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ON THE GENERAL VACUUM SOLUTION WITH
A COSMOLOGICAL CONSTANT FOR BIANCHI TYPE-VI,
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We investigate the field equations for Bianchi type-VI, space-times with a nonvanishing
cosmological constant. Exact solutions are given for the vacuum case of Bertotti-Robinson-
-type models. In addition a reduction of the field equations to a second order differential
equation is given in the general case. The general vacuum case is discussed in various equiv-
alent ways and a transcendental solution is derived.

PACS numbers: 04.20.Jb, 98.80.Dr

1. Introduction

Exact vacuum solutions of Einstein’s field equations with a cosmological constant
A are known for the Bianchi-types I, II, III, V, VIII and IX (see e.g. Kramer et al. 1980).
However, no general vacuum solutions with A # 0 are known for types IV, VII, and VI,
with the exceptional group type A = —1/9 (Siklos 1981).

A special situation arises in case of Bianchi type-VI, (with #} = 0 in the notation
of Ellis and MacCallum (1969)) which will be discussed in this paper. The metric of this
class of space-times is given by

ds? = —dt*+ R}(t)dx*+ R3(t) exp (—2¢x)dy> + R3(t) exp (2gx)dz? (1.1)
where R, are the cosmic-scale functions and ¢ = const. The field-equations to be considered
are
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where €2/R} are the components of the electromagnetic field (e? = const.) and the perfect
fluid matter is characterized by the equation of state p = (y—1)e, 1 < y < 2, where ¢ and
p are, respectively, the density and the pressure of the #luid (a dot denotes differentiation
with respect to ?).

The nonvanishing of the terms of Egs. (1) involving the constant g makes the Bianchi
type-Vl, equations quite complicated. The only known general solutions are the vacuum
solutions (¢ = e = 4 = 0) due to Ellis and MacCallum (1969) and the stiff matter case
(y = 2) also obtained by these authors. For y = 1 only special solutions are known (Ellis
and MacCallum 1969, Evans 1978). For y # 1, 2 special solutions have been found by
Collins (1972) and Ruban (1978). A class of perfect fluid space-times including an electro-
magnetic field (e # 0) was found by Dunn and Tupper (1976) and Lorenz (1982a, b).

2. Exact solutions

We first consider the case Rl =0, 4 # 0. It can be readily shown that no solution
with (e, €) # 0 can exist. However, for (e, €) = 0, we obtain the solution

R, = (C, cosh ot +C, sinh wt)*/? Q.1)

with C] = C3, w? = —9¢%/4c, A = —2¢%/c, ¢ = R?. If ¢ < 0, this solution is real. For
e # 0 we seek solutions with the aid of the “Ansatz™ (in general for R, # 0)

2

. g .. A, e .
R} =" —q¢*+ —R3— —, R, =R,h, (2.2)
2 R2 3 2 R% 1 2
where g and 4 are functions of R,. We obtain
, R} , d
g = e¢(1-9)R3+4° <1— R—z) , ()= 4R, (2.3)
1 2
R £ R
B—q*h® =2~ g’ 2 =0, (2.4)
Rt 2 R}

The field equations (2) can then be decoupled to a single very complicated second order
differential equation for g in case of (e, &, 4) # 0. After solving this equation the most
general solution for Bianchi type VI, would arise. Here we present only the general vacuum
equation with (A4,e) # 0

2 A 3 ez 1 ' 2
Ry|8—9q9°R;+ — R3— — |g''—6gg'+2R,g
3 R,
2P =R —8 5 | &'+ 6420 20° P+ DR, —8q% 5 — 0 2.5
- ‘1“)2_7{' g +69°g—24"(29"+1)R, ¢ = (2.5)
2 2

as an illustration. However, until now no explicit solutions have been found.
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If Rl = 0 we obtain a solution of (2) in case of (e,&¢) = 0

2
g = q°k,— g—R§+a, a = const. (2.6)
¢

By setting f = R%, u = R, and a = 0 we find the solution

q2
fmmuth A==, @7

which corresponds to the Robinson-Bertotti type solution given by Siklos (1981) and
turns out to be identical with the explicit solution (2.1). For a # 0 exact solutions can be
obtained in terms of elliptic functions. Introducing the new time variable 7 defined by
dr = R; Y2dt we obtain three different kind of solutions

Hc>0,a>0

1432 4 (143 en(roy, k)

R. = (acla®)'?
2 = (aclq) 1+cn(twy, k)

(2.8)

(i c<0,a>0

321 +(3"* + Den(tw,, k')

1—cn(tw,, k)

R, = (- ac/g®)'? (2.9)

(i) c< 0, a<0

R, — (aefgtys 3 1= = Den(zas, K9 2.10)
z 1+cn(tw,, k) ’ '

where
14, _4:.2\1/6 _ alj4y, 41 241/6
w, = 3V*aq*/c)'®,  w, = =3"*aq*ic?)"",

wy = 3Y%(—ag*c)V®, kP =(243Y*)j4 and k'’ =1-k>

3. The general vacuum case

In this section we derive various equivalent differential equations which determine
the general vacuum solution with A # 0 for Bianchi type VI,. We start our journey through
the regime of differential equations by introducing the new time variable n by dn = R (RZdt.
From (1) we obtain in case of (e,&) = 0

RYRIRI[In (RR,)]} = 2¢° +24R} 3.1
{R3R}[In R3]} =24 (3.2)

. . . d
R3R{(In Ry) [In (R,RD] = ¢*+4RT, () =+ (3-3)
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Eq. (3.2) gives
R3R3[In R3] = 24(n—no), (3.4)

where 7, is an integration constant which we set equal to zero for convenience. Substituting
(3.4) into (3.3) we obtain

RyRyn* + R3[20° +a”R3] = 0, (3.5)
where a? = ¢?/A%. One easily verifies that
R} = —a’n?, Ri=-24° (3.6)

is a special solution, which is in fact identical with (2.1) and (2.7). However, no other
polynomial solutions in terms of 5 can be found.
Thus we proceed further by introducing the variable g = R3. We find

n’g+b>g*g'"* =0, (3.7)

where b? = q2?/342. Another change of variable

g=n"1(&, &=y (3.8)
yields
42U+ BT3P =0, ()Y = gdg 3.9
Changing the variables from
p(@) = (%), (3.10)
to
u=p+i1 (3.11)

we arrive at an Abel second-order nonlinear differential equation (Kamke (1977))

d

[u+e@]u’ = L +Ai@Du+fo(), () = R (3.12)

Analytic solutions to such an equation can be readily obtained only if there exist certain
very special relationships between the functions

fo@D =3t fil=~-3, f@®=-b%" gr)=-}r (3.13)

Our equation (3.12) does not satisfy these relationships.
However, we can perform another set of transformations in hope of finding the explicit
solution. From

y(©) = (u—31E, E =exp(—[fidr) (3.14)
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we obtain
yy' = (—2—c**?) exp (c*/4) exp (41/3)y — (3c*/4)7"? exp (c}[2) exp (87/3)  (3.15)

where ¢? = g%/ A.
Unfortunately the integral

F@) = [ hydr,  hy() = (=2—c*0*?) exp (c*/4) exp (42/3) (3.16)

cannot be evaluated in closed form so that the method described by Kamke (p. 27) does
not apply.
Another reduction of (3.12) can be obtained by

=5 T = ~1— , (3.17)
()

and we arrive at an Abel first-order differential equation

¥ = A @y + A, @y + A,(D)y, (3.18)
where

A,(1) = (3c*/4)t"" exp (c*[2+81/3) (3.19)
Ay(1) = 2+ c2*?) exp (¢?/4 +47/3) (3.20)
A (1) = (j3)'3. (3.21)

This equation is very similar to that considered by Shikin (1967) and Jacobs (1969)
for the radiation-magnetic case for the Bianchi type-I model with y = 4/3. As pointed
out by Jacobs, “it is this equation which presently frustrates our efforts to obtain the
analytic solution”. Applying the method given by Jacobs (due to Camppolattaro) we
obtain the following transcendental solution of (3.18). Eq. (3.18) is rewritten in the form

V' = Asyly—B,(0)] [y —B,(x)], (3.22)

where B, and B, are defined as the roots of the equation

B2+ (A,/A3)B+(A,/43) = 0 (3.23)
with
AyJAs = (4c?3) [2+P* 773 exp (— c?f2—41/3) (3.24)
A,JA; = 4exp (—c?2)r 2 (3.25)
A partial fraction expansion
.t _Fm, 66 HEO (3.26)

yy-B)(y-B,) vy y—B, y-B,
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leads to the relations
F = 1/(B;B;), G = (2B,+B,)/(BB,(B,—B,)), (3.27
H = —(2B,+B,)/(B,B;). (3.28)
By defining
J(yv, 1) = F(t)In y+G(t) In(y~B)+ H(t) In (y — B,) = K = const,, (3.29)
we obtain the expression

FIny+G'In(y—B)+H'In(y—B,;)~GBi/(y—B,)~HB3/(y—B,)+A4; =0, (3.30)

where () = ;Z- Multiplying (3.30) by H and (3.29) by H’, subtracting, and exponating
yields the transcendental solution
yHETEO(y — B) ST Hexp [ — HGB, /(y —B,) ~ H’B3/(y — B,)]
= exp(—HA;—-KH'). (3.31)
Our solution would be immediately completed by the equation
R? = 347713y (3.32)

which can be derived from (3.2) in the same manner.
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