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HYPOTHESIS OF ZERO QUANTIZATION AND ITS
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By W. KROLIKOWSKI
Institute of Theoretical Physics, Warsaw University*
( Received November 2, 1982)

The hypothesis is put forward that the world’s three discrete spatial dimensions follow
from some yet unknown quantum rule called the zero quantization. Then the next-quantiza-
tion procedure (an analogue of the second quantization) is discussed, leading from the hypo-
thetic zero-quantization level to the familiar first-quantization level. The Fermi-Dirac or
Bose-Einstein version of this procedure is shown to originate the particle spin 1/2 or particle
position and momentum, respectively. At the same time there appear additional “internal”
degrees of freedom, both spin-1/2-like and orbital-like, the former implying two species of
spin-1/2-particles, while the latter — their ““internal” radial- and orbital-like excitations.
The resulting group is SO(6,1) > SO(3,1) x SO(3), where SO(3,1) denotes the Lorentz group
and SO(Q3) relates to these additional “internal’’ degrees of freedom, defining generators
interpreted possibly as the weak isospin 1/2 plus its orbital-like analogue.

PACS numbers: 11.30.Ly, 12.90.+b

1. Introduction: the zero quantization

Living in the world of three spatial dimensions one can hardly realize that the fun-
damental empirical fact of discrete dimensionality of the physical space may be a conse-
quence of quantum laws of nature. The main obstance to this realization is the lack of
one’s experience with a ‘‘classical world” having a continuum of spatial dimensions and
approximating the real ‘‘quantum world” in some ‘‘classical limit”. In spite of these un-
favorable circumstances we dare make in this note the conjecture that the existence of
world’s three discrete spatial dimensions can be explained by some yet unknown quantum
rule which we will call the zero quantization. At the level of the zero quantization, as always

! An alternative version of the zero-quantization hypothesis may be the more modest conjecture
that some yet unknown gquantum rule establishes a correspondence between real “guantum world“ of
three spatial dimensions and an approximate “classical world“ having also three spatial dimensions.
Both versions of the hypothesis may lead effectively to the same theory at the zero-quantization level.
Note, however, that in contrast to the second version, the first version may actually imply an infinite
number of world’s discrete spatial dimensions, all of which but three should be suppressed at “low
energies”.

* Address: Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Hoza 69, 00-681 Warszawa,
Poland.
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in the quantum theory, time ¢ defining the fourth dimension of the relativistic space-time
will be treated as a parameter [1]%.

Although not being based on a concrete physical model yet, the hypothesis of the
zero quantization enables us to treat the index k = 1, 2, 3 numerating the three spatial
dimensions as a quantum number {(of the zero-quantization level). Then the stare space
of the zero-quantization level is defined as the Hilbert space spanned on the basis of three
orthonormal kets k> (k = 1,2,3),

Zk:fk> Kkl =1, <kl = du. 6))

In consequence, the wave function in the corresponding representation [2] is
¥(k, t) = <k|¥()), (2)

where W(¢) denotes the abstract state vector of the zero-quantization level,
(1) = Ekl |k>¥(k, 1), (¥YOIP()) = % 1Pk, D> = 1. (3)

The wave function (2) can be interpreted as the probability amplitude of finding the di-
mension k = 1, 2, 3 in the physical space. An obvious deficiency of such a statement is
that the phrase ““finding the dimension k = 1, 2, 3 in the physical space” may gain its
precise meaning only on the ground of a concrete physical model for the zero quantization,
which should establish an observable related to the measurement of the dimension. Note
that the state space of the zero-quantization level, being a three-dimensional Hilbert
space, is equivalent to a six-dimensional real Euclidean space.

The hypothesis of the zero quantization becomes effective if we want to discuss the
transition from the zero-quantization level of the theory to its first-quantization level
where we meet a more familiar physical content. In this note we elaborate to some extent
this transition, making use of the analogy with the well-known transition from the first-
to the second-quantization level of the theory:

quantization physical quantized wave
level object coordinates function
Zero ? k Yk, t)
i g g
first particle Xy Oy ¥Y(x,0,1)
i
second field 1p(5c', o) Py, t)

2 This assumption on time is essential for the algebraic structure of the theory, which would become
richer if all four discrete space-time dimensions could be explained by the zero quantization. Such a form
of the hypothesis of the zero quantization was in fact suggested originally (W. Krélikowski, Acta Phys.
Pol. B13, 783 (1982)), but it seems to be not free of difficuities connected with its ignoring the usual parametric
role of time in the quantum theory. The present form of the zero quantization makes an essential difference
between three spatial dimensions explained by a quantum rule, and one time dimension related simply to
time ¢ being a parameter.
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Here, o, and (x, o) (or »(x) for short) denote spin 1/2 and a spinor field, respectively
(the wave function ¥(X, g, t) will be denoted for short by ¥(, ¢)). An analogical (but
somewhat simpler) scheme can illustrate the situation for a spinless particle correspon-
ding to a scalar field ¢(x). In these schemes ¥(x) = w(x) or ¥(X) — ¢(x) after the second
quantization is carried out, obeying Fermi-Dirac or Bose-Einstein statistics, respectively.
Similarly, from ¥ (k) we shall get o, or x, after the first quantization is performed. However,
in addition to the familiar coordinates o, and x, we shall obtain some new coordinates
7, and y, which, beside the spin o,, will play the role of ‘“‘internal” particle coordinates.

2. The first quantization

When passing to the level of the first quantization, the wave function ¥(k) of the
zero-quantization level becomes a quantized “‘field” defined on the discrete space of three
spatial dimensions k& = 1, 2, 3. In the case of Fermi-Dirac statistics we get Y(k) - y(k),
where

{W(k)’ 'l’f(l)} = 5“9
others anticommutin C)
£,
and in the case of Bose-Einstein statistics we obtain ¥Y(k) — ¢(k), where
[¢(k), I(D] = idy,
others- commutin )
g,

II(k) being a ‘‘field” canonically conjugate with ¢(k). Here. two cases can be considered,
when ¢(k) is Hermitian or non-Hermitian. In the second case [¢t(k), II()] = O.

In the case of the Fermi-Dirac quantization procedure (4) there appear the Hermitian
operators

1
o = pk)+yik), & = 7 [v(k)— (k)] (6

satisfying the anticommutation relations
{0 0} = 20y, {o 0} =0, {6, 0} = 20y Q)

of a six-dimensional Clifford algebra. They can be represented minimally by 8 x 8 Hermi-
tian matrices, e.g.

o, = oy x ot x1¥ = g,0,,
6, = I°x o x o} = 0,14, (8)
where of and 1¥ are 2x2 Pauli matrices and
o, = op x1F x 1%,
0, = 1" xof x1¥,

7, = 1"x1¥ x o} ®
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are three commuting sets of spin-1/2-like matrices. The anticommutation relations (7)
are covariant under the group SO(6) = SU(4) D SO(3) x SO(3) generated by

O 03047 Tp (10)

where ¢; could be put +1 if only the group SO(6) were considered. It is important to
notice that matrices introduced by relations (7) define also two noncommuting Lorentz
groups SO(3, 1) generated by

O, 10104 (1n
and
Ty 1027k (12)

respectively. The group SO(6) as well as both groups SO(3, 1) are contained in the group
SO(6,1) generated by

O 1010k 23037, T, 10,7 (13)

which, therefore, is also defined in terms of the matrices introduced by relations (7). Note
that in terms of these matrices we can extend the anticommutation relations (7) to the
form

{Vus }’v} = 2g,m {Vw ’11} =0, {Mm) =28 (14)
where
wv=0123 kl=123 go=1 gu=90gu= —0u
and
Yo =B = ¢
Ve = T Q30 = — 10304
M= —030 = ig T (15)

We will use aiso 70 = yo, * = —y, and #* = —p,. Notice that y, = iy%!y*y® = g,
and n'n*p®> = —g, (so that y°y'9%y3y'n?p® = i). The anticommutation relations (14)
are covariant under the group SO(6,1) containing, as some its subgroups, the group SO(6)
with generators (10) and two Lorentz groups SO(3,1) with generators (11) and (12). How-
ever, the present notation chooses the first of these two SO(3, 1) as an explicit Lorentz
group: SO(6, 1) D SO(3, 1) x SO(3), where the group SO(3) is generated by 7,.°

Since we can identify matrices 6, and g,, (and consequently also y*) with the familiar
Dirac matrices [3], we conclude that the particle spin L ¢ and particle velocity a = g,a,

3 The most general group containing SO(6,1), that can be defined in terms of the matrices introduced
by relations (7), is the conformal extension of SO(6,1) given by SU(4,4) > SO(4,2) x SO(3), where SO(4.2)
= SU(2,2) @ SO(3,1) is the conformal group generated by oy, i0,10k, 020k, 030k, 101, {02, Q3.
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which generate the familiar Lorentz group SO(3, 1), follow from the Fermi-Dirac quan-
tization procedure applied to the zero quantization wave function. Then, however, there
appear necessarily additional “‘internal” spin-1/2-like degrees of freedom described by the
operator 1 T which we will call the particle pseudospin 1/2. Thus we get here two species
of spin-1/2 particles corresponding to two eigenstates of 4 ;. Obviously, it is tempting
to interpret the pseudospin + 7 as the weak isospin 1/2, but extended to the whole Dirac
bispinor containing both chiral components. Then 4 7 generates the diagonal sum of the
familiar chiral groups SU.(2) and SUg(2): SO(3) = SUQ) = SU.(2)+SUr(2).

In the case of the Bose-Einstein quantization procedure (5) we can form the following
Hermitian operators:

1
X, = APp(k), p, = pl (k) (16a)
if ¢p(k) = ¢*(k), and

2 1
S tl- — t
X, = Ji [¢(k)+ o' K)], pe = 2\/2 [(11(k)+ T (K)],

Yo = \/2 [6() - o' (K)],  ax = —[H(k) (k)] (16b)

A2

if g(k) # ¢p¥(k).* Here, A is a real constant of length dimension (h and later also c are put
equal to 1). Operators (16a) and (16b) satisfy the canonical commutation relations

Xz D1} = 104y,
{{ A ! (172)
others commuting
and
{[xk, p] = 6u  [Ve 4] = idus (17b)
others commuting,
respectively.® Note that writing
d
Xo Po =i — 3 (18)
we can extend Eq. (17a) and (17b) to the form
X 3 Py = —i vy
{[ P P] " (19a)
others commuting

3

1
+ Notice that zx = xg+iyx = A/26(k) and —i o =4 (p~ign) = i3 ——=TII(k).

5 It should be noticed that if (like in the usual canonical theory) the hamiltonian of the first quantiza-
tion level contains 4 through the canonical variables only, this constant does not appear explicitly and so
cannot be measured. To be measurable it must emerge independently as a constant in the interaction term
or mass term (or in the kinetic term as a coefficient).
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and

J[xus pv} = —ign\" {yk’ ql] = _igﬁf'

. (19b)
lothers commuting,
respectively. Hence
. 0 . 0
pll = l*é;;‘ R qk =} 6‘\,"‘. N (20)
where x° = x,, ** = —x, and y* = —y,. Making use of relations (19b) we can easily

construct the orbital-like generators of the group SO(6, 1), which added to its spin-like
generators (13) give in the case of ¢(k) # ¢'(k) its total generators. In particular, yxg+4 7
are three total generators of the subgroup SO(3).

Since we can identify operators x, and p, with the familiar canonical variables, we con-
clude that the particle position x and particle momentum p follow from the Bose-Einstein
quantization procedure applied to the zero-quantization wave function. But then, in the
case of ¢p(k) # ¢t(k), there appear necessarily additional ““internal” orbital-like degrees
of freedom described by the operators y and g which we shall call the particle pseudoposi-
tion and particle pseudomomentum, respectively. If the interpretation of the pseudospin
17 as the weak isospin 1/2 is correct, then the pseudoorbital angular momentum y x ¢ can
be interpreted as the orbital-like weak isospin, and the total pseudoangular momentum

L T+ yx g — as the total weak isospin whose third component should be related to the
clectric charge.

3. Wave equation for spin-1/2 particle

In the case of ¢(k) = ¢¥(k) there is no Dirac-like wave equation covariant under
the group SO(6, 1) because no orbital-like degrees of freedom in the pseudospace, y and
g, exist in this case (though the spin-1/2-like degrees of freedom %—7: exist). Then the only
Dirac-like wave equation is just the Dirac equation which in the free case has the form

i a% WX, 1) = (& p+Bmo)¥(x, 1) 21

or
(Y'Pu—mo)¥(x) = 0 (22)

and is covariant under SO(3, 1) x SO(3) subgroup of SO(6, 1). Here, due to Eqgs. (15)
and (9)

»°, 0
P = PPt = (0, yu,,), (23)
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where (#*?) = (8°, BP°) = (1¥ x o5, i@* x o}) are 4x4 Dirac matrices. Thus

D
¥(x) = (gd.,o 8) 24)

where 'PEP(x) and Y5 ..(x) are 4-component Dirac bispinors satisfying two free Dirac
equations and being eigenstates of 3 t, with eigenvalues +3, respectively. It is so since
due to Eq. (9)

T = 1" x &', (25)

where I° denotes 4 x 4 Dirac unit matrix. We can see that two species of spin-1/2 particles,
up and down, are here explicit and decoupled from each other as far as the free Dirac
equation (22) is considered.

In the case of ¢(k) # ¢+(k) there exists the Dirac-like wave equation covariant under
the group SO(6, 1). In the free case it has the form

a - - - - - - - -
i(,; Y(x,y,0) =(ap+0-g+pmo)¥(x, y, 1) (26)
or
(7*pu+na—mo)¥(x, ) = 0. @n
Due to the anticommutation relations (14) it leads to the Klein-Gordon-like equation
(pz ”52—n1(2))ql(x’ ;) =0, (28)

where p? = p*p, = pi—p*. Equation (28) shows that also in the case of ¢(k) # ¢'(k)
the up and down species of spin-1/2 particles are decoupled from each other, although they
are apparently coupled in Eq. (27) through the term n*q, = —iy,1,q, violating conservation
of 4 7 (but conserving y x ¢+ + 7). This term has also another apparent effect in Eq. (27),
absent from Eq. (28), namely it violates conservation of the parity defined by reflections
in the familiar space, X — — X (through conservation of the combined parity defined by
reflections in the space and pseudospace X — —X, y - — y is not violated). Both these
effects of nonconservation become real if appropriate interactions are introduced into
Eq. (27). Note that non-zero interactions leaving the spin-1/2 particle free in the familiar
space break necessarily SO(6) subsymmetry of SO(6, 1), though SO(3,1) x SO(3) sub-
symmetry may be preserved.

Interactions can be introduced into Eq. (27) by some substitutions. In order to give
an example substitute in Eq. (27)

mg = mo+S (29)

where S = S() is a scalar under the familiar Lorentz group SO(3, 1) (and may be a scalar
also under SO(3) if S = S(|y¥|)). Then the wave equation becomes

(PPt 1*a—mo—S)¥(x, y) = 0. (30)
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Equation (30) leads to the Xlein-Gordon-like equation

(p*=M*)®(x,y) = 0 3D

with the mass operator squared

, EAUESLON

which mixes up and down components of ¥(x, }) and apparently violates the parity. The
insertion ¥(x, y) = ¥(x)x(y) separates Eq. (31) into the pair of equations,

(PP—m*)¥(x) =0 (33)
and
M3 (y) = m*y(y), (34)

where m? is an eigenvalue of M2, Denoting r = |y|, # = y/r and i = yx g we get in the
case of S = S(r):

1 8 Paya- Pa(r)
M= = — g T +(mg +5)%, (35)
where
, 48
a(r) = r —d';' (36)

In Eq. (35) we can use the identity

T2 4957 - Palr) = A(A+1)—o2(r), 37
where
—A =147 Loyt - Par) (38)
and
= (147 L2 +a2(). (39)

Denoting J = L+17 and e = +1 we get

[N

- Sl - & -
(1+r-L)lj=1+E>=e(j+;

j=T+ -;l> (40)

and ( for

~ ~ £
j=1+ E> being also eigenstates of A)

i = ——) = eA(r) |

> (41)
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where
ary = ViG+ D+ 42)

In the special case of § = —a/r we have a(r) = const = a and A(r) = const = 4,
Then the operators M? and A commute and so we obtain from Eq. (34) the radial

equation
d*  Ai-e)—o? a\? 5
—oEt o T (M ) () =, rx(r) 43)
r r r

whose discrete spectrum is

o 21172
g
" mo[ (ﬁ— ~14 JG+? +a)]

) o2 N ot /A
m -——— —_— U
0 2 2t \j+1

with 7= A, +3(1-&)+j++=1,2,3,... (where n,=0,1,2,. )and;:—‘i%i
Spectrum m = m;5 ngen in Eq. (44) is degenerate with respect to m = Jy ey =] (and
also to e = +1 for J+% # 7) and involves pseudoradial and pseudoorbltal excxtatxons,

|~

%) +0(°¢6)] C)

the latter displaying a fine structure of split pseudospin doublets with j= T+ —;— (for

~ =~ & ) ) ~ -
S(r) # —ofr also the doublets e = +1 with | = j— e} get spht). Obviously, m; = m,

+m, where m, = +1 are eigenvalues of %15, so that m; = +4 for the ground state
n=1j=1 and for its pseudoradial excitations n = 2, 3 A=0j=4
Of course, we considered § = —o/r only for an 1llustratxon of a general pattern,

where a spin-1/2 particle appearing in two species corresponding to two eigenstates of
+ T3 gets pseudoradial and pseudoorbital excitations. If the weak-isospin-1/2 interpretation
of the pseudospin 1 7 is correct, these two species are up and down fermionic flavours,
and then the pseudoradial excitations should be responsible for fermionic generations
displaying in this case some structure due to pseudoorbital excitations. The latter should
imply charge excitations when |m il > 1. In this pattern, the familiar leptons and quarks
would fit to separate weak-isospin doublets m; = +4 with n, = 0,1,2,7 = 0,j = } or,
alternatively, with n, = 0,1 = 0,1,] = L and n, = 1,1 = 0,j = 4, the second possibility
suggesting the existence of the fourth fermionic generation consisting of weak-isospin
quartets m; = 3,3, —%, =3 with n, = 0,7 = 1,j =  (evidently, one member in each
of these quartets should be charge excited, having charge +2 or +3 in the case of leptons
and quarks, respectively). At this point we should stress that in our pattern leptons and
quarks are not composite objects in the sense of preon models where radial and orbital
excitations are related almost necessarily to a very high energy scale.
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To give another example of interactions, substitute in Eq. (27)

Py = Pu—% gtuWa—13 g'(r+ Y)B,,
ax ~ dx—7 g1V W, (45)
Mo — My —% g'( R— YL))’s')‘"an

where W, (x) and B,(x) are four-vectors under SO(3,1) and a vector and a scalar
under SO(3), respectively, whereas g, g’, Yz and Y; denote real constants. Then the wave
equation becomes

P Putng—mo—gy*s (1 —ys)n W
- g'}’"[% (1 —YS)YL"'% (1 +')’5)YR]Bu}q/(xs ;) =0, (46)

displaying the Weinberg-Salam-type coupling of a spin-1/2 particle to the fields of pseu-
dospin-1 and pseudospin-0 vector bosons W,, and B,. We can see that here only the left-
-handed component of the spin-1/2 particle can interact with W,,. The right-handed com-
ponent is, however, not decoupled from its left-handed partner because of the terms m,
and r*q, = —iyet,q in Eq. (46). Finally, we should mention that the substitution (45)
is not gauging the global-symmetry group SO(3, 1)x SO(3) in Eq. (46).

4. Oscillatory interpretation of the first quantization

Needless to say that in order to understand better the hypothesis of zero quantization
one should find a physically acceptable model of this quantization. Such a program is
a challenge to one’s imagination to recognize the physical objects which have to be quan-
tized at the zero-quantization level. At present we can only say that (after the zero quan-
tization is carried out) such an object has as its coordinate spatial dimension k = 1,2, 3
(i.e. one of three basic spatial directions). We also know that there are two types of such
objects, corresponding to the Fermi-Dirac and Bose-Einstein statistics. At the first-quan-
tization level they can be described as quanta of the Fermi-Dirac and Bose-Einstein quan-
tized ‘‘fields” w(k, t) and ¢(k, t) (the latter ¢‘field” appearing jointly with its canonical
conjugate [1(k, t)), and may be conveniently called fers and bos (a fer and a bo in singular).
The ““fields” y(k, t) and ¢(k, ), collaborating mutually, construct physical systems which
we recognize experimentally as elementary fermions (leptons and quarks).

In particular, in the case of ¢(k, t) # ¢t(k, ¢) the fermion velocity, fermion position
and fermion momentum are given by the following ‘‘field”” superpositions:

v(1) = cou(t) = c[w(k, 1)+ ik, )],
2

x(1) = Np [o(k, )+ ¥k, D],
h
= » 1
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implying the existence of the linearly independent superpositions that define the additional
“‘internal” degrees of freedom:

(1) = % [y(k, =ik, 1],

W) = = [k, =Tk, 1)),
iy2

it
qil1) = PN (11(k, )= 11%(k, 1)]. (48)
Note that in Egs. (47) and (48) there appear three fundamental constants ¢, A and h. Al-
though one can expect that the new constant of length dimension 4 should play an impor-
tant role in quantum dynamics of fers and bos, it does not appear explicitly in the free
Dirac-like wave equation (26), being hidden in X, p = —ihd/ox and y, § = —ihd[dy,
and so it cannot be determined from this equation unless it appears in m,. It may be a signal
that a development of this wave equation should be expected.

The hamiltonian in the free Dirac-like wave equation (26) can be easily expressed
by the Fermi-Dirac and Bose-Einstein quantized ‘“fields” (k) and H(k) (cf. Egs. (4) and

(5)). Namely, making use of Eqs. (6) and (16b) (the latter with explicit # in p, and g,)
and of the formula

B = ia2,238,8,85 = [¥1(D), (D] [¥'Q2), v(D] [¥'(3), ¥v(3)], 49
we obtain
H=c@ p+d-9)+Pmyc’
he _
= moc?pt = /2 Z (w0 + (TR, (50)
k
where

4
moc?B = myc? [—1+2 Z yh(k)yp(k)—- 7 z GO0
Kk

k,1
different

8

+ 3 E w*(k)w(k)w*(l)w(l)w*(m)w(m)] = —myc’: exp[—2 E w*(k)w(k)]: (51)
k,d,m Kk

different

Here, :( ): denotes the normal ordering of all y'(k) and (k). In Egs. (50) and (51) we can
write

(k) = 3 (%+id) = a; (52)
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and

o1 atef dy+d}
¢(k) - —\/— (xk+’}k) \/2( \/i +1 \/§ >5
. A famd _ dmdt)_ @

with @, and ¢, or d; being respectively Fermi-Dirac and Bose-Einstein annihilation opera-
tors of the first quantization level. They annihilate fers and bos in the zero-quantization
states |k> (k = 1, 2, 3). Of course, af and ¢ or d} are the respective creation operators.
In the case of ¢(k) # ¢(k) there are two kinds of bos since then ¢¥(k) (with 1T(k) # ¢*(k))
describes two idependent Hermitian ‘‘fields” x, and y,.

We conclude from Egs. (50) and (51) that the mass term Smqc? in the free Dirac-like
hamiltonian (50), depending only on uf(k)y(k), can be interpreted as energy of fers,
and the kinetic term (@ - p+6 - ¢) which couples (k) with II(k) — as the interaction
energy of fers with bos. So we come to an oscillatory interpretation of the first-quantization
hamiltonian for an elementary fermion®. Note, however, that no term which could be in-
terpreted as energy of bos is present in the hamiltonian (50). One may wonder as to whether
such a term should not be introduced into the first-quantization hamiltonian if the existence
of fers and bos as physical objects is taken seriously. For instance, introducing tentatively
the term (hc/A)ZH*(k)H(k) (containing the same energy-dimensional coefficient he/d

k

(53)

as the other I1(k)-dependent term in Eq. (50)) one gets the following free hamiltonian of
an elementary fermion:

H = moc*f+ %fz UTHRTI(R) +/2 [p(R)TI(K) + 3 ()T ()]}
k

D Ac
= c(@- p+8- @ +pmoc’+ n 1" +d). (54)

Here, the constant A appears explicitly and so can be measured.

However, it is easy to see that the term O(A) in Eq. (54) spoils the special-relativity
covariance of the Dirac-like hamiltonian (50), so that SO(3, 1) symmetry is here violated
(and, therefore, also SO(6, 1)) though SO(6) is still preserved. The origin of this effect
can be related to the lack of the space-time unification at the fundamental level of the
zero quantization (cf. footnote 2). Such a unification may or may not be established at

6 Tt is interesting to observe that if there were no additional “internal® degrees of freedom described
by &, the Fermi-Dirac annihilation operators g could not be constructed and then there would be no oscilla-
tory interpretation of the first-quantization hamiltonian for a spin-1/2 particle. So, the requirement of such
an interpretation (suggested by the analogy with the second quantization) implies necessarily the existence
of the additional degrees of freedom & (while the existence of yx and gy is not necessary since the case of
#(k) = #1(k) is not excluded). 1 am indebted to Stefan Pokorski for this remark.
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the first-quantization level, where (beside the time parameter) three spatial continuous
coordinates appear. Qur example shows that a tiny violation of the special-relativity co-
variance may be natural at the first-quantization level jf fers and bos represent a physical
reality (possessing energy). At any rate, such an effect, if it exists, should be really tiny
since 4 is expected naturally as a very small length scale. E.g. the mass-dimensional constant
h/Ac may be the Planck mass My = V he/G ~ 10'? GeV/c?, suggesting the gravitational
affiliation of this effect.”

The energy spectrum evaluated from the tentatively considered free hamiltonian (54)

E* = E2+ %EO(Eé—mgc‘)+ (hic)z 1 (Ei—-mic*?, (55)

where
E2 = cp?+M3c*, M** = g%+ mic*. (56)

Hence
= Eo+ héé 1 (E2—mic* +0(2?). 7

Thus for (Mc)? < p? < (h/i)?
- AC,
E ~ c|p|+3 7P (58)
and for p? < (Mc)* < (h/A)?
e M*—m} 1 Ac\.
E =~ (M+ g m°) c2+%(— + —c) P (59)

h 2 M h

7 For such A hamiltonian (54) takes the form
H = moc*f+ Mpre® Y (ITHGOTT() + / 2[w(k)T(k) + yHe)ITH RO
k

=@ p+8 - D+Pmoc+ (P2+3%).

PL

This free one-body hamiltonian is formally equivalent to a free two-body hamiltonian of one Dirac-like
pamcle of mass no and one Schrodmger-hke pamcle of mass Mp]_, conmdcred in their centre-of-mass frame
wherep, = —p, = pand §; = —§, = § (with p = —ikd/oX, X = ¥~ X, and § = —iko[oy, ¥ = y1~¥2).
An external potential V(%), if introduced into our one-body hamiltonian, is formally equivalent to the
internal potential V(X) acting between a Dirac-like particle of mass me and a Schrodinger-like particle
of mass Mpy in the two-body hamiltonian. The same can be said about a potential ¥'(3) in the pseudospace.
So the term

1 - -
MpLe* SITHONI() = ——— (7> +37)
k L
representing energy of bos in our one-body hamiltonian may be called the *‘vacuum recoil energy’’ associated
with a Dirac-like particle (of mass m,). The above formali analogy is, of course, true for any very small 4 not
necessarily equal to the Planck length #/Mprc ~ 10-22 cm. But for this Planck value of 4 it is especially
appealing.
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We can see that in this case a tiny deviation ~ p? from the special-relativistic behaviour
~ |p| should appear in the energy spectrum of a free elementary fermion at very high
energies.

Finally, we should like to remark that (although important from the interpretative
point of view) the oscillatory representation of the hamiltonian (50) or (54), being based
on the annihilation and creation operators a,, at, ¢,, ¢} and d,, d}, is of a meagre calculatory
value. Instead, the ‘“‘coherent” representation using the Dirac-like matrices o, J, and the
continuous particle coordinates x;, y, and momenta p,, g is adequate for all calculations
at the first-quantization level thanks to the Newton’s and Leibniz’s discovery of differential
and integral calculus. Similarly, the familiar oscillatory representation at the second-
-quantization level would be comparatively of little calculatory value if functional differen-
tial and integral calculus existed as a fully effective algorithm,

Similar conclusions to the above can be drawn in the case of ¢(k) = ¢t(k) when d,,
d} as well as y,, g, do not exist and when the starting point is simply the Dirac wave equa-
tion (21) instead of the Dirac-like wave equation (26).

5. Conclusion and outlook

In this paper we put forward the hypothesis of zero quantization and discussed the
next quantization procedure leading from the yet unknown level of the zero quantization
to the familiar level of the first quantization. We showed that the particle spin 1/2 and
other Dirac degrees of freedom follow from the Fermi-Dirac quantization procedure
applied to the wave function of the zero-quantization level. Similarly, the particle position
and momentum follow from the Bose-Einstein quantization. Then, however, it turns out
that for a spin-1/2 particle there appear some additional “‘internal”” degrees of freedom both
spin-1/2-like and orbital-like, the latter if the Bose-Einstein quantized “field” of the first-
-quantization level, ¢(k) (k = 1,2, 3), is non-Hermitian. These additional spin-1/2-like
degrees of freedom imply the existence of two species of spin-1/2 particles, interpreted
possibly as two eigenstates of the weak isospin-1/2. On the other hand, the orbital-like
degrees of freedom, if they exist, allow for radial- and orbital-like particle excitations
interpreted possibly as giving fermionic generations. The emerging group is here SO(6, 1)
= SO(3, 1) x SO(3), where three generators of the second factor include generally both
spin-1/2-like and orbital-like parts. The third of these generators should be related to the
electric charge, if the weak-isospin-1/2 interpretation of their spin-1/2-like part is correct.
If it is the case, our quantization procedure should provide a geometrical picture for the
electric charge, implying the possibility of charge excitations.

To this end, however, the realistic electroweak interactions should be introduced into
the free Dirac-like equation (27) valid in the case of the non-Hermitian ¢(k). An ambitious
version of this program would be to construct a realistic gauge theory in 6+ | dimensions
based on SO(6, 1) group (or on some extension of it if we have not yet recognized properly
all discrete coordinates appearing at the zero-quantization level). At any rate, to be con-
sistent with the familiar phenomenology, the group SO(6, 1) > SO(3, 1) x SO(3) shouid
be multiplied by the Pati-Salam four-colour group SO(6) = SU(4) o SU(3) x Up_(1).
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Then the clectric charge
Q=@GT+rxqh+i(B-L) (60)

would link both groups. At ‘““low energies” the weak-isospin group SG(3) = SU(2)
= SU(2)+ SUx(2) should lead effectively to the left-chiral group SU (2) generated by
1 (1—y5) (3 T+yx ¢) and, in collaboration with Ug_ (1), to the group Uy(1) = SU(2)
x Up_ (1) generated by

1Y =3 (1495 GT+3%g)s+3 (B-L). (61)
It would be the rearrangement process
SU(2) xug_(1) —» SUL2) x Uy(1) (62)

justified if components | and 2 of the generator L (1+7ys) (3 T4y x g) of the right-chiral
group SUp(2) disappear effectively.

In contrast, in the case of the Hermitian ¢(k) there are no additional orbital-like
degrees of freedom and, therefore, no radial- and no orbital-like (nor charge) pariicle
excitations. In this case the problem of introducing the realistic interactions into the free
Dirac equation (22) does not differ from that in the conventional theory.

Finally, we should like to emphasize that all first-quantization operators defining
particle degrees of freedom involved in SO(6, 1) group can be constructed from
Fermi-Dirac or-Bose-Einstein annihilation and creation operators of the first-quantization
level. The energy operator of the corresponding quanta (called fers and bos, respectively)
can be identified with the free Dirac-like or Dirac hamiltonian of the first-quantization
level plus possibly some tiny correction violating the special relativity. This correction
may appear in a natural way if fers and bos are taken seriously as physical objects (posses-
sing energy).

I want to thank Leszek tukaszuk, Stefan Pokorski and Jacques Prentki for several
helpful discussions. The major part of this paper has been completed during the author’s
happy stay at CERN (Geneva) in September 1982. The idea of a tiny violation of the
special relativity in the world of fers and bos, which enables one to measure A, occurred to
the author in October 1982 in a discussion with Stefan Pokorski.
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