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QED RADIATIVE CORRECTIONS TO ELECTRON-POSITRON
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We reexamine the O(a®) corrections to the process ete~ — t+r~ (or any other heavy
fermion pair) taking into account the effects of the masses of the final-state particles. The
relevant analytic formulae are presented as well as some Monte Carlo results.
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1. Introduction

In ete~ annihilation at currently available energies, the one-photon exchange channel
can produce a variety of fermion pairs with masses ranging from 0.1 to 5 GeV. Higher
order QED corrections to these processes are most conveniently studied using Monte
Carlo simulation techniques [1]. The existing numerical programs, however, assume the
validity of the ultrarelativistic approximation, where the masses are negligible with respect
to the relevant energies. It is clear that for heavy fermions this assumption is not always
justified. The effects of a finite mass will show up in various circumstances. For example,
near the production threshold the angular dependence will be more isotropic and the energy
dependence of the cross section will be affected by the mass. This threshold behaviour
also shows up in the bremsstrahlung spectrum at the hard photon end, which may be of
relevance in excited lepton searches.

The purpose of- this paper is to present analytical and numerical results for QED
radiative corrections in which the mass of the produced fermions is kept throughout the
calculation. The incoming electron-positron pair is of course treated ultra-relativistically.
Thus, this paper is a finite fermion mass extension of Ref, [1].
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It should be remarked at this point that the material of the present paper deserves
extension into two directions. At high energies and for even higher fermion masses (like
the — still hypothetical — top quark with m > 18 GeV) one certainly reaches a point,
where the Z, exchange should be included. Another extension is the treatment of the
polarization of the produced fermions. The decay of femions like the z-lepton into other
particles depends on the polarization of the decaying fermion, which is a quantity one
likes to measure eventually. The present paper is a necessary first step to these two exten-
sions.

The outline of the paper is as follows. Section 2 contains virtual and soft bremsstrah-
lung corrections to the lowest order cross section. Hard bremsstrahlung is discussed in
Section 3, together with the photon spectrum. Some numerical examples resulting from
a Monte Carlo simulation program are presented in Section 4. An Appendix deals with
the evaluation of the box diagrams, which is somewhat different from the treatment in
Ref. [2].

2. Virtual and soft photon bremsstrahlung corrections

In this section we present formulae for the radiative corrections to the differential
cross section at beam energy E (c.m.s. energy = 2E) in the limit m = mE — 0, but keeping
the mass m; of the produced fermions.

The lowest order cross section for the process

e*(py)+e(py) = H(g,)+1(g2) @D
reads
de® 36, 2.2
= 2 QN B 1+ +4Y), :
10 16nQQ NB(1+c*+p°) 2.2)

where Q and Q' are the charges of the positron and antifermion f respectively.
The number of colours N, equals 1 or 3 for lepton or quark pair production. Furthermore,
the following quantities are used

ned?

Op =gz K= mgfE, B =Q—-pH'? ¢=pcosh, (2.3)
where @ is the angle between 'pfl and Zj - As usual o denotes the fine structure constant.
In the following we will be interested in the differential cross section do/dQ up to order
o3, that is the lowest order cross section including first order virtual corrections and taking
into account emission of a soft photon with an energy less than E, (E, < E). The complete
set of formulae for do/dQ can be found in Refs. [2, 3] for the case when both m, and my,
are nowhere neglected. It is possible to recombine those results in order to simplify the
final expression, which then also gives a reasonably compact formula for the m = m/E — 0
limit. For the present considerations where we shall have to compute do/dQ many times
in a Monte Carlo simulation program a simple form is of importance.
The complete expression for the differential cross section do/dQ containing virtual
and soft bremsstrahlung corrections is given by
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( ¢ ko) = 2 QZQ'chB {A+c*+p?) [1+8%(m?, ko)

+5sx(u2, ko)—2 Re IT]+4 Re Fy(u*)+6"(c, ko)~ 8*(—c, ko)} (2.4)

where ko = E,/E. In this expression the last two terms represent the c-odd part, the others
form the c-even part. The latter are easily obtained from the expressions of Ref. [3] by
taking the m — O limit. Thus one obtains for the sum of the vertex correction and the
c-even bremsstrahlung part

2
‘Ssx(llz’ ko) = B In g_k_o Q'2 {3+2ﬂ Y
7 25
1+ﬁ12 5 2ﬁ' 3
—_2 — 2/3 [Y +4 Li, (1+ﬁ') 7 ]}, 2.5)
where
N2
Y=1In [(“f ) ] @.6)
u
20( , 1+ﬁ,2
Bein = = Q' <’—2k,— Y~1> 2.7
and
o ko) = By In kot 02 (3102 24
(m”, ko) = Biny In o+;Q (“I e +—3—), 2.8)
with
_2a 5 4
Bini = ;Q (111;2 "'1)- 2.9

The vacuum polarization Re Il contains contributions from quarks and leptons. The
explicit form can be found elsewhere [1]. The magnetic part of the vertex correction van-
ishes in the ultrarelativistic limit, so only the part arising from the produced fermion pair
should be considered:

2
'2 _”___, Y
45

The c-odd part of do/dQ consists of two infrared diverging contributions, the brems-
strahlung part do®/dQ and the box diagram part do®*/dQ. In the m? — 0 limit we have

Re Fy(u?) = = — @ 2.10)

doyg 30,,

= 212
0 - 1. 22 NB'(1+c*+p )QQ

2kg
X [4 In(I—¢)ln N +D(c)—(c - -c):l R 2.11)
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where A is a small photon mass divided by E and

o= (2) (12 1) )

y
In® |—
Ml F

I —Re Li,(x*)+% In* (x*)—In (x?) In (1 —x?), (2.12)

with
2
1 +p

The box diagram contribution can be written in a relatively compact form, as is indicated
in the Appendix

x=N-)\Jo, y= [ @ ], ® =2-2c—p* (2.13)

da.BOX 30‘!’ 202 ’ ’ o
0 - Ten 2N -
A
x [(1+c2+u2)4 In(1—c) 1n-2~ +1 B(e)—(c » —-c)], (2.19)
where
2
B(c) = A(c) [1+c— i‘w—(s—c)] ~B[2c+u]-2F ¢
" @l 4 e
—2F — e s —_—] - LA
2 Qc[l 2 2/3'2] +1nm [ c+ (3 c)
4 u? 2uc
+111[7[—C— —'w—(3~6)"" le » (2.15)
with

- 1—c¢ 4 4
A(©) =2In N +1nr;2+lnl?,

- 1—c¢c (0 4 . 4
= 2_____2 : o 1 2'_____ -
B(c) = In 2 Li, (2(1_0)) —31n o In? et
- n2
FA=%(lllzm—2+“§*>,
. 1 , —u? n?
Fo=—|v24+4Li,( ——_ )+ = |. .
e 2/3’[ 12((1+ﬁ’)2)+ 3] @19

Combining (2.11) and (2.14) we find for the c-odd contribution to do/dQ (cf Eq. (2.4))

%) = 00’ 70:- {1+ +4%) [41n (1~c) In ko +D(c) +5 B(0)}. 2.17)
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The m? — 0 limit of formula (2.4) and the formulae related to it reduce to the results of
Ref. [1]. As the illustration of the above, we give in Fig. 1 the cos 8 distribution for t
leptons {m, = 1.782 GeV) including virtual and soft bremsstrahlung corrections. Both
the exact result, and the one obtained by taking the ultrarelativistic limit are shown,
for a beam energy E = 2m, = 3.564 GeV. As remarked before, the effect of a finite final-
-state mass is a flatter angular distribution.

l-r.- - T_‘_.‘

ey

20

B k(5 h
= 1.2
-5 0. 5 1.
1 i i i i i I
cosB

Fig. 1. Angular distribution of +* with virtual and soft bremsstrahlung corrections, both exact (solid line)
and in the ultrarelativistic approximation (dashed line). Only leptonic contribution to dvp is included
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For completeness we also give the total cross section up to order o®, obtained by
integration of Eq. (2.4):

2
o(k < ko) = 0,0%°Q"’N p’ {(1+ %) [1485%(m?, ko)
+6%*(u?, kg)—2 Re IT}+3 Re Fz(,ﬁ)} . (2.18)

3. Hard bremsstrahlung

The multidifferential cross section for the process

et(p)+e(p2) ~ flg)+1(g2) + (k) 3.1
is given by
a Q QIZ
167 2E2 [Ami+Afm+Amt}dT (32)
with
d3q, d*q, d*k
dr = o1 02 —5 0% (P1+P2—q1— 42— k). 3.3)
4 492 k

The three terms in (3.2), representing initial, final state radiation and their interference

are given by
2 2 2
t+u m
Ay = = g {[: +u +u2( )](1— = x‘)
51X1X, 54 51X,
o~ (1, +1,)> m?x
+[tf+uf+u2( 1 ‘)](1— < 2)} (3.4)
Sy S3Xy
2 2
Agi = ~Q {[?2+&§+u2§] [1— ol <1+ &ﬂ
SYi¥2 S Y2

2
+[u?+72 +u%s] [1— ‘—i—-(l+ %2
S

2
)] + B (%3 +x2)— 4425 —31)} , (3.5)
Y1 s

00’ ~ ~ ~ ~ ~2 , 72
Ay = ss————— {(tX292+ 11X,y —ux2y; — 3%, ¥,) (£ 411
§81X1X2¥1Y2

+ul +ud PG+ D)+ X [(5—5) F+T —d—u)—(x,—x2) (11 —y2)]} (3.6)
where the following invariants are introduced!
S=ppy S =qdatp f=pig, = pads
U=pig, Uy =pq, X;=pk, Xx,=pk,
Y1 =1k, Y2 = gk (EN))

! The quantities used in this paper differ somewhat from those used in the massless case [1].
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Here, all four-momenta and masses have been made dimensionless (in units of E), so that
both the quantities 4 and dr are dimensionless. Both the infrared and ultrarelativistic
limits of (3.2) agree with previous results. However, the factorization property of the
squared matrix element into a generalized lowest order squared matrix element and a brems-
strahlung factor [4] does not hold anymore for this case of massive fermion production.

By making various choices of phase space variables, different for initial and final
state radiation Eq. (3.2) can be integrated, leading to the photon spectra

do s

dk = aPQZQIZNcﬂiniQini’ (3.8)
darin - 2 Q'2
dk PQ Q N — @fin> (3.9)
where
_ 1+(1-k? 5
Oini = A=) u(k) [3-v(K)], (3.10)
1 4 L+u(k 4
Ofin = " {[1 +(1-—k)2—u2k— %] In (I-ZEk;) —v(k) [k2+(2+u2) (l—k)]} ,» (3.11)
with
u? \?
v(k) = (1— 1—k> . 3.12)

Upon integration in the range (ko, 1 — u2), with k, < 1 we find for the total cross section
for hard radiation

= 0,0°0"* N fu {4 FG—F| In— ~4+In ﬂz] +31n —”2—-—} G13)
Gini 4 cFinl 0 #2 2 (1+ﬂl)2 ’ M

1
Otin = PQZQ’ZNC {% 5’(3 _ﬁ'z)ﬂﬁn in H
'2 1— " 1— , 2
oo () ()
Lo (LB (=B , 5'2)
"fln( 3 )ln 2(1+ﬁ,)] +p'(3-B )111(4,3,2

+75 (9-2p%+p%In —ﬁ +5 B'- ‘7/3'3]}' (3.14)

-8

In the expressions (3.13) and (3.14) the §’ — 1 limit is easily taken and the expressions
of Ref. [1] are obtained. By adding (3.13) and (3.14) to (2.18) one obtains the total cross
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section for ete~ — ffy up to order a:

oToT — Gom(1+5,ni+5tin+5VP) (3.15
where
61T = ¢, 070N, 1 F (35, (3.16)
4ﬁl2 1 ’lz
5n-=5sx 21k + n T0T= “[ 1
ini (m*, ko) + 601/ Bini | —3+1n —5- ﬁ(3 ﬂ'z) (1’*‘5)
®¢ 23, 4 7,;2
- 1 —— —2 v )
+nQ('2"nm2 +3) @1

Otin = 8% (U?, ko) +0ial0s T +6 Re F B B~B%)
+2 4
_ —:—Q’z {2([3 +1)[_ln1+ﬁ n 2 1y (1+ﬂ)

B % 1+p 2
(@) () ()]
~21+21n f)+ 3 (:;ﬁz)z -5 (2‘"_2 75 ln a Zf)_z.
..75'4+245(’23&/;2}-72{3%45 In ;;43 N 45(;?;}3;;“ A 1;;3'}, 3.18)
Syp = —2Rell. (3.19)

We like to remark that the lowest order cross section o¢°" vanishes for f’ — 0, reflecting
that the ff pair is produced in a P-wave state. When we consider a4°'3,,;, for which quan-
tity the fermion pair is again produced in a P-wave state we find also a vanishing behaviour
in the B’ — 0 limit. For og° d;,, Where the fermion pair is not produced in a P-wave

state, we obtain for g’ — O the value = Q'?3n2
n

The B’ — 1 (12 — 0) limit of Jg, yields %1 Q'%. Apart from a colour factor this
T ,

gives the QCD correction Socp to R, which is ag/n. Thus from (3.18) the analogous formula
for massive quark pair production can be obtained

Sqco = 3 O¢in: (3.20)

4. Monte Carlo simulation

In this section we shall present some results of the computer program developed to
simulate the production of heavy fermions with radiative corrections. The structure of this
program is as follows. First a value & for the photon energy is generated according to an
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approximate expression. If k < k, the event is taken to be nonradiative, with an angular
distribution as given in Section 2. This distribution is obtained by modifying a flat distri-
bution using a weighing-rejection procedure (WRP) as described in Refs. [5, 6]. If k > k&,
a hard bremsstrahlung event is generated, according to the cross section either for initial-
state radiation or final-state radiation. All variables except the photon direction are gener-
ated using WRP. The photon direction is generated by analytic inversion [6] which is
necessary because the cross section depends very strongly on this direction. Finally, the

interference between initial- and final-state radiation is imposed on the generated events
by WRP.

¥ T i I | 1 I

d6 - i
" m‘ﬁ [1034cm?] ?.
. J:"— 20
r, f
bl r.l

———

-5 0. S 1.

1 1 | | | | |
cos©

Fig. 2. Same as Fig. 1, but now including hard bremsstrahlung up to E,/Epeam = 0.50
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Using the above approach all experimentally interesting distributions can be generated,
with arbitrary cuts. As an example we present in Fig. 2 the distribution of the polar produc-
tion angle of the 1+, and in Fig. 3 the distribution of the acollinearity angle of the produced
1+t~ pair. For comparison, we also generated the same number of events for massless
particles, using the program presented in [5]. In both cases, the allowed range of photon
energies was taken to be the same, namely (0, 1— u?). It is seen that the distributions of

5 -
1033 46 2 ]
0 ag fcm*<] ]
1034 |

1035, -

10%_

Py — |

1 I S -
0° 45  90°  135°  180°

Fig. 3. Acollinearity of the produced v pair

Fig. 2 are comparable to those of Fig. 1. The acollinearity distribution shows a dramatic
difference between the massive and massless case. Although this effect is mainly kinematical
in nature, we want to stress the point that there is no sensible way to adopt massive particle

kinematics on the one hand, and on the other hand use the ultrarelativistic approximation
for the cross section.
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APPENDIX

In this appendix we give a derivation of the box diagram contribution, which is some-
what different from the one in Ref. [2]. The interference of one box diagram with the lowest
order amplitude is given by Eq. (12) in the former reference. Using the explicit forms of
X, X, and X,, (to be obtained from Eq. (11)) one is lead to the expression

da-" __3_?1_ 22 ’ Ii
20 = Tem @°Q'°N.f'00 -
x {[14c2=2¢>+(1~2¢) (m?+u?] | (1) +[2c(1 — ) — m? — pu%c] § (k)

+[2e(1—c)—u2—m?c] | (kQ)+[2—c+* +m? +4*] | (k) —(1+¢) | (Pk)?

+ [ (RQ*+ (kA +(1—0) ] (kQ) (k4)}, (A1)
where in units of E

=3(p1+p2), A4=%(pi-p), Q= 3(q:1—95) (A2)

and

_ fd*k

k A3
Jf() @© ) ) 43)

with

(4) = K2—2kA—1+ie
(Q) = k2—2kQ—1-+ie
() = K2+ 2kP+1— 22 4is. (A.4)

The various integrals (A.3) can be expressed just like in Ref. [2] in terms of four functions
A, B, F, and F,
2

T i
=Adln=-,
(1) =Aln>

r 2
f (kd) = —B— ~ Im Fy,

2
J(kQ) =—B-—ImF,

3 2
KH)=4 ln-)-;— —2B,

12
(kP)? = AlnT +24—B,
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"’" 2 '2-—62 ¢ 2
j((kA)2+(kQ)2) = &Z,— 44+2B+ (1+ ;3;5);E ImF,
e\ 2 p*—p* 4 4 c. 4 c. 4
+<1+E;E>FImFQ+ . (ln;n—z"'ll’l;? "'BEIDEE—BTZIDP,
~ ﬁ2ﬂr2_cz ) 2
J(kA)(kQ) = ——24+B+ 5ImF,+ 5 Im Fy
ﬂlZ_c 4 ﬂz_c 4
- lnn?— . lnl—;, (A.5)
with
g =V1-m.

In order to obtain Eqs (2.14) and (2.15) we have to insert Eqs (A.5) into (A.1), take
the m* — 0 limit and find the coefficients of 4, B, F, and F,,. It is then convenient to intro-
duce

A=21-c)4, B=21-0B,

. 4 ~ 4
FA=—ZImFA, FQ=—ZImFQ. (A.6)
T i1

REFERENCES

[1] F. A. Berends, R. Kleiss, Nucl. Phys. B177, 237 (1981).

[2] F. A. Berends, K. J. F. Gaemers, R. Gastmans, Nucl, Phys. B63, 381 (1973).

[3] F. A. Berends, K. J. F. Gaemers, R. Gastmans, Nucl. Phys. BS7, 381 (1973).

[4] F. A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans, T. T. Wu, Phys. Lert. 103B,
124 (1981).

[5S]1 F. A. Berends, R. Kleiss, S. Jadach, Nucl. Phys. B202, 63 (1982).

[6] F. A. Berends, R. Kleiss, S. Jadach, Computer Phys. Commun. in print.



