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ROLE OF THE DEFORMATION OF MULTIPOLARITY SIX
IN THE DYNAMIC DESCRIPTION OF SPONTANEOUS FISSION*

By K. BONING AND A. SOBICZEWSKI
Institute for Nuclear Research, Warsaw**
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The role of the deformation of multipolarity six, &, in the description of spontaneous-
fission half-lives is studied. Doubly even heavy nuclei (Z = 92-102) are considered. It is
found that inclusion of ¢ may change the half-lives by up to about four orders. The structure
of the microscopic inertia (mass) tensor, connected with &g, is also investigated. Finally, the
equilibrium values of &4 are calculated. It appears that these quantities are of dynamic rather
than static nature.

PACS numbers: 24.80.+y, 21.10.Ft

1. Introduction

This study belongs to a series of papers [1-3]in which the spontancous-fission character-
istics: barriers and half-lives are described without use of any adjustable parameters.
It has been found [3] that such description allows us to reproduce the half-lives of even-
-even heavy nuclei, measured for 40 nuclides (Z = 92-104), within a factor of about
50, on the average, i.e. fairly well.

The penetration of the fission barrier is treated dynamically [4]. One of the main
things, which are decisive for the results, is how rich is the deformation space admitted
in the calculations. In our previous analysis [3], the deformations of multipolarity 2, 3, 4
and in some approximation also 5 were considered dynamically. The deformation of multi-
polarity 6 has been treated only statically.

The main scope of the present paper is to investigate the role of this deformation
when treated dynamically. Additional scope is a study of the components of the mass
tensor associated with the deformation of multipolarity 6, not investigated up to now,
and also the equilibrium values of this deformation for even-even nuclei of actinides.

* Supported in part by the Polish-USA Maria Sklodowska-Curie Fund. Grant No. P-F7F037P.
*» Address: Instytut Badaft Jadrowych, Hoza 69, 00-681 Warszawa, Poland.
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2. Description of the calculations

The calculations are performed in the way very similar to that of our previous paper [3].
Due to this, we present here only the main points, referring to that paper for details. We
also stress here the differences between the two calculations.

The main problem in determining the fission half-life is the problem of penetration
of the fission barrier by a nucleus. In the one-dimensional quasi-classical (WKB) approxi-
mation, the problem reduces to the question of finding the trajectory L;,, given in the
deformation space, along which the action integral

32 2
S(L) =2 f \/ 2 [V(9)~EB(s)ds )

is minimal. Here, V(s) is the potential energy, B(s) is the effective inertia (mass) along L and
E is the energy of a fissioning nucleus. The parameter s specifies the position of a point
on the trajectory L, with s, and s, corresponding to the classical turning points satisfying
the condition: V{(s) = E. The effective inertia B(s) associated with the fission motion
along the trajectory L is

do; d
BJ(s) = By(s) = Z Bm,.(s)f; dis’ @)

i
where B,,, are components of the inertia tensor and o, «; (7,j = 1,2, ..., M) are the
deformation parameters specifying the M-dimensional deformation space admitted in the
description of the fission motion.

Similarly as in the previous paper [3], we admit a four-dimensional deformation
space, described by the four Nilsson deformation parameters [5]: &, &4, €35 and &,
corresponding to the deformations of multipolarity 2 (quadrupole), 4 (hexadecapole),
3 combined with 5, and 6, respectively.

Minimization of the action integral (1) is not, however, performed in the full four-
-dimensional space. It is approximated by a sequence of three two-dimensional minimiza-
tions performed in three two-dimensional spaces. The spaces are the planes crossing each
other along the straight line L

54(6) = 0.28—0.06, 535 = O, éﬁ = 0, (3)

being an average minimal trajectory for all investigated nuclei [3]. The three planes are:
(e, 24), (g, £35) and (¢, g6), or in the notation explicitly taking into account [3] that they
contain the line L: (e, &,), (€24, £35) and (g4, &6)-

An analysis performed in each plane gives a contribution to the total spontaneous-
-fission half-life (as well as to the barrier)

T;f-: T‘AT35'AT4'AT6, (4)

where T is the half-life calculated along the average trajectory Land the corrections AT;5,
ATy, AT are obtained in the analyses in the planes (&,4, £35), (&, €4), (€24, €6), Tespectively,
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To make the corrections as small as possible, we use the potential energy which gives
the fission barrier as realistic as possible in each plane. To be more specific, for a given
plane, the energy is minimized with respect to all deformations which do not explicitly
appear in the plane. The minimization is performed in an approximate, one-dimensional
way. With all deformations, except one &, fixed at a given point P at the average path L:
&,(e) = & (j # i), the energy is minimized with respect to &. This allows us to get the
difference

AV{E) = Ve, By, B35y ooy 8" .. )= V(E, B4y Basy ooy By +o0)s )

where ¢'" denotes the value of ¢ at which the energy V is minimal. The quantity 4V;
is a function of only a point P on L and thus only of the deformation e, which describes
the position of P on L. It corrects the potential energy for effect of the deforma-
tion ¢, which does not explicitly appear in a given plane.

For example, in the (e, £35)-plane, the potential energy is

V = Vi, &4, €35, 0) + 4V () +4V6(e), ©)
where

AV,(e) = V(e, e™™, 0, 0)— V (s, &, 0, 0),
AV(&) = V(e, &, 0, e2™) — V(s, &, 0, 0).

(Here, we have already taken into account the fact that our average path is of the form
of Eq. (3), i.e. that &5 = & = 0). Thus, for each point (¢, £35) of the (¢, £35)-plane, the
energy is calculated with € and &34 taken exactly at this point and with the remaining defor-
mations &,, & taken from the average path L: g, = £4(g), &6 = &¢(¢). This energy is then
improved by the corrections 4 V,(¢) and 4V¢(e), corresponding to these remaining deforma-
tions and calculated according to Eq. (5).

In the present paper, we are only interested in the analysis in the (e,4, €6)-plane. In the
other planes, the analyses have been performed in our previous paper [3]. The potential

energy and the components: B, ... B,, . B, Of the mass tensor are calculated in the
grid points

e = 0(0.05)1.0, & = —0.04(0.01)0.04, )]

i.e. in the 21 x9 = 189 points. Thus, the points are here taken more densely, in g, than
in Ref. [3].

The macroscopic part of the potential energy is taken from the droplet model with
the parameters of Ref. [6], i.e. the same as used in paper [2]. The effect of using the param-
eters of Ref. [7] (i.e. the same as used in paper [3]), instead of those of Ref. [6], on the
quantities investigated here is small.

The microscopic calculations are based on the Nilsson potential with the “4 = 242”
parameters [5] and on the pairing interaction with the strength independent of deforma-
tion [5].

Minimization of the action integral, Eq. (1), is performed by the dynamic-programming
method [3].
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3. Results and discussion

For a detailed illustration of the results, we choose the nucleus ?4Cm, the same as in
the previous paper [3].

3.1. Potential energy and mass tensor

Fig. 1. presents the potential energy V and the three components: B,, ..., B., > Brees
of the mass tensor as functions of the deformations e,4 and &. The potential energy,
plotted here as an explicit function of only the deformations &,, and & is minimized with
respect to the other considered deformations, &, and &;5, as described in the previous
section. All four quantities show rather large fluctuations (as functions of the deforma-
tions) which are the result of the shell structure of the nucleus. Concerning the mass tensor,
the largest values are obtained for the component B,,,,,,. The non-diagonal component
B,, . is rather small. It fluctuates around zero with an amplitude of about 100 h2MeV—1.

Both static and dynamic fission trajectories are shown in the figure.

T BRSNS s nmms Senen | T T
- v 248Cm

» {MeV) - - - stot
2 | ~— dyn

800

400 -

of e

il s | L ! L 1 i

0 02 04 06 08 ¢ 10

Fig. 2. Potential-energy barrier V and the effective mass parameter B, plotted along static and dynamic
trajectories in the (ez4, &6)-plane for 246Cm

Fig. 2 shows the potential-energy barrier ¥ and the effective mass parameter B; drawn
along both the static and dynamic trajectories. The parameter B, is, on the average, smaller
and more smooth along the dynamic trajectory than along the static one. However, the
difference between the two is much less than that obtained in the (g, &4)-plane [3], both
for V and B. In particular, the barriers along the dynamic and static trajectories differ less
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than by 0.1 MeV and are indistinguishable in the figure. The smaller effects of dynamics
in the (.4, £5)-plane than those in the (g, e4)-plane are probably due to the smaller values
of the mass parameters corresponding to the (&,4, £¢)-plane than those corresponding to the
(e, £4)-plane. To be more specific, the parameters B,,,,.., B,, .., and B,,,, are about 2-3 times
smaller than the parameters B, B,,, and B,,,,, respectively, as can be learned comparing
the results of the present paper with those of the previous one [3].

3.2. Barriers and half-lives

Static effect of the deformation g6 on the potential-energy barrier is illustrated in Fig. 3
taken from Ref. [3]. One can see that this effect amounts to up to about 1 MeV. As stated
in the previous subsection, the dynamics in the (e,4, £6)-plane corrects the static barrier
only very little (by less than 0.1 MeV for 24Cm).

0O 02 04 06 08 10 €

Fig. 3. Potential-energy barrier ¥ along the ¢, = 0 trajectory and along the static trajectory (¢ # 0) in the
(€24, €¢)-plane

Table I gives the dynamic corrections AT$™ to the half-lives T, coming from the
gg degree of freedom. They are calculated for 6x 12 = 72 isotopes of the Z = 92-102
elements. The correction is defined as the ratio of the half-life calculated along the dynamic
trajectory in the (g,4, £6)-plane to the half-life calculated along &5 = O line, i.e.
Tg™[V(e4, £6), B(e2s, &6)]

T6[V(824’ O)a B(824’ 0)]

For the nuclei with Z = 96-102, the corrections AT¢ calculated in our previous paper
[3], where the effect of g5 was accounted for only via the potential energy V, i.e.

Tgut[V(ezb 86)’ B(824’ 0)]
T6[V(824! 0)’ B(824! 0)]

AT =

AT =
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TABLE I

Corrections AT;”" andAT:' (second number for each nucleus with Z = 96-102) to half-lives T, calculated

as functions of the proton Z and neutron N numbers

N
Z\ 138 | 140 | 142 144 | 146 | 148 150 | 152 | 154 | 156 | 158 160

92 —-06 | —-05|—-04|-02 00| 06 0.9 1.2 1.2 1.0 0.9 0.8
94 —-06 | ~06 | —-04 | 0.1 03| 11 1.4 20 14 1.2 1.1 1.1
96 -09 | ~0.7 | —-03 0.3 10 22 1.8 22 2.0 1.6 1.5 11
—22|-26|-20|—16|—-08! 0.6 0.9 0.9 0.9 0.8 0.6 -0.2

98 -0.5 | -04 0.3 0.7 16| 23 24 2.6 2.5 22 2.1 2.2
-13{-12,-08  —-09 05 1.2 1.4 1.7 1.5 1.4 1.2 1.3

100 -04 | —-03 0.0 1.8 22 32 34 3.8 3.8 3.0 3.6 22
-05|~-04 | —-12| =02 121 1.8 0.9 25 24 2.0 2.0 1.0

102 —-0.5|~04 | —-01 0.6 14 ] 35 3.7 4.1 4.2 23 1.3 1.1
-05 | ~05 | —-04 0.1 09| 3.0 2.4 3.0 3.0 1.9 1.2 0.9

are also given. One can see that the more accurate dynamic corrections AT¢" lead to longer
lifetimes T;. The difference between the two amounts to up to 1.5 orders. The values of the
dynamic correction AT‘;’“, themselves, are from about one order of magnitude for lightest
considered nuclei (Z = 92) up to about four orders for the heaviest (Z = 102).

Fig. 4 shows half-lives T, calculated: without any correction AT, with dynamic
correction ATY® and with AT, for 12 isotopes of Cm. The experimental values are also

for 12 isotopes of Cm. The experimental values are also shown

v T

log Tg¢ (y)

T

- = — without aT
. - with T}

i

with aT""
exp

L

i

1

140

Fig. 4. Logarithms of the half-lives Ty calculated: without any correction AT, with AT} and with ATI™,

150

N

160
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shown. One can see that T,; calculated with 4TS are higher than the experimental values.
The discrepancy is largest for the heaviest isotopes and is higher in the case of AT3" than
of ATY. This statement remains also true for the heavier elements: Z = 98-102.

To complete the discussion of various effects in T, we have studied the effects of
dynamics in the (g,4, &¢)-plane. We have namely studied the ratio of the dynamic value
AT®™ to the static one ATE" defined as

T6"' [ V(€245 £6)> B(2245 £6)]
Ts[V(e24, 0), B(£24, 0)]
It is found that ATY*(TY™) is smaller than AT (T") by no more than 0.4 orders, for all

investigated nuclei. Thus, the dynamical treatment of the lifetimes T in the (e,4, &6)-plane
decreases them rather weakly. This is explicitly illustrated in Table II, for isotopes of Cm.

A Tgtat —

TABLE I
Effect of dynamics in the (c.4, €6)-plane on T, for Cm isotopes
N 138 140 142 144 146 148 150 152 154 156 158 160
log
(AT‘;"“/AT:'“‘) —-0.2|-01| 00 -01}{-02({-02}-03}|-011}-01} 0.0 _ 0.0

3.3. Average fission trajectory

Fig. 5a shows examples of the static fission trajectories obtained for three isotopes
of Cm (4 = 238, 248, 258). One can see that they differ rather much. The differences are
the effect of differences in the shell structure of the isotopes. The solid line £(Cm) is an
average static trajectory obtained from the trajectories calculated for 14 isotopes of Cm
(4 = 234-260). The trajectory L(Cm) is compared in Fig. 5b with the average trajectory
L51(Cm), obtained for the same 14 isotopes of Cm but with only smooth (droplet) part
of the potential energy, i.e. without the shell correction. It is seen that, despite of the
averaging of the shell correction over the 14 isotopes, some shell effect remains and it is
largest in the region of the first minimum (equilibrium deformation). Fig. 5c shows the
trajectory L averaged over 98 isotopes of seven elements (Z = 92-104). Using this trajectory,
we construct a simple average trajectory L, composed of three straight-line segments

0.150 for 0.20 <e<0.30,
g = 0.150—1.125(e—0.30) for 0.30 <& < 0.50, (&)
—0.075 for 0.50 <e < 1.00.

A smaller effect of the shell correction on the fission trajectory in the large (saddle-
-point) deformation region than in the region of small (equilibrium) deformations, observed
in Fig. 5b, is connected with two facts. One is a smaller shell correction, itself, and the other
is a larger stiffness of the smooth (droplet-model) part of the potential energy with respect
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Fig. 5. Examples of the static fission trajectories calculated for three isotopes of Cm and an average trajec-

tory, £(Cm), obtained from the trajectories for 14 isotopes of Cm (4 = 234-260) (a). The average trajectory

L(Cm) as compared with that obtained in the droplet model Fp1(Cm) (b). A schematic average trajectory

L, derived from the average trajectory L, which is obtained from the trajectories calculated for 98 nuclides
of the seven elements: Z = 92-104 (c)

to the g¢g-deformation in the saddle-point region than in the equilibrium region. The latter
fact is illustrated in Fig. 6. The stiffness (second derivative) of the droplet-model potential
energy Vpr with respect to & is by around 609 higher for ¢ = 0.80 than for ¢ = 0.25.

A map of the smooth (droplet-model) part of the potential energy, plotted as a function
of the deformations ¢,4 and & is given in Fig. 7. It is seen that this energy is much flatter
than the total energy given in Fig. 1.

3.4, Equilibrium deformations

It is interesting to study the equilibrium values of ¢5. For actinides, these quantities
have not yet been calculated, except for unpublished calculations by Moller [8]. The latter
were obtained with other parameters of the single-particle potential than used in the present
paper. There were performed, a long time ago, some calculations of €¢ for rare-carth nuclei
[5]. They were, however, of rather preliminary nature as they did not use the normalization
of the energy to the liquid drop.

Although only few, there exist now some experimental data for this high-multipolarity
deformation of actinide nuclei, obtained from scattering of protons [9, 10] and alpha
particles [11]. The data are for 232Th and 234236.238y,
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Fig. 6. Smooth (droplet-model) part of the potential energy Vpr plotted as a function of & for small
(e24 = 0.25) and large (£24 = 0.80) quadrupole deformations
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Fig. 7. Map of the droplet-model potential energy Vpr plotted as a function of &;4 and & for 24°Cm.
No minimization of the energy with respect to £, and &5 5 is performed here. Static fission trajectory, stat (DT),
obtained with this energy is also shown

Table III gives the calculated equilibrium values of ¢, &, and &, the static electric
moment QF, the total deformation energy E,. and the contribution 4E to this energy,
due to the &¢ degree of freedom. The static moment Qf is calculated at the equilibrium
point (€% €3, £2) of a nucleus by the formula

02 = 2 [ g,(r)r®Pg(cos 9)dx,
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TABLE Il

Equilibrium deformations £°, 52, e‘; and static electric moment Qg for nuclei specified in the first two columns.
The total deformation energy Ega.r and its part 4Es, due to the &5 deformation, are also given

Z A &° 62 62 Qg AE, Egef
—_ — —_ —_ —_ & MeV MeV
92 240 0.218 —-0.027 0.015 0.259 0.24 1.5

242 0.221 —0.018 0.017 0.151 0.31 8.0

240 0.218 —0.034 0.015 0.345 0.20 79

94 242 0.225 —0.025 0.017 0.248 0.32 8.6
244 0.227 —0.017 0.019 0.140 0.37 9.1

246 0.226 ~0.008 0.020 0.027 0.40 9.2

242 0.223 —0.030 0.015 0.334 0.25 8.7

244 0.231 -0.021 0.019 0.206 0.42 9.6

9% 246 0.232 —-0.013 0.020 0.103 0.47 10.1
248 0.232 —0.005 0.021 0.000 0.51 10.2

250 0.229 0.003 0.020 -0.079 0.45 9.8

242 0.218 —0.031 0.013 0.360 0.19 8.0

244 0.230 -0.024 0.018 0.258 0.39 9.3

246 0.235 -0.016 0.021 0.138 0.54 10.2

98 248 0.236 —-0.008 0.022 0.033 0.60 10.8
250 0.236 0.000 0.023 -0.073 0.63 10.9

252 0.234 0.008 0.022 ~0.152 0.56 10.6

254 0.232 0.016 0.021 -0.227 0.48 10.1

244 0.225 —-0.024 0.016 0.271 0.29 8.3

246 0.234 -0.017 0.020 0.165 0.47 9.6

248 0.239 - 0.009 0.023 0.041 0.64 10.6

100 250 0.240 —-0.002 0.025 ~-0.070 0.71 11.2
252 0.239 0.006 0.025 —0.166 0.73 114

254 0.238 0.014 0.024 —0.244 0.66 11.2

256 0.235 0.022 0.023 —0.322 0.57 10.7

258 0.232 0.029 0.021 ~0.370 0.48 10.1

252 0.239 0.003 0.024 -0.119 0.66 11.0

254 0.239 0.012 0.024 —-0.225 0.69 11.3

102 256 0.237 0.020 0.023 —0.304 0.63 11.2
258 0.234 0.027 0.022 -0.371 0.53 10.8

260 0.231 0.035 0.020 —0.429 0.45 10.2

where the proton density distribution g, is assumed uniform, with sharp surface. Radius
of a spherical nucleus, with the same volume as that of the deformed one, is taken as
Ro = 1.2 A'* fm.

The deformation energies are defined as

Esr = E(0,0, 0)—E(, €5, £3), (10)

4Es = E(¢%, €3, 0)— E(¢°, &3, €). 1
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The results are presented only for nuclei for which the energy 4E; is not too small. We,
rather arbitrarily, put the condition 4E¢ 2 0.2 MeV.

Similarly as the static fission trajectory, the equilibrium deformations, corresponding
to the point of minimal energy on this trajectory, is found in the two-dimensional analyses.
The values £° and &) are found by minimization of the energy

V(S, €4, 0, 0)+A V6

(cf. Eq. (5)) in the (&, &,)-plane. It is worth mentioning that these values are only very little
altered when the correction 4 Vg is disregarded. The £§ value is found by minimization of the
energy

V(S, 54’ 03 86)+A V4

in the (&,4, €¢)-plane.
One can see in Table III that the values of £°, obtained for the 31 nuclides specified
in the table, fall into a very small interval, £ = 0.22-0.24. The values of &3 are spread over
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Fig. 8. Dependence of the proton single-particle levels on the deformation &5 for & = 0.2, g, = —0.02.
The levels are labeled by 2Q[Nn, A). The value of 212 is also repeated on the left-hand side of each level
for easier identification. Position of the Fermi levels for Z == 96 and Z = 100 are indicated, for a pointer
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a rather large region, £ = —0.034-0.035, and the values of &2 again extend over a relatively
small interval, ey = 0.013-0.025. The total deformation energy is large, Ej = 7.5~
-~11.4 MeV, what means that the nuclei are well deformed. The contribution 4V to this
energy is, however, small, not exceeding 0.73 MeV. The meaning of the latter may be found
by comparing the values of 4Fs with the values of the zero-point energy corresponding
to &g, treated as a separate degree of freedom, not coupled to other degrees. This energy

may be estimated by considering it as half the vibrational energy hwg, which in the adiabatic
approximation is

hwg = 1 NV Cppoe/Begeer (12)

where C,,, is the stiffness of the potential energy with respect to &. This way, one obtains
for 246Cm more than 4 McV for hws. Assuming that this estimate is about two times, or
even slightly more, too high, similarly as it is for the quadrupole vibrations [12-14], one
may roughly assume hwg to be around 2 MeV and, consequently, the zero-point energy,
+ hws, around 1 MeV.

Thus, the zero-point energy is large with respect to the deformation energy 4Eq given
in Table III. This suggests that the deformation g of the nuclei given in the table has

Y T Y T ¥ N

£=020, & =-0.02
NEUTRONS

2NN Ad
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78 - = Mr7251
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3 (615] E
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1{50) 5
5 (9031
13[606)
11{615])
1(642]
~31s501)

ties N

3 {505]
3{s123
115103
9 {6241

?7{5¢1]

Fig. 9. Same as Fig. 8 but for neutrons
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a dynamic rather than static character or, in other words, that the static values & given in the
table are importantly changed by the dynamic corrections. This especially concerns the
light isotopes of uranium: 234:23%-238(J for which the experimental data for the deformation
of multipolarity six exist [9-11]. The calculated values of 4E for these isotopes are 0.01,
0.06 and 0.12 MeV, respectively. Thus, the deformation &g is expected to be of completely
dynamic nature for them, This is the reason that we do not give the &2 values for these
nuclides in Table III and that we do not compare these values with experiment. Such compar-
ison needs the values calculated dynamically, i.e. with knowledge of the ground-state
wave function as a function of deformations &, &, and &.

It may be added that the values of ¢° and &) obtained and given, for completeness,
in Table III in addition to &2 are rather close to those obtained by Méller [15].

3.5. Dependence of the single-particle levels on &

Dependence of the single-particle energies e, on the deformation &4 is illustrated in
Fig. 8 for protons and in Fig. 9 for neutrons. Values of the quadrupole and hexadecapole
deformations, € = 0.2, ¢, = —0.02, are taken at the point which is close to the average
equilibrium point for considered nuclei. The levels are labeled by (twice the) projection
of spin on the symmetry axis, 292, and the asymptotic quantum numbers [Nn,A]. The
parity is specified graphically: positive (n = +) parity by solid line and negative (n = —)
parity by dashed line.

The dependence of e, on g is found more flat than the dependence on &,.

4. Conclusions

The following conclusions may be drawn from our study.
(1) The dynamic correction to the spontancous-fission half-life AT§" (due to an accounting
for the deformation &) is largest for heaviest nuclei and may change the lifetimes by up to
about four orders. Most of it comes from the dependence of the potential energy on
&6 (as described by ATY). Considered as a function of the neutron number N, it has a maxi-
mum at N =~ 152-154.
(2) Diagonal components B,,, of the microscopic mass tensor are about two times smaller,
on the average, than the components B,,,, ..
(3) Small values of the mixed component B,,,,,, which fluctuate around zero with ampli-
tude about 100 A2 MeV—1, indicate that the ¢,, and £, degrees of freedom may be in good
approximation considered as normal coordinates in all investigated region of deforma-
tions.
(4) Even for well deformed nuclei, with well established values of ¢ and &4, the deforma-
tion &g is of a rather dynamic than static nature. Due to small values of the deformation
energy corresponding to this degree of freedom, 4E, large dynamical corrections to the
static values &2 are expected.
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