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In these lectures fundamental mathematical aspects of quantum field theory are discus-
sed. A brief review of various recent approaches to mathematical problems of quantum
electrodynamics is given, preceded by a more extensive account of the development of ideas
on the mathematical nature of quantum fields in general, providing an appropriate historical
context.
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1. Introduction

In these lectures fundamental mathematical aspects of quantum field theory will be
discussed. It is a basic fact, of which, in the present excitement, not everybody in particle
physics is aware, that general quantum field theory as a rigorous mathematical theory
does not yet exist. It is an intriguing body of in some cases astonishingly effective heuristic
procedures of which formal perturbative serigs, with ill-defined terms, and not convergent
in any known sense, form the main ingredients. It does not exist in the same sense as classi-
cal mechanics, classical electro magnetism or non-relativistic quantum mechanics: as mathe-
matically well-formulated models for parts of the physical world.

At present almost nothing is rigorously known or understood of the fundamental
mathematical structure of general quantum gauge fields. The recent clarification of the
structure of classical gauge fields by means of concepts from modern differential geo-
metry has so far not been of much help in understanding the corresponding quantum
situation. There is therefore not much to say on the mathematics of the general quan-
tum gauge fields that have come to dominate particle physics, except that they present
a major challenge to mathematical physics, and even to pure mathematics. Something
can be said however on the simpler but still typical special case of quantum electrodynamics.

The lectures will contain a brief review of various approaches to the basic mathematical
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problems of quantum electrodynamics, developed in the last decade. It will be preceded
by a more extensive account of the development of ideas on the mathematics of quantum
fields in general, which started much earlier. This will provide an appropriate historical
context.

Section 2 will have some general historical remarks, in Section 3 early work, in par-
ticular that of Friedrichs and Segal will be sketched, and in Section 4 the axiomatic ap-
proaches of Wightman and Haag-Kastler. The discussion will be brought up to the present
time with constructive quantum field theory in Section 5. Section 6 will contain the material
connected with quantum electrodynamics together with a few final remarks on gencral
non abelian gauge theories.

2. Remarks on the history of quantum field theory

Field quantization is almost as old as quantum mechanics. Its starting point can be
taken to be Dirac’s 1927 paper on the quantization of electromagnetic radiation [1}.
From this there was a long and complicated development, in which the ideas involved
acquired an ever widening scope and were transformed accordingly, not without a lot of
conceptual confusion. For a brief review, see [2]. A first definitive and very successful
stage was reached in quantum electrodynamics, in the late fourties and early fifties, when
through the work of Feynman, Schwinger, Dyson and others, the removal of annoying
infinities became possible, at least at the practical level of explicit perturbative calculations.
Further exploration of the world of sub-nuclear particles led to attempts to extend the
ideas of field quantization to non-electromagnetic interactions. The success of this was
limited. (The Yukawa theory for the strong and the Fermi theory for the weak interactions.)
During the sixties there was a long period of stagnation in quantum field theory. Various
other ideas, now long forgotten, such as,,pootstrapping” and ,,pure S-matrix theory”, were
tried out for the description of fundamental interactions. A revival of quantum field theory
as a general theoretical framework for elementary particle physics, started in the late six-
ties, when earlier ideas of Yang and Mills were suddenly put in the right perspective by the
introduction of a unified field theory for weak and electromagnetic interactions, indepen-
dently, by Weinberg and Salam in 1967, and by the subsequent proof of the renormaliza-
bility of such theories by ’t Hooft in 1971. From there to the present time the development
of quantum field theory has been explosive, with gauge theories also for the strong interac-
tions, ideas for further unification of interactions and a growing amount of support by
experimental results. Quantum field theory again dominates our theoretical understanding
of elementary particle physics, in the form of gauge theories of which quantum electrody-
namics is the oldest, the simplest and still the most successful example.

3. Mathematical aspects. Early history

The mathematical basis of (non-relativistic) quantum mechanics was never much
of a problem. This is due to the nature of the subject, but probably also the fact that in
the twenties and thirties theoretical physicists and mathematicians still spoke the same
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language and were interested in new developments in each other fields. Already in 1932,
J. von Neumann, one of the foremost mathematicians of his generation, explained the
mathematics of quantum mechanics in his book ,,Grundlagen der Quantenmechanik”,
[3], now a classic, still worth reading. His formulation, in terms of Hilbert space and its
operators is used in all modern books on quantum mechanics although of course not
followed in all rigorous mathematical details.

For quantized fields the situation was completely different. From the beginning it
was realized that quantization of fields, as systems with an infinite number of degrees of
freedom, was fundamentally much more difficult and that the divergencies that appeared
in higher order perturbation theory, were connected with deep mathematical problems.
When however finally, around 1950, renormalization had established itself as a practical and
effective way of getting around the divergence problems, there was among the leading
physicists no longer a great desire for understanding at a more fundamental level. One
reason for this was of course that renormalized quantum electrodynamics, whether a largely
heuristic theory or not, was a geeat practical success. A second reason was probably that
by that time theoretical physics and mathematics, certainly in their advanced parts, had
become separate subjects. Mathematics had evolved into a more abstract direction, away
from the explicit language of physics. Theoretical physics had stuck to classical mathematics,
except for the adoption of group theory, and had in addition developed a special sort
of mathematics of its own, much of which was unintelligible to mathematicians. Among
the few people that in this period took a serious interest in ‘the mathematical problems
of quantum field theory, two pioneers must be mentioned: K. O. Friedrichs and I. E. Segal,
both mathematicians. They tried to understand quantum field theory as a quantized non-
-linear Hamiltonian system, with an infinite number of degrees of freedom. This means
the following:

Quantization of a classical system with N degrees of freedom starts from a description
in classical canonical variables g;, p;, j = 1, ... N. The associated quantum system is then
described in terms of operators ¢ i ﬁj, satisfying the Heisenberg commutation relations

[éj: ét] = [ﬁj, i’l] =0, [ép I;i] = ihéjr M

For a system with a finite N, such as in ordinary quantum mechanics, it is not difficult to
find an explicit operator representation of these algebraic relations, moreover such a repre-
sentation is, for given N, unique up to unitary transformation, according to a theorem of
Von Neumann. (The standard set of such operators consists of course in this case of mul-

tiplication and differentiation operators x;, —ih —a—i- in the Hilbert space of square in-
J

tegrable wave functions (x,, ..., xy)). The dynamics of the quantum system is given by
the Hamiltonian, the operator expression H(q i 13,-) determined by the classical Hamiltonian
function H(g;, p;)-

For ¥ = oo the situation is much less simple. Consider for the quantization of fields
the simple example of a real scalar field ¢(x), nonlinearly self coupled according to the
equation (] +m?)@(x) = id(x)%, (h = ¢ = 1). As a classical field it is described by cano-
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nical variables ¢(x, 1), [T{x, t) = m ¢(x, t}, an infinite set, parametrized by the variable x.

Canonical quantization requires finding a set of operators ¢(x, t,), 11(%, t,), for some fixed
time t4, in a Hilbert space #, satisfying the Heisenberg relations

[&(;a tO)a ﬁ(;! tO)] = lé(.x’—;),
[B(x, to), (s to)] = [(X, to), [I(y, to)] = 0. )

Having this, the full quantum field, i.e. the operator $(x) = @(x. t) for all ¢, is in principle
determined by the usual relation (%, 1) = etRt-10@(x, t,)e- it ~to), with the Hamiltonian
H given by the expressions

ﬁ = ﬁ0+)‘gl’

3
. - Ad(X, to)\? -~ 3\ .
Hy =1 f (H(x, to) + E (wd’(f °)> +m2(x, zo)-> dx,
oxj

j=1

H, = 1{éx, 1) dX. (3)

Friedrichs, and somewhat later Segal, studied systems of canonical operators, satisfying
(2). For such an infinite set, this turned out to be a highly non-trivial mathematical problem.
They discovered that there exist, contrary to the case with N finite, more than one solution,
in fact an uncountably infinite number of essentially different, ,,inequivalent” representations
of (2). The system obtained by a standard free field ,,second quantization” procedure,
using creation and annihilation operators, is just one rather special example, which is,
as it turns out, of only limited applicability in a rigorous theory of interacting quantum
fields. (The fact that there is a é-function in (2) is at this stage not yet an essential diffi-
culty; there is an obvious rephrasing of (2), using testfunctions, like in rigorous distri-
bution theory.)

Friedrichs’s main idea was to realize (2) by trying to find generalizations of the stan-

. 0 . . . .
dard set of canonical operators x;, —ih ™ of ordinary quantum mechanics, using Hilbert
X .

spaces of functionals, i.e. functions of variables that are themselves functions, and appro-
priate notions of functional multiplication and differentiation. He was greatly hampered
by the lack, at that time, of a rigorous theory of measure and integration in function spaces.
His most important papers on the mathematical problems of quantum fields were collec-
ted in a book, which appeared in 1953 [4].

Segal’s work on quantum fields over many years has been characterized by the appli-
cation of a broad spectrum of widely different ideas. His two main contributions to the
problem of representations of (2) have been a reformulation of (2) in terms of so called
Weyl operator systems and the use of abstract algebraic ideas. Both notions deserve a brief
explanation here.

Discussions of systems of canonical operators ¢ s ﬁj are unnecessarily complicated
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by the fact that such operators are unbounded, i.e. not defined on all vectors in Hilbert
space. One avoids this by using Weyl operators, unitary operators defined as

N . P N
[ 1 el X j
L %P} ,El Bja; 3 j}=:1 B

W, B) = e' ! e e “4)

for every set of 2N real numbers a = uy, ..., %y, § = B4, ..., B (again with i = 1). These
Weyl operators satisfy the Heisenberg commutation relations in an exponentiated form

Mz

i

1z

\ (e;B; ~a)8))

Wz, AW, B) = Wa+a', B+pfe”’ : (5)
The introduction of unitary operators in this way has the additional advantage that it
leads to a general formulation of the problem of finding representations of the canonical
commutation relations that include in an obvious way the case of an infinite number of
degrees of freedom, such as boson quantum fields. In this formulation one considers as
given a real vector space .#, possibly of infinite dimension, together with an anti-symmetric
bilinear form &, which is non-degenerate, i.e. if b(u, v) = 0, for some v and all v in.#,
then # must be the zero vector. A Weyl system associated with (.#, b) is then a system of
unitary operators {W(u)}, in a Hilbert space # such that

WwW(0) = W(u+c)e e )

for all u, v in.#, together with a certain continuity property in the dependence of Wi(u)
on u, to ensure that canonical operators in the usual sense, can be obtained by differentia-
tion of these unitary operators. The study of representations of canonical commutation
relations becomes in this way the study of general Weyl systems. A finite dimensional
-4 has only one (irreducible) Weyl system, (Von Neumann’s uniqueness theorem again),
for an infinite dimensional .# there are many different ones.

Segal undertook the systematic investigation of Weyl systems in the context of an
algebraic formulation of quantum theory, that he had proposed already in 1947 [5]. In
standard quantum theory a state is a unit vector y in a Hilbert space o and physical ob-
servables are described by self adjoint operators A in . Experimental predictions are
made in terms of expectation values E(4) = (y, Ay). The values of this expectation func-
tional E, on all 4 in /#, determines in fact the vector v uniquely, up to an irrelevant phase
factor. In Segal’s point of view quantum theory should start from the specification of
an abstract algebra o of observables, in fact a so called C*-algebra. States are then linear
functionals E, of a certain type, defined on all elements of «f. There is a central represen-
tation theorem, now known as the GNS theorem, after Gelfand, Naimark and Segal.
This asserts that one can construct, for each given E, a unique representation of the algebra
o by operators in a Hilbert space, with a well-defined unit vector ypg, such that the functio-
nal E becomes again an expectation functional in the usual sense: E{(A4) = (yg, 4yg),
for all 4 in of. One may think that with this one is back in the situation of the standard
formulation of quantum theory. There is however a catch: Two different state functionals
E, and E, can in this way be represented as expectation functionals with respect to state
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vectors g, and yg,. The corresponding representations of &/ may however turn out to
be inequivalent, the vectors are then in different Hilbert spaces #,, and 5, , that can in
no way be identified. Segal studied canonical commutation relations such as (1) and (2)
in terms of representations of algebras of observables, generated in an abstract way by
the canonical operators in their Weyl systemn form. His ideas on algebras and their functio-
nals have been very influential, even outside the subject of quantum field theory, e.g. in
statistical mechanics of infinite systems. The main features of Segal's early work are discu-
ssed in his 1963 book [6]. For an introduction to his ideas on Weyl systems and C*-algebras,
see also [7], and for the explicit applications to simple field theoretic situations, connected
with the relations (2), in their proper formulation, without d-functions, see [8].

Summarizing one may say that Friedrichs and Segal discovered many interesting
properties of the phenomenon of inequivalent representations of the canonical commuta-
tion relations for infinite systems. Segal in particular put the theory of free fields on a sound
mathematical basis and inspired rigorous work on related linear field theories. Both were
however unable, at that time. to formulate, let alone solve, the fundamental dynamical
problem of non-linear quantum field theory in a rigorous way.

In its essence the problem is that of formulating properly heuristic formulae such
as (3). It can be narrowed down to the question how and in what space the expressions
for H, H, and H, are defined as operators in an exact mathematical sense. As an example,
an easy calculation with creation and annihilation operators shows that the action of the
operator H,, as given by the expression in (3), on the vacuum vector, and in fact on any
vector, gives a ‘‘vector” with infinite length, i.e. not in the Hilbert space. This has nothing
to do with the heuristic use of plane waves states, common in quantum mechanics, but
is an essential difficulty caused by the J-function distribution character of the operator
fields, and which presents here contrary to (2) a very hard problem, which cannot simply
be overcome by the insertion of test functions. In principle this and similar phenomena
are explained by the occurrence of inequivalent representations. The free and interacting
fields act in different spaces. It is however extremely difficult to give this general idea an
explicit and workable form. In any case it is not surprising, because of this, that conven-
tional perturbation theory, pretending to expand quantities of the interacting theory in
terms of the free theory, leads in first instance to divergent results.

4. The Wightman and Haag-Kastler axioms

In the late fifties and early sixties, in the period of stagnation in quantum field theory,
physicists felt a renewed need for reflection on its foundations.

A.S. Wightman started his work on field theory in 1956 with a paper on the general
properties of vacuum expectation values of product of field operators [9]. His results
developed in the following years into a systematic and mathematically rigorous account
of basic concepts in quantum field theory. In a certain way his approach was more modest
than the earlier attempts sketched in the preceding section. It avoided a direct attack on
the problem of non-linear dynamics and concentrated instead on the formulation, as pre-
cisely and unambiguously as possible, of those general properties that any relativistic
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quantum field theory must be expected to possess. These were grouped together in a system
of axioms from which further interesting properties could be derived. In these axioms the
standard concepts of quantum theory appeared in specialized forms appropriate to field
theory, with an emphasis on fields as basic operators in the Heisenberg picture, the im-
portance of the vacuum state as ground state, the rdle of the requirements of special rela-
tivity, and with great attention to mathematical details as an essential ingredient.

For the example of a real scalar field a loosely formulated set of Wightman axioms
runs as follows:

1. There is a Hilbert space 5 of state vectors.

2. In this space there are hermitian field operators ¢(x), for every space-time point x.
3. The space can be generated by repeated application of these operators on a single
special state vector, the vacuum state Q.

4. Relativistic covariance is ensured by the existence of unitary operators U(q, A), for
each space-time translation a and Lorentz transformation 4, transforming the field accord-
ing to U(e, A)Pp(x)U(a, A)™ = ¢(A~'(x—a)) and leaving the vacuum state invariant.

5. The theory is local in the sense that (x—y)% < 0 implies [¢(x), p(»)] = 0.

6. The energy operator H, generator of pure time translations U(a, 1) = e~ ™, with
a = (t, 0, 0, 0), has a positive spectrum with a single discrete eigenvalue at 0, non-degenerate
and with Q as eigenvector.

Mathematical refinements are necessary to make these partially heuristic statements
into rigorous axioms. The main one is connected with the d-function-like character of the
field operators: The impossibility of having field operators at sharp space-time points.
One has to consider field operators depending on ‘‘smearing functions”, or test functions,
in the language of distribution theory, in accordance with the symbolic formula
&(f) = [d(x)f(x)d*x. Assumptions on the class of test functions to be used and on the
precise dependence of ¢(f) on such f are necessary. The smeared field operators ¢(f) are
still unbounded operators, this leads to further technical assumptions on the existence
of a common invariant domain D of vectors in 2# on which the field operators are defined,
for all admissable test functions f.

There is a fundamental theorem for such an axiomatic formulation, the reconstruction
theorem, proved by Wightman in his first paper. It asserts that a field theory is completely
characterized by its vacuusm expectation values, and that the full operator theory can be
recovered in a unique way from the knowledge of all vacuum expectation values of
products of field operators, as a set of (generalized) functions. It was much later demonstra-
ted by Borchers, see [10] or [11], that there is an alternative formulation of the Wightman
scheme, rather different at first sight, but completely equivalent, in which this theorem
becomes just a natural modification of the GNS theorem, mentioned earlier. Its proof
then becomes very simple.

Summarizing again one can say that the Wightman approach did not provide an
explicit way of handling non-linear interactions, but that it gave at least a framework in
which basic concepts of field theory, such as field operators, states, the vacuum, relativ-
istic covariance, etc. could be rigorously discussed. It also led to a rigorous proof of some
important general theorems, the CPT theorem, the spin-statistics theorem, analyticity
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theorems for Green’s functions. Last but not least, it had a healthy influence on the language
of elementary particle physics. In addition to Wightman, many other people contributed
to its development, which by 1965 was essentially finished. A standard text book on the
subject is [12].

A different but related axiomatic scheme was proposed in 1964 by Haag and Kastler,
[13], and developad further by them and others in the following years. In this approach
the fields themselves are no longer the basic objects. This rdle is played by so called local
algebras #{0), assumed to exist for each bounded open set O in space-time. They are
thought of as generated in some sense by the fields and should contain the same information.
An important part of the formalism goes back to Segal’s early ideas on algebras and quan-
tum theory, in its general C*-algebra form. A set of axioms in this spirit might go as follows:

1. For each bounded open set O of space-time there exists a C*-algebra &/(0). These
algebras are consistent with cach other in the sense that if O, C O, then &/(0,) can be
identified in a natural way with a subalgebra of &f(0,). This makes it possible to construct
as a limit in a certain sense a large C*-algebra &, containing the o(0), for all O, as sub-
algebras. o is called the algebra of quasi-local observables.

2. Locality: For two sets O, and 0,, spacelike separated, one has [#(0,), #(0,)] = 0,
as subalgebras of .

3. Lorentz covariance: There is a representation of the inhomogeneous Lorentz
group by automorphisms of the algebra . When a Lorentz transformation maps O, onto
0,, then the associated automorphisms map &f(0,) onto f(0,) correspondingly.

4. There is given a state functional E on &, invariant under the Lorentz automorphisms
and satisfying further requirements, such as spectral properties in some sense.

Using the GNS representation theorem one obtains from these data a Hilbert space
operator theory, with unitary operators for the Lorentz transformations, and an invariant
vacuum vector state corresponding with the given functional E.

The local algebra approach is in some sense complementary to Wightman theory.
On one hand its basic objects are simpler, both from a physical and a mathematical point
of view, on the other hand it remains further removed from quantum field theory as it is
used heuristically, but quite effectively, in particle physics. Its main features were well
established around 1970. See for an exposition Section 6 of [12], or for a brief review [14].

5. Constructive quantum field theory

In the main the material discussed so far has been accepted as standard background
for all rigorous investigations in quantum field theory for at least ten years. This section
brings us into the present.

Constructive quantum field theory is a program for the construction of explicit models
of non-linear quantum field theory, satisfying the Wightman and Haag-Kastler axioms.
It was started around 1967 by 1. Glimm and A. Jaffe and developed by them and many
others in subsequent years. See their book [15] for a recent review, with an extensive
bibliography. The main idea in this approach was to attack the problem of non-linear
dynamics in steps of increasing difficulty, first studying crudely simplified models, in lower
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space-time dimensions, ‘‘tamed” by various cut-offs in space and momentum variables,
which after rigorous results had been obtained, where then gradually removed in such
a way that the results remained valid in some sense in the limit. Around 1972 progress
in the subject gained new momentum by the introduction of ideas from probability theory,
providing a very fruitful link with classical statistical mechanics. Results from the later
work of Segal and earlier heuristic ideas of Schwinger and Symanzik were important.
The transformation of quantum field theory problems into an area of statistical mechanics
is often called Euclidean quantum field theory, because it involves analytical continuation
of the real time in Minkowski space to an imaginary time parameter, changing thereby
the Lorentz group into the Euclidean group.

So far constructive field theory has given us complete and rigorous theories for polyno-
mially self interacting scalar fields and Yukawa-like models in 2 dimensional space-time.
There are also interesting results in 3 dimensions, but almost nothing for the 4 dimensional
space-time of the real world. Constructive field theory in the proper sense seems now to
have come to a standstill, however the intimately related area of statistical mechanics where
field theoretical methods are effective, is still in full growth, see e.g. {16].

6. Quantum electrodynamics

Quantum Electrodynamics was for a long time the only successful example of
a quantum field theory, the only one of which the physical validity could not be doubted.
Nevertheless investigations into the mathematical problems of field theory used to treat
it as a rather special case, the study of which could be better avoided, because of its additio-
nal complications. Standard text books such as [12] exclude quantum electrodynamics,
and more particularly the quantized Maxwell field, even in the treatment of free field
situations. In recent years this attitude has become more and more untenable. Quantum
electrodynamics has moved from the position of an isolated singular case to a central
role as the simplest of the gauge fields that now dominate particle physics.

The special problems that arise in attempts at rigorous formulation of quantum
electrodynamics, and that appear, in an even more severe form in non-Abelian gauge
theories, are connected with the following two groups of well-known phenomena:

1. The theory contains for the photons two field operators, the tensor field F,(x)
and the vector field 4,(x). In classical electromagnetism F,,(x) is the physical field consisting
of electric and magnetic field strength, the 4,(x) can be seen purely as a convenient auxiliary
quantity. In the quantum situation the réle of the 4,(x) is an essential one. Although in
a certain sense the quantized A4,(x), as well as the spinor field y(x), are unphysical, and
although physical quantities depend only on the F,,(x) and on bilinear expressions in y(x),
such as current densities, no acceptable formulation of quantum electrodynamics in terms
of the 4, and v fields alone is known or seems possible. Matters are also complicated
by the fact that the meaning of the relation F,, = 8,4, — 4,4, and of the non-uniqueness
of the A, is far from straightforward. At the root of all this is the concept of gauge trans-
formations which at the classical level is perfectly clear and can be formulated in an elegant
manner, especially for non-abelian theories, in terms of differential geometry, but which
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as a quantum notion is very poorly understood. The similarity with ordinary symmetries
is only superficial. The standard mathematical language for symmetries in quantum theory,
that of representations of groups by unitary operators in Hilbert space does not apply.

2. There seems to be a general incompatibility between manifest Lorentz covariance
and the use of Hilbert space (i.e. with a positive definite inner product) as the space of
quantum states. Both these properties are required to hold simultaneously in the Wightman
and Haag-Kastler schemes.

In view of this it is clear that the standard mathematically rigorous formulations of
quantum field theory, in particular as embodied in the Wightman and Haag-Kastler
approaches, are in need of much further development, and because of the second point,
probably also of some drastic modifications.

Among the various attempts at adapting Wightman’s axiomatic field theory to the
requirements of gauge theory is the most extensive and systematic so far that of Strocchi
and his collaborators. Already in 1967 Strocchi drew attention to the fact that in a mani-
festly covariant formulation such obvious classical relations as F,, = 0,4,—0,4, and
0"9,4,—0,0"4, = 0 lead to contradictions when used for the operator fields [17]. In 1974
he and Wightman wrote a long paper on the super selection rules in quantum electro-
dynamics, in which the outlines of an improved axiomatic scheme appeared [18]. This
was followed by a long series of papers, either by Strocchi alone, or in collaboration with
others, e.g. Frohlich and Morchio, in which this axiomatic scheme was developed further,
refined in mathematical details and above all enlarged in scope to serve as a general frame-
work. for possibly non-abelian gauge theories. The basic philosophy of Strocchi’s work
is that it is possible, in practical calculations, to work exclusively in a single non-covariant
gauge with a positive definite metric such as the Coulomb gauge, but that this is too narrow
and therefore unacceptable from a general theoretical point of view, and that consequently
indefinite metrics have to be admitted as an essential part of the formulation. This takes
the form of the use of state spaces with two inner products, such as occur in the original,
non-rigorous Gupta-Bleuler formalism. One inner product is Lorentz invariant, is natural
in a certain sense, but it is not positive definite. A second auxiliary inner product, not
invariant but positive definite, connected with the first through a so called metric operator,
makes the state space into a Hilbert space. This space contains a physical subspace. There
are definitions of physical operators, gauge transformations and gauge invariance. All this
is still in full progress. There are many imaginative concepts but also problems and loose
ends. The introduction of the second inner product keeps the situation within the range
of traditional Hilbert space methods. This has to be paid for with a certain awkwardness
and artificiality of the resulting formalism. Typical for that is, for instance, the fact that
the operators that represent the Lorentz group are not only non-unitary, but even unbound-
ed, and this already in the free field case! In related work Mintchev and d’Emilio have
tried to make the formalism mathematically more natural by stressing the mathematical
properties of the indefinite metric structure itself. See e.g. [19]. A similar but more radical
step in this direction is taken in [20] where a formalism is proposed in which Hilbert space
as general state space is abandoned, in favour of more general topological inner product
space that emerge naturally from the mathematical properties of the Wightman »-point
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functions. No auxiliary Hilbert space inner products are needed and a physical Hilbert
space structure appears automatically, only where this is required by physical interpreta-
tion. As an example a complete and systematic derivation of the various free field gauges,
covariant and non-covariant, is given.

The second major direction in axiomatics for quantum electrodynamics is based on
the ideas of the Haag-Kastler local algebra approach. It starts with a discussion of gauge
transformations, physical observables and superselection sectors in three papers by Dopli-
cher, Haag and Roberts, the first of which is [21]. This in itself is not applicable to quantum
electrodynamics and a fortiori non abelian gauge theories. It forms however the background
for recent work such as that of Buchholz [22]. As is usual in the local algebra framework
there is directness in simple but important physical principles, but important elements from
heuristic field theory, such as in this case the vector potential operator A4,(x), are lacking
from the formalism.

A different line in the application of C*-algebra concepts on the problems of quantum
electrodynamics is followed by C. A. Hurst and his school. Their work consists of a further
development of Segal’s Weyl systems approach. See e.g. [23].

Finally a lot of rigorous or semi-rigorous work on separate mathematical aspects of
quantum electrodynamics, such as e.g. connected with the infra-red problem, could be
mentioned. There is the older work of Kibble [24] and Roepstorff [25], the work of Zwanzi-
ger, e.g. [26] and more recently of Streater et al. [27], Hochstenbach [28] and many others.

Although much has been achieved, there still does not exist a single rigorous frame-
work for quantum electrodynamics, which is really satisfactory in the sense that it is able
to unify the valuable points of view of the various approaches and connect the many results
obtained separately. As long as we do not have a good understanding of the mathematical
structure of quantum electrodynamics, there is no hope for general gauge theories, which
are much more complicated and where we are confronted with the major problem of giving
a mathematical meaning at the quantum field level to the differential geometric concepts
that determine the structure of gauge theories.
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