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UNIFIED GAUGE THEORIES FROM HIGHER DIMENSIONS *
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We describe how the unification of gauge interactions with gravitational interactions
can be obtained from pure higher dimensional gravity. The possibility of such a theory
having some predictive power for the low-energy parameters is discussed.

PACS numbers: 11.10.Np

In how many dimensions do we live ? The usual answer is four: three space dimensions
and one time dimension. This answer is based on the successful predictions of Einstein’s
relativity, so far confirmed by all experiments. However, let us recall that the number
of dimensions which can be tested by experiment may well depend on the distance which
is probed. Imagine that the space-time characterizing our universe has two very different
length scales. The characteristic length for the four known dimensions is given by the inverse
curvature of our present universe. The supplementary dimensions form a compact space
with characteristic length of the order of the Planck length. At energies much below the
Planck mass the supplementary dimensions could not be seen directly and we would
observe an effective four dimensional theory. Only when the wavelength of a particle be-
comes comparable or smaller than Planck’s length, the modes corresponding to the supple-
mentary dimensions could be excited and the higher dimensions could be explored.

In this talk we advocate that our world has indeed more than four dimensions. We argue
that the assumption of supplementary dimensions is not just a useless game for theoreticians.
It may help us to understand the outcome of past and future experiments. We will show
that the energy scale where these supplementary dimensions can be seen directly is of the
order of the Planck mass. Even if the supplementary dimensions cannot be observed directly,
they may reflect themselves in the effective four dimensional theory. This is very similar
to the idea of unification of weak electromagnetic and strong interactions at a scale above
10'* GeV. This unification may never be tested directly. However, it predicts relations
between parameters of the effective low energy theory which can be observed.

* Presented at the 5-th Warsaw Symposium, Kazimierz, May 1982, and at the XXII Cracow
School for Theoretical Physics, Zakopane, May 30 — June 9, 1982,
** Address: CERN, CH-1211 Genéve 23, Switzerland.
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The theory we will discuss is very simple: pure gravity in more than four dimensions.
(Later we have to add a higher dimensional spinor in order to account for the four dimen-
sional spinor degrees of freedom.) What are the four dimensional consequences of this
enlarged gravity theory?

First we observe that the d-dimensional (d > 4) metric tensor describes spin 2, spin
1 and spin O fields in four dimensions, thus unifying all bosonic degrees of freedom of the
four dimensional theory. This can be seen easily by splitting the d-dimensional indices
(we denote them by 4, v ...) into Minkowski indices for the usual four dimensions (i, v ...)
and indices for the supplementary dimensions (x, § ...). The d dimensional metric tensor
g;4 reads
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Under four dimensional general coordinate transformations the fields g,,, 4,, and S,
transform as second rank symmetric tensor, vector and scalar, respectively.

Since d dimensional gravity unites all spin 1 and spin 2 fields, it must unite the gauge
bosons with the graviton. It therefore should give a unified description [1-3] of the cor-
responding fundamental symmetries, the usual gauge symmetry and the symmetry under
four dimensional general coordinate transformations. There is only one symmetry in
d dimensional gravity: the symmetry under general coordinate transformations in d dimen-
sions. (Including spinors, we have to add the d-dimensional local Lorentz transformations.)
This symmetry contains the four dimensional general coordinate transformations. It also
contains gauge transformations which correspond to a special class of coordinate transfor-
mations among the supplementary d-4 coordinates. To make this more explicit, consider
as an example d dimensional gravity and assume that the ground state is a direct product
of four dimensional Minkowski space and a d-4 dimensional hypersphere. This ground
state is invariant under all transformations among the d-4 “internal” coordinates leaving
the hypersphere invariant. These transformations form a SO(d-3) group. Since they can be
made independently at every point of Minkowski spacctime, SO(d-3) is a local gauge
symmetry of this ground state. This example is easily generalized to any compact “internal”
manifold admitting a symmetry. It becomes clear that very simple ground states can
account for an acceptable unified gauge group (for example SO(10)).

What can we learn about scalar fields? Four dimensional unified gauge theories have
many free parameters, most of them from the scalar sector of the theory where the couplings
are not completely determined by the gauge principle. There are scalar mass terms and
selfinteractions and Yukawa couplings between scalars and fermions. Is there a possibility
that higher dimensional gravity predicts some of these parameters? In principle, all
couplings can be calculated from the parameters of d-dinmensional gravity.

What are these parameters? In general, d dimensional gravity has one free parameter
for evéry invariant under general coordinate transformations included in the action.
There is certainly the 4 dimensional scalar curvature R and a d diménsional cosmological
constant €. There may be many more invariants contributing to the action. Possible inva-
riants involve higher powers of R, terms like Rz3Ri% or Ry321R#55%, ete. (Ra557 and R;5 are
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the d dimensional curvature tensor and Ricci tensor). There is a priori no reason why these
invariants should not be included. As we will see later, they are even needed to generate
an acceptable ground state. And they are also expected to be induced by any form of
quantum gravity. The couplings corresponding to these invariants have dimension (mass)",
where N depends on the number of derivatives appearing in such an invariant. (The coupling
of the curvature scalar has dimension M~ 2, the couplings of terms like R;;;Rﬁc have
dimension M %%, etc.). The number of invariants with couplings of positive mass dimension
(N > 0) grows very rapidly with the dimension d. If all these couplings are relevant for the
low energy theory, there seems to be almost no chance of making predictions for the pure
scalar sector.

However, the quadratic, cubic and quartic.terms of the scalar potential only depend
on a much more limited number of parameters of the d dimensional theory. Consider as
an example an action which is only a function of the curvature scalar R. The ground state
will be characterized by a certain value R, and we can expand the action in powers of
R~ R,. The expansion coefficients are considered as a new set of free parameters.
Excitations above the ground state are described by scalar fields ¢ which vanish for the
ground state. Then R— R, is at least linear in ¢ and only terms up to (R— R,)* are relevant
for the calculation of the scalar potential up to ¢* terms. At low energies, higher powers
of ¢ in the scalar potential correspond to irrelevant operators and are believed to be negli-
gible. These arguments are easily generalized to more complicated actions involving
R;5R#Y terms, etc. The number of relevant parameters remains limited. Especially, for
d > 8, it does not grow with d anymore. This gives some hope that higher dimensional
gravity is flexible enough to account for rather complicated ground states admitting different
steps of spontaneous symmetry breaking and still is predictive enough to explain some
of the relevant features of the scalar potential.

The most important source of predictions from higher dimensional gravity may
be the fermionic sector. Indeed, the inclusion of a spinor coupled to d dimensional gravity
does not introduce any new free parameter in the theory. Once the ground state has been
fixed, the number of light fermion generations and their Yukawa couplings are in principle
calculable and may therefore be predicted. Unfortunately, not much is known about the
fermionic sector in Kaluza Klein theories. We still lack convincing examples of non-trivial
ground states admitting fermions with masses much below the Planck mass. This remains
the most serious problem for the construction of a realistic model of higher dimensional
gravity. In the remainder of this talk we will discuss why we hope that a realistic Kaluza
Klein theory can be constructed at least for the bosonic sector,

Before discussing in some more detail how gauge interactions come out of higher
dimensional gravity, let us briefly describe the theoretical status of such a theory. Pure
d dimensional gravity with spinors is presumably not a renormalizable theory. Inclusion
of invariants containing more than two derivatives of the metric tensor may also lead
to problems with unitarity. However, these problems appear only at length scales smaller
or comparable with a characteristic length of the theory given by the couplings with dimen-
sion (mass)”. We do not believe this theory to be valid beyond this length scale. It should
rather be considered as an effective “infrared” theory for length scales large compared
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with this characteristic length. (It may be compared with the Fermi theory for weak inter-
actions.) At large length scales such an effective theory contains renormalizable interactions
for the massless or light particles. Renormalizability is here a consequence of the existence
of interacting massless particles. If there are non-suppressed interactions between massless
particles at very large distances (such as gauge interactions), these interactions must be
renormalizable since they can be rescaled from these very large distances to distances of
the order of the characteristic length scale. Furthermore, there are non-renormalizable
interactions suppressed by powers of the small characteristic length.

What can (in principle) be calculated in such a theory? First one can use the classical
approximation to calculate the structure of the ground state and the particle spectrum.
This calculation should be reliable if the length scale characterizing the ground state is larger
than the characteristic length where the effective theory breaks down. In a second step,
we neglect the effects of all particles with mass of the order or larger than the inverse
characteristic length scale, M. The contribution of an individual particle with mass ~ Mg to
the effective four dimensional theory is suppressed by powers of M g '. But there are infinitely
many such particles and it is difficult to estimate the total correction coming from the
inclusion of all these particles. However, experience with effective lower dimensional
theories indicates that at least for the long distance interactions between massless (and
light) particles their contribution should be negligible. Finally, quantum fluctuations with
length scales large compared with the characteristic length can be included for the renormali-
zable sector of the four dimensional theory. The characteristic length acts as an effective
cut-off.

No assumption has been made on what happens at the characteristic length scale
and beyond. The effective theory may be the infrared theory of a renormalizable theory
extending to even shorter length scales. It is also possible that at the scale Mg our usual
field theoretical concepts break down and that we have to find an even more complete
theory. In this case, Mg is expected to be an intrinsic scale of the more complete theory
and the concept of distance may loose sense beyond this characteristic length. Note that
for both cases there is no need that the effective theory is renormalizable.

To illustrate these ideas, let us discuss d dimensional gravity with an action given by

S=—fd'x-e- (sz2+/3R;;RA“;+))RMMRA“A"?’}+5R +e), 2)
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where e is the determinant of the d dimensional vielbein. What is the ground state of this

theory? The ground state does not necessarily minimize the Euclidean action. This is not

the case in usual four dimensional gravity. Therefore the ground state of d dimensional

gravity cannot correspond to a minimum of the action if the theory contains four dimensio-

nal gravity. We rather require four weaker conditions for an acceptable ground state:

a) The ground state obeys the classical field equations.

b) Four dimensional gravity is governed by a term linear in the four dimensional curva-
ture scalar with positive Newton’s constant.

¢) The effective four dimensional cosmological constant vanishes. This may be achieved
by an unnatural adjustment of oné parameter.

d) The non-gravitational excitations in four dimensions have positive Euclidean action.
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Especially, the ground state corresponds to the minimum of the scalar potential of the
effective four dimensional theory.
Such a ground state has the same problems as Minkowski space as ground state of ordinary
four dimensional gravity, but at least the problems are not worse. With these conditions
it cannot be explained why the eflective theory we observe is four dimensional.

The scalar potential in four dimensions is given by —S of Eq. (2), where all quantities
now refer to the D = d-4 dimensions of the “internal” manifold. (Note that for an action
including only the curvature scalar the scalar potential is necessarily unbounded from
below.) For

4
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one finds [4] that the minimum of the scalar potential corresponds to a D dimensional
hypersphere S° with radius L given by

L? = [2aD(D—1)+28(D— 1) +4y)/5. @)

To have a vanishing four dimensional cosmological constant, the parameter & has to be
adjusted:

D(D—1)
aD(D—1)+H(D—1)+2y"

62
&= (5)
It is easy to check that the field equations are fulfilled. One also finds the right sign for
the kinetic terms of the vector and scalar fields and for Planck’s constant. To see this,
we have to discuss excitations above this ground state.

The ground state symmetry is lower than the full symmetry of d dimensional general
coordinate transformations — we have spontaneous compactification. In our case the
ground state symmetry is a direct product of a local SO(D+1) gauge group with global
four dimensional Poincaré symmetry. Since the characteristic length of Minkowski space
is infinite (including matter, our universe has a finite, but very large characteristic length
scale today) the effective four dimensional action has not only global Poincaré invariance,
but is invariant under four dimensional general coordinate transformations.

To discuss the spectrum of excitations above the ground state, we first have to reduce
the 4 dimensional metric tensor (or equivalently the vielbein) with respect to SO(D+1)
and four dimensional general coordinate transformations. The metric tensor contains
infinitely many representations of this symmetry. Its dependence on the S” coordinates
gives rise to different representations of SO(D+ 1). (This can be compared to a field depend-
ing on the coordinates of the usual three space dimensions: it contains different values
of angular momentum). To find the effective four dimensional action for these representa-
tions, we have to integrate the d dimensional action over the coordinates of SP. Every
representation will then correspond to a field in the four dimensional theory. Most of these
infinitely many fields will have masses of the order M ; and we neglect them.

Still, we know that at least two sorts of fields must remain massless: a massless graviton
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is guaranteed from general coordinate invariance in four dimensions and massless gauge
fields follow from local SO(D + 1) symmetry. The four dimensional gravitational interactions
are obtained from the term in the action linear in the four dimensional curvature scalar
R, putting all excitations above the ground state except the graviton (g,, = g,,(x), x: four
dimensional coordinates) to zero. One finds for Newton’s constant

L p(D—1)+2y
42 aD(D—1)+p(D~1)+2y

oVp ©

where ¥, is the volume of S”. Note that without the inclusion of the R;‘;R; v and R;L;;;;Rm”
terms in the action the Planck mass would vanish. A positive value for x2 requires

2

The gauge bosons correspond to the following ansatz for the vielbein

m—_

€y eﬂ(x),

ey =0,
el = gAX(X)KIy)eW),
et = eXy). (8)

Here m and a are Lorentz indices for the four dimensional and the D dimensional space,
respectively and x and y denote the coordinates of these spaces. The vielbein corresponding
to the ground state is given by e%(y). The four dimensional vielbein is e,(x) and the
D(D + 1)/2 gauge fields are given by A,(x). KZ(») are the Killing vectors of S” and g denotes
the gauge coupling. With this ansatz one finds for the d dimensional curvature scalar

R = —D(D~1)/* +Ry—1 g28,,K:KEF= F™, )

where F}, is the usual field strength for non-abelian gauge fields. The gauge coupling can
be calculated from the normalization of the kinetic term for the gauge fields. Neglecting
corrections due to the R;;Rﬁ and R;;;;IRIW” terms, one finds
, D+14*  D+1 1 1

2 T D101V, o

8

The relation that g is proportional to the ratio of Planck’s length over the typical length
of the internal space is very general. (The proportionality factor depends on the specific
ground state). This implies an important constraint: whereas experiments so far do not
exclude the appearance of further dimensions at length scales as large as 10~1° cm, realistic
Kaluza Klein theories with a gauge coupling not extremely small compared with unity
predict that further dimensions will not be directly observable up to length scales of the
order of the Planck length.
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To conclude, higher dimensional gravity is the simplest way to unify gauge interactions
with gravity: one keeps the structure of gravitational interactions and only enhances the
number of dimensions to account for the gauge interactions and scalar fields as well.
It may even have some predictive power for the observable parameters of the low energy
theory. But the development of this theory is only at the beginning. There is still a wide
gap to fill before making contact with experiment and deciding whether the theory can be
tested or not.

1 tkank the organizers of the Conference and the Summer School for giving me the
opportunity to spend a very interesting time in Poland.
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