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The construction of the conformally flat and inhomogeneous solution of Einstein’s
equations is presented. The Bondi type energy tensor has been used as a source.
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1. Introduction

There are many observational and theoretical reasons that have motivated studies
of anisotropic and inhomogeneous cosmologies. Such studies are based on a number of
particular inhomogeneous models forming a subset in a space of all solutions of Einstein’s
equations. They include such generally known solutions as Gowdy, Szekeres, Tolman
solutions and some plane symmetric solutions.

Although the most intensively discussed inhomogeneous cosmologies are the perturba-
ted FRW models, there is still a great necessity of the search for new inhomogeneous
solutions of Einstein’s equations which could be used in cosmological discussions e.g. on
galaxy formation or on other processes in the early universe.

The construction of a simple inhomogeneous solution of Einstein’s equations will
be presented here. The conformally flat and spherically symmetric form of the line element
will be considered. The energy-momentum tensor is the Bondi type inhomogeneous source.
The considered equations, together with the natural energy conditions, give the final
form of the conformal factor and the region of applicability of the metric. The obtained
space-time has no symmetries except spherical ones.

2. Solution

When looking for an inhomogeneous solution of the Finstein equations one has to
assume the general structure of the metric i.e. the admissible symmetries of the space-time
described by the metric. We assume that in spherical coordinates ¢, 8, ¢

ds* = Q%(t, r) [dt* — dr* —r*(d0® +sin® 0dp?)]. (1)
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One can easily find that the metric becomes homogeneous only if the conformal factor
takes the form discussed by Landau and Lifshitz [1]:

Q%t, ) = FX(1*—r?).

Next simplification consists in considering the form of the conformal factor which is
assumed to be additive and separable with respect to ¢ and r:

Q% = F()+G(r). )

(Assuming for instance the quantum effects in the cosmological model described by the
metric (1), the above property makes the Klein-Gordon wave equation separable.) Now,
the Einstein equations take the form:

8nTo, = 3 Q*FG’

: 2
8nToo = @ * {% [F?+G'*]+Q* [— = G’—G”]}
r

, .2
8Ty, = Q74 {g- [F*+G*]-Q? [F—- — G]}
r

L1 .
8nTy, = Q7 *{ -Q* | F- —G'—G" | +2| F*—G"?
r 4

T33 = Sin2 0T22, (3)

where dots and primes indicate differentiation with respect to ¢ and r, respectively.

An attempt at obtaining a solution for the hydrodynamical form of the energy-
-momentum tensor seems to be the wrong way of solving the problem. In that case functions
F(t) and G(r), formally being the solution of (3), give in general a negative energy and
pressure.

In order to avoid such difficulties one should take into consideration other forms
of the energy tensor. One of the most promising forms was proposed by Bondi [2] (originally
for the Schwarzschild metric).

In order to give more physical significance to our discussion one introduces an observer
moving relative to the local Minkowski coordinates 7, X, ¥, Z defined by:

di = Qdt, dx=Qdr, dy = Qrdd, dz = Qrsinfdy 4)

with Q being treated as constant.
In the next step, we suppose that the physical content of the world, viewed by the
observer moving with the velocity v in the radial direction (%), consists of:
~— an isotropic fluid of density ¢ and pressure p,
— isotropic radiation of energy density 3@,
— unpolarized radiation of energy density & travelling in the radial direction.
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When viewed by this moving observer, the covariant energy tensor in Minkowski
coordinates is:

0+36+8 —8 0 0
—t p+6+2 0 0
0 0 p+6 0
Lo 0 0  p+é

A Lorentz transformation shows that in the local Minkowski system of coordinates the
components of energy tensor are:

Too = (1=v®)"! (e+ pr*)+e,
Ty, = —(1+0") 7! (ev”+p)—¢,

Tzz = Tss = =P

Toy = —o(1=0")"" (e+p)—¢, %)
where
e = 0+36,
p = p+é,

e = &(1+0v)/(1—v).
Finally, the field equations take (in the initial system of coordinates) the following form:

—3FG' = 4,

. 2
[FP+G']+Q° [— G’—G”] = B,
r
srir a2l 2
[FP+G*]-Q* | F- —G' |=C,
r

| .
@ [F— ~ G'—G"] +3[F*-G?] =D, ©)
r
where
A= —81Q°T,, = (1—v»)" 'v(@+p)+&,

B = 81Q°Tyo = (1—v%)™ ' (2+02p)+§,

C = 81Q°T,, = (1—v®) ! (F+0%0) +&,

D= SHQGTZZ = I_),
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and

2 =81Q%, p=8nQ%, &=8rQ%.

We have now a set of four equations for the six physical variables p, g, & v (from now
on denoted by p, ¢, &, v) and F, G; and we have to assume some suitable additional condi-

tions.
From the physical point of view it seems reasonable to assume:

>0, p>0, r<1l (infact v <),
Too >0, Q*=F+G>0. @)
Taking into consideration the above set of inequalities we get:
D+B-C >0,
D>0, B>0, >0,

A+D—C
‘w_——A < (8)
A-B-D

Since the obtaining of the general solution of the field equations (6) satisfying simulta-
neously inequalities (8) presents a great difficulty, let us try to find the particular solution
of the simple form:

Q* = at®>+br2. )

Considering the inequalities (8), where A, B, C, D are expressed by (6), one obtains the
set of the algebraic conditions for the coefficients @ and b and for the validity region.
Finally one can choose the following function:

Q* = 3t2+r (10

as a solution of the postulated form (9), which is valid in the region where t2—r? > 0.
One obtains also the remaining functions p, g, &, v.

3. Discussion

The most illustrative quantities from the purely geometrical point of view are Ricci
tensor and Ricci scalar, which may be expressed in the following way:

Rgo = —6Q72+5412Q7%, Ry, = 18Q %tr,
Rll - —29_2+6Q_4r2, RZZ = "'2"29—2,
R,; = sin’ OR,,, R = 6Q75(9:*—r?). 11)

Spherical symmetry in mathematical formulation means that there exist three inde-
pendent Killing vectors K{,, (only vector field K components: K?a) and K, differ from
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zero) satisfying the Killing equation:
Ka:b+Kb:a = 0.

Each additional symmetry would be reflected by the existence of other Killing vectors.
Instead of searching for these Killing vectors one can simply note that the eigenvalues of
the Ricci tensor are invariants only if Q2 and (912 —r?) are invariants (from (11)) and hence
t? and r2 must be constant on the orbits of the Killing vector (for general results of which
this is an example, see [3]).

Thus the solution (1) with 2* given by (8) has no additional symmetries except the
spherical one; it presents a new inhomogeneous solution of Einstein’s equations.

The obtained solution seems to have no clear physical motivation. However, there
exist problems in which such a solution could be used as a mathematical model e.g. for
searching for the influence of quantum effects near the cosmological singularity.
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