed to build a A, is produced in the gluonic field with local
transverse momentum, energy, and angular momentum conservation. This means that
the s and s quark have opposite transverse momenta k , and -k L and

xl = 2Vm?+k2,

where « is the energy density in the colour tube and / — the distance between the produced
strange quarks (see Fig. 28). The resulting orbital angular momentum

- - L mErK
L] = 1|k = 21k, -—K—* (6.3)

Fig. 28. The colour flux tube in the model of Ref. [56]

is assumed to be compensated by the spin of the produced ss pair. Because K L points in
most cases in the direction of the transverse momentum p, of the A, L is parallel to the
direction ¢, Xk, (as in Fig. 28) and consequently the spin of the s-quark is antiparallel
to this direction. This qualitative argument can be cast in a definite form which expresses
the spin-orbital angular momentum or, due to Eq. (6.3), spin-tranverse momentum correla-
tion. Assuming additionally some form of the transverse momentum distribution of the
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ud-diquark and the s-quark one can compute the behaviour of A polarization as a function
of p, (see Fig. 29). Its exact shape depends on a few parameters but it is seen that one is able
to reproduce the trend of the data.

The polarization of other hyperons follows again from the spin-flavour part of their
wave functions. The model may need additional assumptions in the case of E where two
strange quarks are produced. One also does not explain why the A is sometimes polarized
in the opposite direction as it is the case in the process (6.2b).

-2k
as -
04 - pp—=AX
V5'=53and 62
0.2 2
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0 1 L o
0 * 1.0 2. -

Py 0 rGewre)

Fig. 29. The A polarization in the model of Ref. [56]. The allowed region lies between the two curves

Another model, which also uses a quasi-classical effect to describe the polarization
phenomena was proposed by DeGrand and Miettinen [63). The spin ordering occurs here
after the collision in the recombination process. Let us present the argument on the A hyper-
on where only the spin of the strange quark matters. In order to recombine fast valence
diquark with the slow strange sea quark one needs forces which accelerate the last one to
momenta typical for a valence quark (x,5 = 1/3, see Fig. 30). The quark spin s feels then
the effect of Thomas precession [64] which manifests itself through a term in the effective
Hamiltonian

U=s- Wy, (6‘4)

s/p

|
} i
m——x,-P——»‘ , Py

m———-————fo

Fig. 30. The momentum diagram in the recombination model of Ref, [63]



274

where the Thomas precession frequency

- d -
wor ~ — Fxuo.

m,

F is the operating colour force and ¥ — the quark velocity. The direction of @y is easy
to find (see Fig. 30) and it is argued that the spin s points in direction opposite to @y in order
to minimize the interaction term (6.4). An approximate estimate of the effect suggests
a correct p, and x dependence. The Thomas precession acts not only on the strange quark
but on the diquark as well. This has crucial influence on the polarization of other hyperons,
in which the diquark is not in § = 0 state. In the case of Z it results in the enhancement
of the diquark state with S, = 1 over S, = 0. As a consequence one is able to obtain the
experimentally supported relation #(X) = —P(A) (without the previous factor 1/3).
Assuming two independent contributions to the polarization (although both originating
from the Thomas precession) one from the slowed down or speeded up quarks, the other
one from the diquarks the authors construct a table of polarizations in all possible, inclusive
transitions. As a matter of fact this table is independent of the proposed dynamical mechan-
ism of polarization and can be regarded as a two variable parametrization of all polariza-
tions following from the recombination model with SU(6) symmetric baryon wave
functions.

One notices several differences in the predictions when comparing this model with
the one proposed in the previous subsection. Among the most decisive ones is the state-
ment on A, polarization. It is supposed to be polarized oppositely to A in the last model.
The authors also expect strong A polarization in K~ — A in the K~ hemisphere. This
is not the case in our model where the strange quark is on the average too fast to get polariz-
ed. The Thomas precession model does not account for the change of polarization sign
in the reactions (6.2).

7. Summary and conclusions

We attempted to present the importance of spin effects in large p, hadronic collisions.
Two types of processes were investigated in detail.

In elastic scattering at large angles one is dealing with three potentially important
contributions, each coming from a different region of phase space. They are weighted by
the hadronic wave functions ¥(x, k,). The short distance amplitudes emerge from x and
far from its limiting values (x # 0, 1) and large k,. They are constructed in analogy to the
dominant meson formfactor amplitudes. The end-point contribution requires x close to the
limits and small intrinsic transverse momenta. Finally the Landshoff pinch diagrams get
the support from small k£, and x’s constrained by the condition stating that the momentum

. . 1 o
fractions x of all constituents are equal to each other to O (—Q—> All contributions form

a small part of the total cross-section, in the first two cases they are suppressed by the wave
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function ¥(x, k;) which vanishes for &, — o0 or x — 1, in the last case the condition put
on x cuts out a small region of phase space.

In the situation where the relative normalization of these contributions is unknown
we investigate phenomenological consequences of each term. The behaviour of the differ-
ential cross-section shows that the pinch diagrams dominate the |f| < s region. The dimen-
sional counting rules which follow from both short distance and end-point diagrams work
well at angles close to 90°. In this region the predictions concerning the spin-spin
asymmetries differ significantly when calculated in each of the mentioned approximations.
At present momentum transfers only the end-point calculation accounts for the large
value of A,,.

The above analysis proves that the spin observables carry. nontrivial information,
sometimes more clear than that contained in the cross-sections. In the considered case
the reason for this has a simple physical interpretation. In the large angle scattering process
the helicities of the final hadrons are combined from finite contributions of all quarks (this
is to be contrasted with e.g. momentum transfer dependence of the amplitude, where softly
interacting constituents contribute only infinitesimally). It matters therefore, when calculat-
ing spin observables, what is the structure of each subinteraction in the diagram. In partic-
ular one is able to distinguish how many quark lines take part in the hard collision.
The dominance of the end-point contribution in elastic scattering implies that only part
of the diagram (one quark line in each hadron) exchanges large momentum.

As a “byproduct”, when comparing different types of elastic diagrams, we obtained
the extension of the Drell-Yan-West relations to this process. Definite form of the elastic
amplitude which also emerges in this approximation agrees very well with all large angle
elastic data. It can be also easily applied to other exclusive channels.

Another type of process where spin is known to play an important role is hyperon
polarization in large transverse momentum inclusive production. Here the theoretical
situation is less clear. It turns out a posteriori that the measured phenomena are in fact
“intermediate p,”" effects where soft interactions play dominant role. Therefore we limit
ourselves to a qualitative description. A simple mechanism based on multiple scattering
of quarks is proposed. It accounts for the polarization of nonzero mass quarks and con-
sequently explains many polarization phenomena in inclusive production. It works also
when applied to exclusive channels.

The two described examples of spin effects in hadron-hadron collisions [65]are intended
to show how important they are at large momentum transfers. Because of dominance of
relatively simple diagrams in this region one gets direct information on the underlying
chromodynamic interaction. Finglly we think that the two surprising results of the spin
physics in the last few years found their explanation.

The author would like to thank A. Bialas for continuous interest in this work and
many valuable remarks.

Helpful discussions with S. Brodsky, G. Cocho, A. Kotanski, H. Lipkin, M. Moreno,
W. Ochs and L. Stodolsky are ailso acknowledged.
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APPENDIX A
pp amplitudes and spin observables

Out of 16 helicity amplitudes in NN — NN only 5 are independent. Using the Jacob-
-Wick convention [66] and assuming the scattering in the xz plane (¢ = 0) parity conserva-
tion means

M y50p(5, 1) = (=Y P s ap(s, D).
Time reversal invariance reduces further the number of independent amplitudes to six
M y50p(5, 1) = (_)a_ﬂ_yﬂjlaﬁya(ss 1.
Identical particle relation reads
Mgy (0= —Mi,_4(51)
The 5 independent amplitudes in pp — pp are chosen to be
Dy(s, 1) = My s s i(s, )+ Moy i (s, 4)
Dy(s,t) = My s (5, )+ My --(5,4)
Dy(s, ) = Moy (s, )~ M_ 14 -(5,4)
Du(s, 1) = My (5, )My _s_(s5,8)
Ds(s, 1) = My i (5, )= M sy (5, 8). (A1)
The spin-spin asymmetries are defined

__ dofdi(11)+do/dx(l\)—dajdi(t])— do/di(1)
* 7 dofdt(11)+do/di(l])+do/d1(1])+do[d(11)’
where i = n means the initial spin projected normal to the scattering plane (y-axis), i = 1 —

in the direction of motion (x-axis) and i = s — sideways (z-axis). In terms of the helicity
amplitudes @; (j = 1, ..., 5) they read

Any =2 Re (P - 05— &5 - 01+2|95|*)/D,
Ay =2 Re (P, O;+P; - 93)/D,
Ay = (—19,)2—|@,1%+|95]* +1941*)/D,
Ay = 2Re[(®,+D,— D3+ D,) - D:1/D, (A2)
where

D= |‘p1|2+ |¢2|2+ |<1>3|2+ |‘p4|2+4|¢5|2-
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The polarization £ is given by
At 0., = 90° one may use $3 = —¢P, to show that

Ann_All_Ass = 1.

APPENDIX B
The neutron-proton elastic amplitudes

There are 5 independent helicity amplitudes .#,;,5 in analogy to pp elastic scattering.
Assuming the quark interchange they read

Dy(s,8) = P [14M 4 o 4 1 (5, D+22M o (5, )+1TM 1 4 4 1 (s, u)—8M 4 _ 4 (5, u)]
Dy(5, 1) = g [—8M 41 (s, )+25M (s, w)]
Dy(s, 1) = 75 [22M 4 4 1 (5, )+ 14M 4 4 (5, )—25M _ ;4 (5, u)]
Dy, 1) = Fg [—8M_ 4, (5, )—1TM  _ 4 (5, u) +8M 1 4, 4 (5, u)]
Ds(5, 1) = 5 [~8M 4 44 (5, )=25M 4 4, (5, w)].

In the case of s-channel helicity conservation in the whole process [15, 16] only
M ., = —M_ = fsurvive giving

2.(s, 1) = 15 [14f(s, ) +17f(s, w)]
D3(s, 1) = 5 [22/(s, )+25f(s, u)]
Dy(s, t) = 15 [8f(s, ) +8S(s, )]

Ds(s, t) = By(s, 1) = O.

The leading order helicity amplitudes in the end-point region are obtained as described in
Section 4. The result is

D,(s, 1) = 5 {[—8+f(5, DIM 4 4+ 4(5, D+ (5, YM 4 4 (5, 1)
+[25+£'(s, W) IM 4 4 1 4(s, u)+f'(s, WIM 4 4 (s, W)}G()Gl(w)
Dy(5, 1) = T {—4f (5, OM 1 4 4 4 (5, ) +[14+ (s, )IM _ 1 4 _(s, 1)
~f/(S WMy 1y o (5, )+ [B— 1 (s, W)IM - 4 + (s, W)}Gu()G(w)
Dy(s, 1) = 5 {f(5 OM 4 4 1 1 (5, )+ (s, OM_ 4+ (5, 1)

—f'( WMy oy (5, w)=[1T+R' (s, u)] - My o (s, u)}G(D)Gm(1)
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Du(s, 1) = T {4 (5 OM 45 4o (s, D+ [14+h(s, OIM 4 4 (s, 1)
—f'(s, WM 4 4 4 4 (5, ) —f"(s, WM _ 1 4 (5, 4)}Gp(1)Gpu(u)
Ps(s, 1) = T 1h(S OM 415 1(5, D+1(s, OM -4 4 (5, 1)
—K'(s,u) " My 44 (s, )=V (s, M _ 4 1 (5, W) }Gr(1)Gpu(u)
f(s, t) = 2sin? Oy(T+4sin® Oy), k = —sin Og; cos Og,(15+8 cos? Og))
f' = —2cos?0gysin? Bg;, k' = —sin Og; cos Og,(3+2 cos? ;)
h = —2sin?05(15—4sin?0g;), = —sin Ogycos Oy (7+8 cos? O;)

h’ = 2 Sinz HGJ(7+Sin2 OGJ); l, = Sin BGJ COS OGJ(5+2 COS2 GGJ)

s
M, .Gt = 4mxs;-

t
M_ (s t) = dnay,—.
u

The spin observables are defined and expressed in terms of helicity amplitudes as in the
pp eclastic scattering (Appendix A).
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