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The width I'ym(e, kx) of the state of Z hyperon moving with momentum kg in nuclear
matter of density ¢ is expressed through the Z N scattering cross sections. Exclusion principle
and dispersive effects are taken into account. Results obtained for I'nm(o, kz) are used in
estimating the width of X bound states in X hypernuclei and in X atoms, and the absorptive
potential for Z-nucleus scattering.

PACS numbers: 21.65.+f, 21.80.+a, 36.10.Gv

1. Introduction

In the present paper, we present a simple theory of the observed narrow width of
Z hypernuclear states [1], of the width measured in T atoms [2], and of the strong absorp-
tion of £ hyperons produced in X~ absorption in nuclei [3]. The only input are the experi-
mental cross sections for ZN scattering. The theory consists of two steps. First, we calculate
the absorption of a ¥ hyperon moving in symmetric (N = Z) nuclear matter (NM). Second,
we apply the results obtained in NM to estimate the width of T bound states in finite systems:
in £ hypernuclei and in T atoms, and to estimate the absorptive potential for Z-nucleus
scattering.

In 1979 the Heidelberg-Saclay group (Bertini et al. [1]) at CERN reported the first
observation of hypernuclei with X particles (3Be) in the (K, 7) reaction. The shape of the
observed pion spectrum suggests that the width of the I states I' < 8 MeV. The existence
of narrow X hypernuclear states was confirmed at Brookhaven (Piekarz et al. [4]) where
hypernuclei ¢H and 'SC were observed.

At first glance, the narrowness of the ¥ hypernuclear states seems surprising. In
nuclear matter (NM) the £ hyperon decays to the A hyperon via the strong conversion
process N — AN. The large energy and momentum releases in this process (AE ~ 80 MeV)
suggest the use of semiclassical arguments in estimating I (see, ¢.g., Gal, Toker, and Alexan-
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der [5]). Let us consider, e.g., a Z~hyperon moving through NM of density ¢. The probability
per unit time, w, of its decay into A is given by w = 1 gve®, where ¢° is the total cross
section for the conversion process Z~p — An, v is the relative Z-p velocity, and 1 g is the
proton density. The X lifetime 7 = 1/w is connected with I by «I" = £, and we obtain
. 2
I =3 0hveDpy = 7 0 — {kzn0Davs (L.1)
Hzn
where ($,vy indicates averaging over nucleon momenta, kyy, is the relative N momentum
(in units of h), and ugy is the EN reduced mass (hkgy/usny = v).

If we use in (1) for ¢ the empirical equilibrium density of NM, g, = 0.166 fm—*
(and the corresponding value of kg (the Fermi momentum of NM), kg, = 1.35fm!,
in calculating {(>,vy) and the experimental cross section ¢°, we get for zero momentum
of X (i.e., for the ground state of £ in NM) the result: I' ~ 24 MeV, which is much bigger
than the width measured in the observed £ hypernuclei.

The main shortcoming of expression (1.1) is that it disregards the exclusion principle
and dispersive effects (momentum dependence of the nucleon and hyperon single particle
(s.p.) potentials in NM). It was shown in [6] that the two effects suppress strongly the
ZA conversion in NM. Because of the exclusion principle the XN — AN processes, in
which the final nucleon momenta are smaller than kg, are forbidden. This suppression
is further enhanced by dispersive effects which diminish the final nucleon momenta. Both
effects were included in the calculation of I performed in [6] in the frame of the Brueckner
reaction matrix theory with model D of the Nijmegen hyperon-nucleon interaction [7],
with the resulting values of I' ranging from 0 to 12 MeV (depending on the choice of the
s.p. potentials of nucleons and hyperons in NM), in agreement with values suggested
by the (K, m) experiments,

It was shown in [6] that an approximation in the Brueckner theory scheme enables
one to express I directly in terms of ¢°. The resulting expression for I' is a modification
of semiclassical expression (1.1), which takes into account the exclusion principle and
dispersive effects. Results obtained for I' with this modified expression reproduce quite
accurately the results of the tedious Brueckner theory calculations. The principle advantage
of this procedure (apart from its computational simplicity) is that it bypasses the problem
of determining the hyperon-nucleon interaction.

In the present paper, we use this modification of (1.1) to calculate the £ width in NM.
The simplicity of this procedure enables us to discuss more carefully the proper choice
of the s.p. potentials in NM. Furthermore, without much effort, we obtain results for
the  width in NM for different values of NM density ¢, and X momentum ks, I'ny (0, k5)-

To estimate the width of £ bound in a finite system, we approximate it by I'yw(@, kx)s
where g and k; are average values of ¢ and ky in this system. We apply this procedure
to X hypernuclei, and to X atoms, and obtain very reasonable results.

To estimate the absorptive potential W for Z-nucleus scattering, we start with W for
NM, Wim(e, ks) = — I nml@s k5)/2. The subscript “tot” indicates that here we have to con-
sider the total cross section for N scattering (for the ZA conversion, for elastic scattering,
and for charge exchange scattering). To calculate W for finite systems, we use Wyu(o, kz)
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and apply a local density approximation. For increasing energy of the scattered X hyperons,
we obtain a strong absorption.

The paper is organized as follows. In Section 2.1, we formulate the theory of T width
in NM, in Section 2.2, we specify the s.p. energies in NM, in Section 2.3, we discuss the
energy conservation in XN scattering in NM, and in Section 2.4, we present our results
for the conversion and elastic parts of I', I'° and I"%, in NM. In Section 3, we.apply our NM
results in calculating I" for  bound states in finite systems: in £ hypernuclei (Sec. 3.1),
and in X atoms (Sect. 3.2). In Sect. 4 we apply our NM results to calculate the imaginary
part of the X-nucleus optical potential. In Sect. 5, we discuss our results, compare them
with experiment, and mention other approaches to the problem of the ¥ width.

The main results of the present paper were reported in [8].

2. ¥ width in nuclear matter
2.1. Formalism

To describe the YN interaction (Y = Z, N), we use the two-channel approach with
a 2x?2 potential matrix:

- (v(EN - IN) (AN — ZN)) _ (Uzz UXA>

"T\uEN > AN) (AN - AN) @

Uax  Upa

The A conversion occurs only in the isotopic spin T = 1 state, and only in this state
is the two-channel approach necessary. In the 7" = 3 state, the only nonvanishing component
of v is vgg, and only the EN channel exists. To simplify the presentation, we suppress spin
and isospin in most of our equations.

According to the Brueckner theory (see [6], and references quoted therein), the energy
E; of a T hyperon (with momentum kg) in NM is:

<kp

2.2 dky
E; = h¥ks2Mz+4 (“2;)3 Chegnl A spllegn), (2.2

where ky is the nucleon momentum, and kgy is the relative N momentum,

ken = pen(bn/My—kg/My). (2.3)

The factor 4 takes care of the four nucleons (neutron and proton, each with spin up and
down) occupying each momentum state in NM.

The reaction matrix /sy in the XN channel, together with the reaction matrix % ,, in
the AN channel and the transition matrix s, satisfies the coupled equations:

Oa
Hgs = vgs+o +lgn — 2 K as,
Iz > naz-{-ie Hvra ot ie AT
Os Oa
A ax = Uagttas = A gzt van —— K asp 2.4
ag+ie 1€
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where
ag = en(ky)+ eg(kg) —en(ky) —ex(kz),
ap = en(kn)+ex(ky) —en(kn) —ea(kn) + 4, 2.5)

where 4 = (Mg— M))c?, ey and ey are nucleon and hyperon s.p. energies in NM (see
Sect. 2.2), and ky, ky are momenta of the particles in the intermediate states (summation
over these states is implied in Eqs (2.4)). By Qy we denote the exclusion principle operator
in the YN channel (a projection operator onto nucleon states above the Fermi sea).

Singularities are expected to appear in both Qy/ay (Y = X,A). In other words, real
energy conserving transitions XN — ZN and ZN — AN are expected to occur. Only for
ks = O (the case considered in [6]) the first possibility, N — XN, is excluded. The infinite-
simal parameter -+ i¢ guarantees that only outgoing waves appear in states degenerate
with our initial state (ground state of NM + £ with momentum kg). This means, we consider
the decay of our initial state, whose I' is:

.

dk
= —-2ImE; = —4 (2—7;3- 2 Im gyl sslbgn). (2.6)

Now, Eq. (2.4) imply the optical theorem:
—2 Im Chen| A zzlend = (27) 72 § dkANQA(K, Fean)S(es) [<RANIH pxl keI
+(27) 72 | dkznQx(K, kin)3(otz) [<Ranl A gzl 1, 2.7
where K is the conserved total YN momentum,
K = ky+ks = ky+ky 2.8)
and kyy are the relative YN momenta,
kyn = pyn(kn/My—ky[My), (2.9
where pyy is the reduced YN mass. Since
ky = (uyn/My)K + kyy, (2.10)

the exclusion principle operators Qy in the total and relative momentum representation
are:

1 for [(uyn/My)K+kyyl > kg,

Qy(K; kxn) = {0 otherwise. 2.11)

The & functions in (2.7) lead to energy conservation equations, «y = 0, which fix
the value of kyy (see Sect. 2.2). Notice that the s.p. energies in expression (2.5) for ay
contain momentum dependent s.p. potentials, and consequently, in Eq. (2.7), we have
in general kgy # kyn
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Let us introduce the total cross section for the conversion process, IN — AN, in NM:

k;mﬂzu HAN z
wm(EN) = —— ., y 2 .
onm(EN) Kentan k2 dEANKkANl'}{ zlken)| (2.12)
and the total cross section for the elastic scattering, TN — IN, in NM:
kZN Uzn 2 Rk 2
oxam(EN) = — 5’—’;? dignl ksl A gelbepd| ™. (2.13)

If we put Qy = 1in Eq. (2.4), and use for the s.p. energies in Egs (2.5) pure kinetic energies,
then Eq. (2.4) become equations for free EN scattering, matrices, %, and expressions
(2.12) and (2.13) become expressions for the total cross sections for the conversion
process, a(ZN), and for the elastic scattering, 6°(EN), for an isolated IN pair.

With the help of Eqs (2.12), (2.13), and (2.7), we may write expression (2.6) in the
form:

I=T°+r°, (2.14)
where
dky k K,
re=h% | —5 | dkin 2N 00K, kpn)S(an)oim(ZN), (2.15)
(270 Hin HAN
dky k k.
r==h24f N Gkl N 0K, ki) d(ep)oSa(EN). 2.16
@ Ao m™o (K, ken)o(og)or(EN) (2.16)

In deriving expressions (2.15) and (2.16), we have approximated the exclusion principle
operators Qy(K, kyn) by their angle averages Qy(K, kyy) (or equivalently, neglected the
angular dependence of the cross sections),

1 for |k—puynK/My| > k,
Oy(K, k) =40 for k+puywK/My < kg, 2.17)
[(k+ pynK[My)? ~ kE]/(AuynKk/My)  otherwise.

With the sign of the absolute value in the definition of the range for which Qy =1,
expression (2.17) is valid for any magnitude of ky. (The sign is not present in the expression
for Qy given in [6], where only the case of ky = 0 was considered.)
In the effective mass approximation, explained in Sect. 2.2,
ay = —h?kiR/(uyy) + terms indep. of kiy, (2.18)

where v is the ratio of the effective to the real mass, assumed to be equal for Z, A, and N
(see Eqs. (2.40) and (2.43). With this form of ay, we may perform the kY, integrations
in (2.15) and (2.16), and we obtain

I = h*v4)(2n)° | dhn(ken/uz)Qa(K, kin)ofm(ZN), (2.19)
I = h%4)2n)° | diy(ken/pzn)Qs(K, kin)orm(EN), (2.20)
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where &, and kgy are determined by the respective energy conservation equations, a, = 0
and az = 0.
Now, we make the crucial approximation,

oim(EN) = 6*(EN), x =c, e, (2.21)

which inserted into Eqgs. (2.19) and (2.20) enables us to express I'° and I'° through the
experimental cross sections, ¢ and o°. One might argue that #'%; differs from X 'yy by
terms of at least quadratic order in % J;. Since expressions (2.19) and (2.20) are already
of second order in X'y, approximations (2.21) introduce an error of third order in J# %y.
In {6], approximation oy = ¢° turned out to work remarkably well. As far as approxima-
tion oy = 0° is concerned, an analogical approximation applied by Lane and Wande!
[9] in their calculation of the imaginary part of the low energy nucleon-nucleus optical
potential led to surprisingly good results. Still, it is hard to present a fully convincing
Jjustification of approximation (2.21), especially at low energies which we consider. Being
aware of this difficulty, Lane and Wandel called their approach “frivolous”. (Actually,
our expression (2.24) with o5y = o° takes into account not only the Pauli principle but
also dispersive effects (the factor v), and corresponds to the “modified frivolous model” of
the nuclear optical potential, discussed in [10].)

So far, the two isospin states of a nucleon in NM, proton and neutron, were taken
into account by a factor 2 which together with the two spin states produced the factor
4 multiplying the ky integration. However, the reaction matrices which describe the inter-
action, and the corresponding cross sections o(NM), are different for Zp and Zn pairs.
This means that we should substitute for 203(EN) = 26°(ZN) in (2.19), and for 265y (ZN)
=~ 26%(ZEN) in (2.20):

26%(EN) = ¢ (Zp)+0*(Zn), x =c, e, (2.22)
where for £~ we have:
o(Z°p) =0c(Zp— An), ¢(EZ7n) =0,
o*(E7p) = o(27p > T7p)+0o(X7p > Z%n),
0%(Z7n) = 6(X"n - =7n), (2.23)

where the cross sections on the right hand side are total cross sections for unpolarized
particles. Notice that ¢°(X~p) contains cross sections for both elastic and charge exchange
scattering.

For X° we have:

a°(°%) = 6(Z°% - Ap), ¢(Z°n) = o(Z°n - Z°A),
6*(Z°p) = o(Z°% — Z°p)+0(Z% — Z¥n),

6°(2%n) = ¢(Z°n » =%n)+0(Z°n — =7 p). 2.24)
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Expressions for =+ may be obtained from Egs (2.22) by subsituting T+ —» -, p — n,
and n — p. Notice that if isospin is conserved, we have

FEN) = 65(Z"N) = o’ (Z°N), x =c,e. (2.25)

With the substitutions (2.22), expressions (2.19) and (2.20) (with approximation
(2.21)) take the form:

re = hz‘~’2/’(2”)3 J dhn(ksn/psn)QAK, kin) [69(Zp)+0°(Zn) ]

= 00*/(2usn) CQAK, kjn)ksn[09(ZD)+0°(Z0) D av, (2.26)
re = n*v2j2ny’ j dkn(keniten) 05K, ken) [6°(Zp) +0°(Zn)]
= 0h*V|Qugn) <O(K, ken)ken[0°(Zp) + 0 (EN) D av, (2.27)

where (>,y denotes the average value in the Fermi sea.

Egs. (2.26) and (2.27) are the basic expressions for our calculations. They are of the
form of the semiclassical expressions, except for the appearance of the exclusion principle
operators Qy, and the effective mass factor v which together with the energy conservation
equations oy = 0 takes care of the dispersive effects.

2.2. The single particle energies
For the s.p. energy of nucleons in the Fermi sea, we use the approximation:
en(kn < kp) = en(kn) +<{Vwoav (2.28)
where ey denotes the nucleon kinetic energy,
extkn) = W2k%2My, (2.29)

and Vy is the nucleon s.p. potential, approximated in (2.28) by its average value in the
Fermi sea, {VyDay. We assume that (¥ O,y leads to the empirical energy per nucleon
in the ground state of NM, E/A4,

Fentke)+7 (Moav = EjA. (2.30)

To determine E/A as a function of the density ¢ of NM, or of the Fermi momentum kg
(0 = 2k}/37?), we write E/A in the simple form:

E/A = f(k,) = ¥ e(kg)+ DA+ ckt, (2.31)

and require that NM saturates at &y = kpo = 1.35 fm! with f(kgo) = —15.8 MeV. This
requirement fixes the values of b = —44.1 MeV fm? and ¢ = 21.1 MeV fm*, The NM
compressibility obtained with expression (2.31), ki.id*fldkE], = 240 MeV, agrees nicely
with empirical estimates (see, e.g., the review by Blaizot [11]).

From Egs. (2.31) and (2.30), we get

Moav = 2bk;§+2ck§. (2.32)
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For ky > kg, we use the effective mass approximation,
en(kn = kg) = hES2ME—h2KE2ME + en(kp), (2.33)
where en(kg) is assumed to be equal to the nucleon separation energy 0E/8A:
extkp) = CE[GA = E/A+ 7 ked(E]A)/dkg. (2.34a)
With the help of Eq. (2.31), we get
en(kp) = ex(kp)+2bks+(7/3)ckg. (2.34b)
To determine M%/My = vy, we write Eq. (2.34a) in the form ey = ey+ V. and get
h2ME = R/ M+ kg '6Vilkn)/Ckn. (2.35)
If we make a reasonable assumption that Vy(ky) depends linearly on the density g, we get
v = 1/[1+0x5" = Deleo], (2.36)

where vy is the value of vy at the equilibrium density go. In our calculations, we use Fq.

(2.36) with the value vy = 0.7 which is compatible with theoretical estimates and with the

empirical energy dependence of the real part of the nuclear optical potential [12].
For the hyperon s.p. energies, we apply the effective mass approximation,

ey(ky) = (lf;Y)gY(kY)+D9 (2.37)

where ¢y is the hyperon kinetic energy, D the hyperon well depth in NM, and vy = M3/My.
In (2.37), we use a common value of D for both hyperons A and X which approximately
corresponds to the experimental indications. For the density dependence of the effective
mass parameter vy, we use the form analogous to Eq. (2.36). Furthermore, we make the
simplifying assumption:

"‘1\ = VE = \?N = v’ (238)

which appears reasonable. According to Bando and Nagata [13] v, = 0.8, and according
to Chong, Nogami and Satoh [14] v, = 0.7. And for v;, we expect a similar value.
2.3. Energy conservation in IN scattering in NM

We start with the ZN — AN conversion process, for which we write the energy conser-
vation equation, a, = 0, in the form:

en(kn) +e(ky) = en(ky) +eg(ks)+ 4. (2.39)

We substitute for ey(kn) expression (2.28), for ey(ky) expression (2.33), and for ey(ky)
expression (2.37), and express the momenta ky, ky, kN, and k) through the relative mo-
menta kpy. Eq. (2.3), and k. Eq. (2.9), and through the conserved total momentum X,
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Eq. (2.8). In this way Eq. (2.39) takes the form:
h2kyn/2uany = h2kyz/2pzn
— 2K [My/v+(1/y— DMy~ M, J/[2(My+ Mz) (M +Mp)] + 4%, (2.40)
where
4* = A+ (WD av—en(ke) +ex(ke) v+ (19— Des(ks), (2.41)

where ey(ky) is given by Eq. (2.33).
The energy conservation -equation for the N — XN scattering, «y = 0, may be
written in the form:

en(ky) +ex(ks) = en(kn)+ex(ks). (2.42)

Proceeding in the same way, as with Eq. (2.39), we obtain
B2k 2usny = h2kin/2uen—h2K2(1/V—1)/2(My+ M)
+ VoD av —en(ke) +en(kp) [V 4+ (1/v — Deg(ke), (243)

where en(kp) is given by Eq. (2.34b).
Notice that with the help of Egs. (2.3) and (2.8), we may express K in terms of ky,
kns, and kg:

K = [(k#/My+k3|Ms—kin(uze) (MxMs/ug0)]. (2.44)
Consequently, kx and kgy are determined by energy equations (2.40) and (2.43) as functions
of ky and kgy (for a fixed value of ky).
2.4. Results for I'° and I'* in NM

If isospin is conserved, the widths of X, =+, and Z° in symmetrical NM are the same
(see Eq. (2.25)). Here, we specialize to X° for which the experimental cross sections are

best known.
To calculate I'%, Eq. (2.26), we need the experimental total cross section for Z-p — An.
We use the parametrization

W/c)eEp —» An) = (1+130/c)* 5.1 fm?2, (2.45)
where v is the relative Z—p velocity, i.e.,
ovfe = (h/usne)ken- (2.46)

This parametrization was adjusted by Gal, Toker, and Alexander [5] to the whole Z~ low
energy regime up to 300 MeV/c in the laboratory system.

To calculate I'%, Eq. (2.27), we need the sum of the total elastic and charge exchange
cross sections:

6°(Z7) = (T p)+o°(Zn) = 6(Zp— T p)+a(Z7p - 2'n)
+6(En>Zn)=0Cp- I p)+oEp>IZtp+a(Zp > 2n), (247)
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where in the last step we assumed isospin invariance, and replaced (X n— X7 n)
by ¢(Z*p - Z*p).

As the experimental cross sections appearing in the last part of Eq. (2.46), we consider
the cross sections tabulated by Rijken [15] for X laboratory momenta up to 1000 MeV/c.
They represent an extrapolation (by means of the Nijmegen baryon-baryon interaction)
of the measured cross sections, known for I laboratory momenta below 200 MeV/ec.
For the sum of the three cross sections in Eq. (2.46), we use the parametrization:

K*6%(Z7) = 24+41k—[24+(k/0.14)*] exp { —(k/1.2)*}
+18 exp {—~[(k—1.8)/0.4]*}, (2.48)

where k is the T laboratory momentum (in fm-?),

k = (My/psn)ksn (2:49)

The form of expression (2.48) is slightly complicated due to the behaviour of the “experi-
mental” cross section o(X+tp — Z*p) which shows two maxima (see Fig. 3 of Ref. [7]).

To obtain I' and I'%, Egs. (2.19) and (2.20), we have to perform ky-integrations.
The cross sections, Eqs. (2.45) and (2.48) are functions of kyy. The momenta kjy and kgy
(the arguments of the Qy operators) are determined by ky and kyy through energy conser-
vation Eqs (2.40) and (2.43). Also the total momentum X is expressed by ky and kg,
Eq. (2.44). Thus the ky-integrations involve functions depending on ky and &gy, and we
perform the integration numerically, by applying the formula:

kg B(+)

§ dkn (e, ew) = (MnMg/pgn) (27/kg) g dkkn p(f_ ) dkznken? (ks kzn)»  (2.50)

o k=0 o -
- Ger
— 05 ; B

o lfm3)

Fig. 1. The width I" of  ground state in NM as function of NM aensity g
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where
B(x) = Henlkn/My = kg/Myg). (2.51)

First, let us present our results for I"°, For the sake of comparison, we calculate I'° not
only for v = 0.7 but also for v = 1. Furthermore, we also consider the case in which we
take for all the s.p. energies pure kinetic energies, but retain the exclusion principle operator
Qx. In this case, we denote the width by I'y. If in addition, we disregard the exclusion
principle, we use the notation I,

Our results for I'“ as a function of ¢, for ky = 0, are shown in Fig. 1. Notice that
in the ground state of the T+ NM system, kz = 0, we have I'* =0, and I' = I'°, i.e.,
the total width is entirely due to the conversion process. Whereas I'y = I'§ increases

T I 1 |

¢ [MeV]

10

Fig. 2, The width I'® of £ in NM as function of & momentum at two NM densities
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approximately linearly with ¢, I'g = I'y increases much slower at high density where the
exclusion principle becomes important. The role of the exclusion principle is further
enhanced by dispersive effects present in I',. This, combined with the decrease in
o(Z”p — An) with increasing £ momentum, leads to the decrease in I', with increasing
@ at high densities. At equilibrium density g, = 0.166 fm~* (kg = 1.35 fm~!) we have:
Ig=235MeV, I'p =178MeV, I',; =114 MeV, and I' -, 7 = 5.9 MeV. The results
are obviously sensitive to the value of v. E.g., an acceptable value of v = 0.6 would lead
to I'y-9.6 = 44 MeV at ¢ = g,. Consequently, our value of v = 0.7, which we shall
keep in the following calculations, should be considered as a conservative estimate of the
dispersive effects. v

The calculated dependence of I'° on kg for ¢ = g, and ¢ = 0.08 fm—3 is shown in
Fig. 2. With increasing momentum ¢(Z~p — An) decreases, and consequently I'§ is a de-
creasing function of k;. On the other hand the exclusion principle, enhanced by dispersive
effects, is most effective in reducing I'° at k; = 0, and this reduction is stronger at higher
densities. This explains the difference in the behaviour of I'; and I'; compared to that
of I'§ at the two densities considered.

Results for I'® as a function of kg at ¢ = g, and ¢ = 0.08 fm~2 are shown in Fig. 3
which contains also a plot of I'* and I' = I'*+I'". All the curves were obtained with v = 0.7.
At small £ momenta I'* < I'° because here, especially at high densities, I'® is almost com-
pletely suppressed by the exclusion principle enhanced by dispersive effects. (Actually the
suppression at very small momenta is exaggerated by our crude approximation of the s.p.

T T |

|
-60 MeV

g[fm3]

.080 -—---
-40

ks [fm™1]

Fig. 3. The widths I'¢, I'%, and I’ of X in NM as function of X momentum at two NN densities
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nucleon potential Vy(ky < kp) = (Vioav» Eq. (2.26).) At higher momenta, where the
Pauli blocking is not important, I"*> I'° because here the total elastic cross section is
much bigger than the conversion cross section (of course I'® reflects the absorption of T due
to elastic scattering and has nothing to do with the life time of £ in NM).

Notice that kgy in expression (2.27) for I'® is determined from energy conservation
Eq. (2.43), and consequently kgy < kzy. This decrease in the relative SN momentum
in IN elastic scattering in NM was disregarded in Ref. [8]. For this reason our present
results for I'° (and the results for the absorptive Z-nucleus potential presented in Sect. 4)
differ from the results presented in [8], especially at small £ momenta.

3. The width of £ bound states in finite systems

As the result of Sect. 2, we have at our disposal the width of X states in NM as a function
of ¢ and kg,

I'nu(o, ks) = T'im(@, kg) +Trmlos ki), 3.1
where by ') we denote the value of I'® obtained in Sect. 2 with v = 0.7. To estimate

the width I' of a state of T bound in a finite system in which the nuclear density is given

by a function ¢(r), and the X state is described by a wave function ¥y(r), we approximate
I' by

I = (@, k), (3.2

where the average density and £ momentum, g and k;, are defined by
g = [dre(M¥x()I’, (33)
kZ2My = (¥l T ¥, 34

where Ty is the operator of X kinetic energy. (Obviously, in applying Egs. (3.2)-(3.4),
the CM motion has to be taken into account.) This approximate way of calculating I' was
used successfully by Ké&hler [16] in explaining the width of deep hole states in nuclei.

Notice that in Eq. (3.2) we use I'yy and disregard I'fy. Practically disregarding 'y
is of no importance as I'ny < I'ny for the relavant values of ks, Also in principle I'§y
should be disregarded. Imagine that we calculate I” for the ground state of a X hyperaucleus.
In the absence of the conversion process (I'ny = 0) the width I" of this state should be
zero. However, by keeping 'y in Eq. (3.2) we would get a nonvanishing I". Obviously,
elastic processes in a state, which is not coupled to the continuum, cannot cause the state
to acquire a finite width.

Now, we will apply approximation (3.2) to £ hypernuclei and I atoms.

3.1. £ hypernuclei

We describe a £ hypernucleus with a nuclear core with A nucleons by a s.p. model
in which ¥y(r) is determined by the Schroedinger equation

hz
{ ~ 4+ V(r)} Yi(r) = E¥y(r), (3-3)
IA
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where r is the vector from the nuclear core to the X hyperon, uz, = MM, /(Mg+M,),
and E is the  energy (— £ = X binding energy). For the mass of the nuclear core, M, we
use the value M, = 931 4 MeV/c2,

For the s.p. potential V{r), we use

V(r) = —Voo(r)eo (3.6)
with ¥, = 30 MeV, and for the density o(r) we use the Saxon-Woods form

o(r) = @o/{1+exp [(r—c)/z]}. (3.7
From the normalization,
4n [ drrig(r) = 4, (3.8)
we get (see Elton [17]) for the half-way radius ¢ (for z <¢)
¢ = roA3—(72z*3ry)A™ 13, (3.9)

where ro = (410o/3)~/® = 1.128 fm. With the value of the surface thickness s = 2.49 fm,
we get z = s/ln (81) = 0.567 fm.

Eq. (3.5) was solved numerically for the Is ground state, and for the 1p excited state,
for several values of 4. In each case the expectation value of ¥V was calculated, and used
to determine ¢ and kg, according to the relations:

g = —(0o/Vo) {¥slVI¥s), h2kza/2uza = E—CWHIVI¥D. (3.10)

From the average relative E-nuclear core momentum, kz,, we get the average £ momentum
in the rest frame of nuclear medium, ky = Mgks,/uz,. Values of /gy, kg, and E as
functions of 4 are shown in Fig. 4. With g and kg inserted into expression (3.2), we obtain
the results for I shown in Fig. 5.

For light hypernuclei, with decreasing A4, E approaches zero (for our potential V{(r)
the 1p state is hardly bound for 4 = 16, and is not bound at all for 4 = 12), and the
T wave function spreads out beyond the size of the nuclear core. Consequently, ¢ drops
sharply. This is the essential reason for the drop in I' for small values of 4. As 4 decreases
this happens first with the 1p state. Hence for the lightest nuclei we have I'(1p) < I'(1s).
Obviously, as E approaches zero, the kinetic energy, and consequently k; decreases, which
also effects I' (see Fig. 2) but in a less drastic way.

With increasing 4, — E approaches its limiting, and g is increasing. For heavy hyper-
nuclei § ~ g, for both the 1s and 1p states. Here, the kinetic energy of the 1p state is bigger
than that of the 1s state. Consequently, ky(1p) > kx(1s), and I'(1p) > I'(1s) (see Fig. 2).

For heavy hypernuclei, whose nuclear cores contain more neutrons than protons,
the width I of £~ hypernuclei is smaller than I' obtained from I'yy for symmetric NM.
To estimate this effect, we replace g in Eq. (2.26) by [1 —(N—Z)/4]¢ and use for the neutron
excess the value for B stable nuclei, N—Z = 6 x 10~345/3, The resulting values of I' are
shown as broken lines in Fig. 5. (The corresponding correction factor for £* hypernuclei
is [14+(N—2Z)/A], and the width of X° hypernuclei is not affected by neutron excess.)
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Fig. 4. The average density ¢ and momentum kg, and the energy E for the 1s and 1p states in T hypernuclei
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Fig. 5. The width I" and the energy E of the 1s and 1p states in £ hypernuclei
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In Sect. 2.2 we have considered a momentum dependent s.p. T potential in NM with
a momentum dependent part (see Eq. (2.37)):

ex(ks) (v = 1) = (h*kia/2p5a) (Ms/piza) G = 1). (3.11)

To be consistent with Sect. 2.2, we should add a corresponding momentum dependent
part to ¥(r). Doing it in the case of v = ¥(o(r)) complicates the resulting Schroedinger
equation. If v = v, = const, we obtain the momentum dependent part of ¥ by substituting
4 for ks, in (3.11), and in place of Eq. (3.5) we get

2
{— h [1+ M (1—v0)] 4 +V(r)} ¥y(r) = E¥(r). (3.12)
2uzavo My

To see the effect of the momentum dependence of ¥ on I' we have calculated I' as described
before but with ¥y determined from Eq. (3.12) (the right hand side of the second of Egs.
(3.10) has to be multiplied by vo/[l1+(Mg/M,) (1—v)]). For v, we used the value
vo = ¥(0o) = 0.7 (a properly averaged value of v(g(r)) would lie between 0.7 and 1). The
results for I' for heavy hypernuclei practically do not differ from the results shown in Fig. 5.
The point is that the average X momentum in heavy hypernuclei is small because of the big
size of these hypernuclei. Also for light hypernuclei the effect of using v; = 0.7 is not big.
For instance, for A = 40 we get a 29 increase in I for the 1s state. For the lightest hyper-
nuclei § < go, and a proper value of v, should be close to 1, and consequently the effect
of the momentum dependence of V is also very small.

3.2. £ atoms

We describe the motion of £~ on a circular orbit (n = 11, where / and n are the orbital
and principal quantum numbers) around a nucleus (4 nucleons, Z protons) by the hydrogen
wave function:

R(r)

¥y(r) = — You(P), (3.13)
r
R(r) = (2nr/a,)" exp {—nr/a,}/[@n—1)'a,]"/?, (3.14)
where a, is the radius of the orbit,
a, = (n*[2)h/uza. (3.15)

Since ¥ hyperons are absorbed from orbits for which is about an order of magnitude
bigger than nuclear radius, we need o(r) which would be possibly accurate at the tail of the
nucleon distribution in order to obtain a reliable value for g, Eq. (3.3). Here, we assume
o(r) to be of a 3 parameter Fermi form,

o(r) = ¢(0) [1+w(r/c)*)/[1+exp {(r—)/z}], (3.16)

with parameters ¢, z, w determined by electron scattering [19]. In cases of negative values
of w, we put o(r) = 0 for r > c/\/ —w. The value of ¢(0) is determined by normalization
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condition (3.8), which for ¢>» z, and w > 0 takes the form:
b 2 nz 2 4
% nc0(0) {1+ <—Ez—) +3w [1 +4 (?> +%<"—:) ]} = A. (3.17)
The average density g, Eq. (3.3), was obtained by calculating numerically the integral

g = | drR(r)?oe(r). (3.18)

Oty g

The average ¥ momentum in nuclear medium ky = Mgkg,/uzs and the relative
TA momentum is determined by:

h2k2, 2usa = ze?*[2a,, (3.19)

To obtain I', these values of @ and k; were inserted into expression (3.2). Obviously,
at the small densities @, exclusion principle and dispersive effects are irrelevant, and I'gy
may be obtained from expression (1.1).

Our results for g, kg, and I' are shown in Table I which also contains the experimental
results for I" of Batty et al. [2], the parameters of the density distribution [19], and the radii
of X orbits.

4. Absorption in Z-nucleus scattering

We want to calculate the absorptive potential, i.e., the imaginary part of the optical
model potential ¥’;, for Z-nucleus scattering. Our starting point is a Z hyperon moving
with momentum Ky in NM of density ¢. If we write its energy, Eq. (2.2), in the form

Es = hkZ[2Mz+95(0, kg)s (4.1)
then for the imaginary part of the X optical potential in NM, we have
Im ¥'5(0, k) = Wam(o, kz) = —3% I'nule, kz)- 4.2

Here I'yy is the total width which consists of the conversion part 'y, and of the elastic
part I'ipy (see Eq. (3.1)). We shall denote the corresponding parts of Wy by Wiy and Wi

To calculate the absorptive potential W{(r) for Z-nucleus scattering, we apply the local
density approximation:

W(r) = Wam(e(r), k«(r)), 4.3)

where g(r) is the nuclear density distribution in the target nucleus, and ky(r) is the local
X momentum in that nucleus. We determine ky(r) from the energy conservation equation
(here, the recoil of the nucleus is neglected),

Eo = (1/vg)es(ks)+D, “44)
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where E, is the (kinetic) energy of the incoming I outside of the nucleus, and the right
hand side is the s.p. % energy, Eq. (2.37). For the (density dependent) Z well depth D, we
substitute D = — Vy0(r)/oo (see Eq. (3.6)). For vz = vy = v(g) we use expression (2.36)
with ¢ equal to the local density o(r). In this way, we get from Eq. (4.4)

2Ms .. 172
ks(r) = {—52— v(e(r) [Eo+ Voe(r)/ao]} . (4.5)

For o(r) we assume the Saxon-Woods form of Sect. 3.1. We use the values of
Vo, = 30 MeV, and v = ¥(g,) = 0.7.

Results obtained for W(r) for £—160 scattering at F, = 0, 30, and 60 MeV are shown
as solid curves in Fig. 6. The conversion part of W(r), W(r) shown in Fig. 6 as a broken
curve for E, = 30 MeV, is practically the same for the three energies E, considered, and

© Q(r)/Q(0)

W{MeV]

r (fm]

Fig. 6. The absorptive potential W (r) for £—190 scattering for three Z incoming energies E,. The broken
curve represents We(r) for E; = 30 MeV

becomes unimportant at higher energies where W(r) is determined predominantly by
elastic processes. Notice that our W(r) is surface peaked, especially for E, = 30 MeV.
This is the result of the suppression of ZN scattering by exclusion principle which is stronger
at higher density inside of the nucleus than at the lower density at the surface.
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5. Discussion

The simple theory presented in this paper does not contain any essentially free
adjustable parameters. The only input are the experimental cross sections for N scattering.
The simplicity of the theory is achieved by approximating the effective ZN cross sections
in NM by cross sections for the scattering of an isolated IN pair, Eq. (2.21).

In NM, we predict the existence of a £ ground state with a width I' ~ 6 MeV, much
narrower than the semiclassical estimate, I' ~ 24 MeV. This substantial reduction of the
X width in NM is due to the strong suppression of the XN — AN process in NM. Namely,
the XN — AN process in NM is accompanied by the excitation of NM, which uses part of
the released energy (i.e., nucleons and hyperons in NM are quasiparticles). This diminishes

T

05 kJ/ke 1

Fig. 7. Ranges of final nucleon momenta ky in AY conversion in NM (for kz = O and g = g,) as functions
of initial nucleon momenta ky without (O) and. with dispersive effects (D)

the final nucleon momenta to such a degree that an essential part of them are smaller
than the Fermi momentum, and are excluded by the Pauli principle. This point is visualized
in Fig. 7 which shows the upper and lower limits of the final nucleon momenta, &y and
ky1 as functions of the initial nucleon momentum ky, for kz = 0, and ¢ = g,. We see
that due to the dispersive effects (with v = 0.7) only a small fraction of final nucleon
momenta exceed the Fermi momentum.

To estimate the width I" of bound states of £ hypernuclei, we use our NM results and
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apply approximation (3.2). For very heavy hypernuclei (4 ~ 200), we predict that
I'y, ~ 7MeV for the ground state (£ in 1s state + nuclear core in the ground state),
and I'y, = 8 MeV for X in the 1p state (+ nuclear core in the ground state). With decreasing
A the width of both states increases slightly, but for 4 2 60, the situation does not change
very much (for 4 ~ 60, we have I'j; ~ 8 MeV, and I';, ~ 9 MeV).

With further decreasing 4, the width eventually starts decreasing, because here, in
light hypernuclei, T is less tightly bound, and the overlap between £ wave function and
nuclear density is small. This effect is more pronounced for the 1p state than for the Is state
for which it shows only in the lightest hypernuclei. Obviously this effect is sensitive to the
¥ well depth V,. With our choice of ¥, = 30 MeV (approximate equality of the T and
A well depth suggested in [1]), we have for the T+!°0 system: I';, = 9.0 MeV
(Eyy = —113 MeV), Iy, = 6.9 MeV (E;, = —0.5MeV), and for the £+!2C system:
Iy, =89MeV (E;, = —8.6 MeV) with 1p state unbound. With a smaller value of
Vo =~ 20 MeV (suggested in [4]), we would obtain smaller values of I'y,, and the 1p state
would be unbound in both systems: Z+'50 and X+'2C. Bearing in mind the uncertainty
of V,, we restrict ourselves to the following conclusions concerning light hypernuclei
A $20: Ty, $9MeV and I'; is decreasing with decreasing 4, and as long as the 1p
state is bound we have I' 1p < I'yy and Iy, is decreasing with decreasing 4 much faster
than I'y,.

Instead of applying approximation (3.2) we could proceed in a different way. We
could calculate a complex Z-nucleus potential ¥~ (see Sect. 4), insert ¥~ (in place of V) into

Schroedinger equation (3.5), and solve this equation for Yyand E = Eg— %I‘ . The difficulty

of this procedure is caused by the fact that ¥ depends on E. This procedure was applied
by Stepiefi-Rudzka and Wycech [20], and recently by Johnston and Thomas [21], who
overcome this difficulty by introducing a number of simplifying assumptions. To solve
the Schroedinger equation with the complex potential ¥~ one looks for exponentially damped
¥y characterized by complex momentum eigenvalues k = N, 2usaElh? = kp+ik;, kg < 0,
ky > 0(Eg = h2(k2—Kk3)2us, I = —2h%kgk;/uss). As noticed by Stepien-Rudzka and
Wycech, if lkz| > k; one has an exponentially decaying, normalizable state with Ex > 0.
These states were discussed in detail by Gal, Toker, and Alexander [5] who called them
bound states embedded in the continuum (BSEC) (see also [21]).

The suggestion that the narrow resonances in Z hypernuclei should be identified with
these exotic BSEC is very interesting. One possibility of reaching these resonances is to
consider a X state that without absorption is weakly bound. By switching in the absorption
(which diminishes the £ wave functions and acts similarly as repulsion) we may shift
the X energy to positive values. In our approach in which the absorption is treated as
a perturbation, we would predict a narrow width of the weakly bound state without predict-
ing the shift in energy.

We agree with everybody else in the field with the reduction of I' for light hypernuclei
caused by the decreasing T binding (possibly through allowance of BSEC which are beyond
the reach of our simple approach). This mechanism of reducing I', supplemented by the
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selectivity mechanism suggested by Gal [22], is effective only in a limited range of T hyper-
nuclei. If this was the only mechanism, narrow X states would be the exception rather than
the rule. However, our present results, as well as our earlier results {6}, demonstrate that
the mechanism of Pauli blocking and dispersive (i.e., binding) effects reduce I" on all £ bound
states (see Fig. 5).

Experimentally, no ground states of heavy X hypernuclei have been observed so far.
The point is that the recoilless or almost recoilless £ production in heavy nuclear targets
leads predominantly to excited hypernuclear states. Similarly, no heavy A hypernuclear
ground states have been observed so far in the (K, =) reaction (see, e.g., Bertini et al. [23]).
In the heaviest T hypernucleus reported, '3C, the level structure could not be identified [4].
It appears that at the moment only in the '2C hypernucleus the ground state with Z-binding
of ~4 MeV could be identified [24]. This is also the only hypernucleus in which a 1pZ
level, al ~5 MeV excitation, is probably observed. No estimate of the vidth of those levels
was reported in [24], but both of them are narrow, with I' ~ 5-10 MeV (according to our
visual estimate of the spectra given in [24]), in agreement with our results in Fig. 5. It
would be very important for us if more levels in heavier £ hypernuclei could be identified,
in particular for those states in which the nuclear core is in its ground state (a hole in the
nuclear core introduces additional width which for deep hole states would be much bigger
than the conversion width, estimated here).

In Z atoms our calculated widths I" agree very nicely with the measured widths. Our
procedure of calculating I' was essentially the same as in the case of Z hypernuclei, except
that we used for ¥; the hydrogen functions, and thus neglected the Z-nucleus potential
in determining ¥;. Let us consider then n = 4 orbit in the Si atom. The radius of this
orbit (the distance r at which R(r)* attains maximum) is ay = 27 fm, and R3*(r)e(r) in the
overlap-integral g, Eq. (3.18) attains maximum at r >~ 4 fm. Now, at r ~ 4 fm the Z-nucleus
potential V(r), Eq. (3.6), is approximately as strong as the Coulomb potential, and thus
its effect on Wy(r) might have a noticeable effect on g. In discussing T hypernuclear states
we mentioned a different procedure of calculating first the whole complex Z-nucleus
potential ¥7, and inserting it into the Schroedinger equation for ¥y. In this procedure,
applied for T atoms in [20], also the absorptive potential has an effect on ¥y, which is
disregarded in our approach. These effects, as well as the effect of the finite size of the charge
distribution, should certainly be investigated.

Our results for the strong absorptive Z-nucleus optical potential, Im ¥";, were obtained
from our NM results with the help of the local density approximation, Eq. (4.2). The main
uncertainty in our results stems from the poor knowledge of the experimental N elastic
cross sections. We relied on the extrapolation to higher energies based on the Nijmegen
interaction. Experimentally, a strong X absorption is deduced from the measurement of
the emission of charged Zx pairs resulting from the capture at rest of K~ mesons on complex
nuclei (see [3]). In the interpretation of these measurements, Wycech [25] used Re ¥y
and Im #"; similar to our ¥ and our Im ¥"5;. A more direct comparison of our results with
experiment is not possible since there are no data on Z-nucleus scattering.

Several most instructive discussions with S. Wycech and valuable comments on the
atomic widths by W. Stgpieni-Rudzka are gratefully acknowledged.
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