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REMARKS ON THE KROLIKOWSKI-RZEWUSKI EQUATION
FOR A DISTINGUISHED COMPONENT OF A STATE VECTOR
AND ASYMPTOTIC PROPERTIES OF ITS SOLUTIONS
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We generalize the Krolikowski-Rzewuski equation for a distinguished component
of the state vector and give the new formulae for a quasipotential and inhomogeneity
occurring there. We also study the strong limit (when time goes to infinity) of the quantum
evolution operator occurring in this equation. A connection of this limit with the ergodic
theorem on the time average is proved.

PACS numbers: 11.10.Qr, 11.10.St

1. Introduction

In quite many physical problems information on how the states of a quantum system
evolve in time ¢ should be supplemented by the asymptotic form of its state vector when
t —> o0 [1-8]. One can calculate the time evolution of the physical system if the Hamilton-
ian H and the initial state jy, 5> a lp> of the system at ¢t = ¢, are known.

Frequently we are interested in some particular properties of the system only, in these
which are described by the components of the state vector from a closed subspace #| of
a Hilbert space # [4-8]. The knowledge of the limit, when ¢ — oo, of these components
is often useful. The time evolution of the component of a state vector is described by the
Krélikowski-Rzewuski equation for the distinguished component of a state vector [5],
by the so-called master equations [4, 6-8] and so on.

The aim of this paper is twofold: first (Section 2), we generalize the Krolikowski-
-Rzewuski equation [5] so that the generalized equation could simply describe transitions
between any two different subspaces of a Hilbert space and using the Laplace transform
formalism we give the new formulae for the quasipotential and inhomogeneity occurring
there. Next (Section 3), the Laplace transforms method is used as a basis for a general
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discussion of a limit (when ¢ — o) of the evolution operator acting in a proper subspace
A of a state space 5. We show that there is a connection of this limit with von Neuman’s
theorem on the time average.

2. Some generalization of the Krolikowski-Rzewuski equation for the distinguished component
of a state vector

Let us consider a physical system described by the Hamiltonian H. We assume that
H is a selfadjoint and linear operator acting in a Hilbert space 5. The states of the investi-
gated system are represented by time dependent vectors |y; t> belonging to the space .
These states at the initial instant 7, of time — y; £, S lw> and at the later instant f are
Joined together by the evolution operator U(t, t,), which belongs to the one-parameter
family of operators {U(t, #0)} 5+,

lps 5 = U, to)ly; to) 6y
Utt, to)lw). (1)

The operators U(t, t,) are defined by the equation

II&

0 .
i U, to) ly) = HU(t, to) [y) (2

U(ty, tp) = 1 is the unit operator in .
This means that the one-parameter family of operators U(s, o) € {U(t, 10)}5eo s fOr
t > 1, the abelian unitary semigroup, and

U(t, to) [yp) = e 78|y (3

$O
Ut to) [y = Ut—1o) |). @

Using relation (1) one can write the component of the state vector we are interested
in in the following way

daf
Ply;t) = PU(t, to) ly> e Po# = H#, %)
P = P? = P* is the projection operator in . (6)

Thus the pro;ector P divides the Hllbert space & into two orthogonal parts: 5 and
H O Jf" £ w 1. The projector Q & 1—P is associated with the orthogonal complement
to the subspace #

df
Q0 =1-P,

df df
QF = (A~P)H# = KOH | = #,. )
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Now let [y; 15> = |p) be an element of some closed subspace #; C # — so we
assume that our system at the initial instant 7, has the properties described by vectors
from #y, ie. let

lw> = Oly3, ®

where
O=m*=1". )

Using assumption (8), Eq. (2) can be converted into equations describing the behaviour
in time of PU(t, o) [y)> = PU(t, to)y)

(i 58; -PHP) PU(t, t)ly) = PHQQU(t, t)Ty), 10)
and
(iait -QHQ> QU(t, to)|yy = QHPPU(t, 1) |, 11)
where
PU(t,, to)II = PII, (12)
QU(to, to)IT = QII. (13)

From this it follows that

i(%PU(t, to)”lip)’ = PHIl|y), (14)

ithU(?, fo)m@’ = QHIIjy). (15)

Without loss of generality, we can limit our considerations to IT such that

PIl = P (16)

or
PIT = 0. an

So, let (16) hold, then we easily obtain the following properties:
P = (I1P)* = (IIP)* = PII (18)

and
o =1n0-P (19)

oI = (QIN* = (QIm)* (20)
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S0
QI =H#X OPH CQH = H#,.
On the other hand, if (17) takes place, then
QIl = 1I1.

The operators

a
Ty(1, 15) = PU(t, 1o)I1 = Tp(t—1to)

are not unitary and map the subspace #'y = I[I# onto subspace #'| = P

Tu(t, to):lw> € #p — Tn(t, 1) ly) € H.
Here (if (16) holds)
Ty(to, t)) = P = 14 — is the unit operator in 4,
or (if (17) holds)
Ty(to, tp) = 0.
In particular, if

i

[l
-y

then (for ¢t > 1)
df
Tl(t’ tO) = T(t’ tO) = T(t“to)
is a partial isometry

TH(t, to)T(2, to) = P(t, to),
where

df

P(t, to) = U™*(t, 10)PU(t, 10) = P2(t, tg) = P*(t, 1)

as well as T+(¢, t,)
T(t, t)TH(t, to) = P = T(to, to).
The operator T(¢, t,) maps the whole space of states #° onto #
T(t, to):ly> e # = T(t, to) ly) € ).
On the other hand, if
InnH=Pr

then

(=3

Tp(t, to)

T(t, to)P = PU(t, to)P L U (1, to) = Uy(t—1to).

(21)

(22

(23)

249

(25)

(26)

@27

(28)

(29)

(30)

3D

(32)

(33)

(34



489

The operator U(1, 7o) is not unitary
U1, 1)U (6 o) = PP(1, 1) P, (35)
Ujto, to) = P = 1,. (36)
It maps a subspace 5| = P# on itself
Uyt to):lyr e Hy Uy, 10) [y e Hy. 37

Let us note that formula (22) can also be written as follows:

Tult, to) = PU(t, t)PIT + PU(t, 15)Q1T (38)
af
= Uy(t, to)T+J(t, to)II, (39)
where
ar af
J( )T = Jy(t, 1) = PU(L, 15)QI = Jp(t—1t,) (40)
sO
J(tgs to) = Julty, ty) = 0. (41)

These relations are a consequence of (7) and (34).
From (38) it follows that if PIT = 0 (i.e. if (17) holds), then

Tn(t, to) = PU(L, 1)QII = J (1, to). (42)

In relation to states in #, the operator Jp(t, to) can be treated as an external “source”.
It maps subspace I1.# © P# (or Q¥ = #, —if I = 1) onto subspace # | = PAH

Ja(t, o) [yd> e 1A © P > Jy(t, to) ly) € H 43)

and, if we think in terms of particles, it describes a regeneration or creation of objects,
whose state vectors belong to #; from the states (or particles) included in [15# & H -
Now, the solution of Eq. (11) with the initial conditions (13) and (15) has the form

QU(t, to)T1y) = e “TMeOMT |y} + Gy x QHPT(t, 10) 9> (44)
where the operator product Gy * QHPTy(t, t,) is defined as the convolution
S gt 10) £ [ f(1—0)g(0)do (45)
to
and Gy(1) is the retarded operator solution of the equation
. é
i~ —QHQ ) Go(t) = Q5()

Gy(t <0) =0 (46)
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that is
Go(t) = —il(ne "eMeQ, 47)

So, from Eq. (10) it follows that the time evolution of the distinguished component
Ply;t) = Ty(t, o) 1> (5) of the state vector |y;r) is determined, for ¢ > t,, by the
equation

0
(i 5 —PHP) Tu(t, to) 19> = xn(t, to) |v>

—i [ K(t—0)Ty(o) 1yddo (48)
to
with the initial conditions (25) or (26).
Here
af .
xn(ts to) = PHQe 7% = y(1—1,), (49)
df .
K(t) = 0(t)PHQe ""2QHP. (50)

This inhomogeneous equation is closely connected with the Krélikowski~Rzewuski equation
for the distinguished component of a state vector [5]. To obtain the Krélikowski-Rzewuski
equation one must put /7 = 1 in Eq. (48).

For IT = P we obtain the so-called homogeneous equation corresponding to (48), i.e.

oo

a
<ia_t —PHP) Uyt to) [ypd = —i f K(t—0)U (o) ly)do (51)
= —iK* Uyt to) |y (51)
U (tos to) = P. (52)

If Uy '(t, 1o) exists, then Eq. (51) can be rewritten as

B
{i = —PHP—[—iK* Uy, 11U} (1, to)} Uyt to) Iy = 0. (33)

So, if U lTl(t, Io) exists, then we can replace the integro-differential equation by the equiv-
alent differential one with a time-dependent “quasipotential”

AN £ —i[K = Uy(t, 1)JU (2, 1o). (54)

One can obtain a more convenient form-of this quasipotential in the Laplace transform
language [11]. We introduce the Laplace transform as.follows [13]

LU 1) = Fzv) = | fedt, (55)

Rez>a >0
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and the inverse transform according to

o+iw

f(t)=——1—_ J f(z, v)e'dz. (56)
2ni .

Thus, taking the Laplace transform of Eq. (51) and then calculating lj”(z, f,) we can
write formula (54) as

Vit to) = — i{”]"tw K(z,0) (z+iPHP+K(z, 0)" ")Pe** "9z}
o+im
x{ | (z+iPHP+K(z,0))"'Pe“™dz} ™! = V(1 —1,), 57)
where
R(z,0) = K(z,©)|,-o = PHQ(z+iQHQ) 'QHP, (58)
and

(z+iPHP+K(z,0)) ' Pe™™° = iPR(iz, H)Pe™™ = PU(z, to)P = U|(z, 1)  (59)
R(s, H) ¥ (s— H)"" is the resolvent of the Hamiltonian H. (60)

Let us note that an operator Uy(t,¢,) being a solution of Eq. (51) also fulfils
the following equation:

0
{i a —‘H"(t, to)} U[[(t’ to) ly> =0, (61)
U, (tos to) = P,
where
a [0 1
Hy(t, to) =i Py Uyt t0) [ Uy (1 to)- (62)
And now, taking into account (2), (6), (7) and (34) we can write that
H(t,t,) = PHP+PHQQU(t—t)P[PU(1—1,)P] ! (63)
that is
oc+ion

Vi(t—to) = PHQ{ | QR(iz, H)Pe"*™""dz}

o+io
x{ | PR(iz, H)Pe"*""9dz} . (65)

e—iw
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In the case, when
0 ,
P Uyt 10), Uy(t,i0) | =0 (66)
we have
, 0
Hu(f, tO) = 5‘; In Uﬂ(t, t())' (67)

There are cases when (66) takes place, e.g. when | is one-dimensional [9], in the Lee
model [10] and so on.

We can express the solutions Ty(t, tp) of the inhomogeneous equation (48) by the
solutions U (1, t,) of the homogeneous one (51). According to a general theory of differen-
tial equations [17] for a solution Ty(t, t,) of Eq. (48) we obtain

Tp(t, to) = Uy(t, to) T+ Uy * xu(t, to). (68)
Comparing (68) with expressions (39) and (40) we see that
Jn(t, 10) = PU(L, 1)QIT = Uy * yn(t, to). (69)

Formula (68) enables us to rewrite the inhomogeneous integro-differential Eq. (48)
as a differential one. This has already been done for the homogeneous equation (51) —
see (53), (54) and (61), (62). The homogeneous integro-differential equation (51) corresponds
to the inhomogeneous one (48). Thus the differential equation (61) equivalent to Eq. (51)
must also correspond to Eq. (48). So, the differential equation obtained instead of the
integro-differential (48) should contain the homogeneous differentiali one (61) with the
effective Hamiltonian H (¢, t,) (62), (64) and, additionally, some timedependent inhomo-
geneity, which we will denote as j(7, #,). In other words, the inhomogeneous differential
equation for T(t, t,) should have the following form

a
{i & —H(t, 1‘0)} Tu(t, to) ly) = Jn(t, to) ly). (70

(Here the initial conditions should be the same as for Eq. (48)). Now, putting the expression
(68) for Tyy(1, 1,) into Eq. (70), and taking into account that U (s, 1,) fulfils (61), one obtains
that

]
in(t, to) = {i Py —H\(t, to)} Ju(t, ) ()

where Jp(t, t,) — see (69), and in terms of the Laplace transforms
o+im

1 .
Ju(t, t(,)sig f (z+iPHP+K(z,0))"*

—100
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x PHQ(z+iQHQ) ™ 'QIIe* "4z (712)
ot+ic
1
= J PR(iz, H)QITe*" 719z (73)
v/

and for the definition of H\(, ;) see (62), (64), (56); for K(z, 0) see (58).

It is easy to verify that Eqs. (48) and (70) are equivalent if an inverse to the operator
U\ (1, to) exists, because then the operator H (t, o) exXists.

Formulae (57) and (72) can be treated as a starting point for the approximate calcula-
tions of a quasipotential ¥ (¢, ¢,) and inhomogeneity ju(t, f,) by different methods
(depending on particular needs). Formulae (23), (34), (38), (55) will be useful for the calcula-
tions of the asymptotic form of Ty(s, t,) and so on.

3. The ergodic properties of the Krélikowski~Rzewuski equation

In this Section we shall investigate the limits lim |y; > and lim P|y; t> (weak or

t— oo t— oo
strong — if they exist), strictly speaking, we shall study the limits (weak or strong)
lim U(1, t,) and lim PU(z, to)IT = lim Tp(1, t,). If they exist, they can be calculated precisely

t— w0 =0 t—a

by means of the Laplace transform formalism (i.e. by the use of the so-called Abel limit
technique [16]). Namely, as is well known, if for a function of the parameter ¢—f{(¢) the
lim f(¢) and the Laplace transform f(z, 7,) (2.55) exist, then [13, 16]

t=>w

lim f(¢) = lim  zf(z, ty) )

n
larg z| < 5 e

where 0 < ¢ is an arbitrarily small parameter.
In our case (see (2.2), (2.3), (2.55), (2.60))

U(z, to) = i(iz—H) ‘e ™™ = iR(iz, H)e ™ Q)
and (see (2.23), (2.48), (2.55))
Tu(z, to) = PU(z, t)ll = iP{iz—H) 'IIe™™*°
= iPR(iz, H)Ile ™ = PU(z, t,)[Te” ™. (3)
Let us define the set of states
H(H) = {lg e #: Hig) = 0}, “

The set A'(H) is the kernel of the operator H. It is a closed subspace of .
Let B be the projector on 4 (H)

A(H) L B# and B= B*= B" (5)
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The subspace A"(H) contains the null vector 0 and (possibly) other vectors |@) # 0,
which have a simple physical interpretation — they are the vacuum states. (The vacuum
may be degenerate.)

Now, because H is selfadjoint, there exists a spectral measure E(4) such that [12, 16]

CHylny = | Ad<EQypin), ©

(where A is a real and |y) € 2(H)), and for each |yp) e #
120(z, to) 1911 = lizR(iz, H)e ™|}

o«©

Iziz —2(Re z)t w2
- j U gma®esrog 152y 19> i, )

liz+2j?
ie.
im  {zU(z, to) [ |2
z—0

n
argz| < 5 -¢
farg 2| < 3

!Z‘z —2(R ) 2
c2rodiE(A i“. 8
z_’o f IlZ+/1|2 IEC) 1> ii ®
Jarg z] <— - %
‘We have the restrictions
larg z| < 12[— —é. 9
So, if
af
z=Rez+ilmz = a+ib (10)
then
b
—| = |tgarg z| ltg a] < oo, (11)
a
and
1z}2 _ a’+b?

<l+tgfa < C (12)

liz+ 4>~ a2+(b+A)?

(here C = const < [+ctg? &).
One can see that

izl 0if 4 # 0
i e-zmcﬂwg{ w4 (13)

220 liz+4}? 1ifA=20

"
|arg z| < 5 ¢
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Now

(a) let jy) e # © A (H) then from (12), (13) and (7) we conclude (by Lebesque theorem
on dominated convergence) that

lim  |zU(z, to) [p)l = O. (14)

z—0

n
larg z] < 5 ¢

(b) let |p)> e A (H), then

1
(iz—H) '|y) = - ¥ (15)

In this way, we have found that for all |y) e #'(H)
lim  |iz(iz—H) e |yp) —|p)i| = 0. (16)
z=0

n
largz| < - —¢

Collecting the results (a), (b) we can write

s—lim  zU(z,t5) = s—lim  izR(iz, H)e ™ = B. an
z—+0 z—0
larg zj < % - larg z} < —;‘ -
Hence (see (3))
. . o~
s— lim zPU{(z, ty)lT = s—  lim zTy(z, ty) = PBII. (18)
z-’On z~>()’t
|argz|<—2- -z |argz|<—2—--a

One can easily prove that s—lim zU(z, t,) is a projector. Indeed, from the first resolvent
z0

equation (i.e. the Hilbert equation) {12, 16] we have that (see (2))

sze® 0 (s, 1)Uz, 1o) |9

= L 26z, ty) lpd— —— se™(s, to) 9. (19)
§—2 S—Zz

So, taking the limit z = 0 (if larg z| < —72-r~ —s) we obtain (see (17)):

se™*U(s, 1) Bly) = Blyp). (20)
From this and (17) it follows that
lim  esU(s, t)Bly) = Bly) ¢1))

s=0

l "
arg s| < — —¢
g5|<
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i.e. that for all jy) e #
B%|y> = Biy). (22)

Using the identity (17) and the property (1) one can notice that for the unitary quantum
evolution operator U(t, t,) the strong limit s—lim U(s, t,) does not exist, except for the

t—= a0
trivial case when A (H) = #. Indeed, let U, & s—lim U(t, t,) exist. This is possible
o

if and only if ULU,, = 1 and contradicts formulae (17) and (1), because B*B # 1 if
N(H) # #, ie. if H+# 0. From this and (2.7) it follows that if s—1im PU(, 1)

= s—lim T(s, t,) exists then the s—Ilim QU(t, t,) cannot exist and so on. o
Stotwthere do not exist the siﬁm U(t, t,) in # (though for each |y)e A (H),
lim |U(t, to) |9 —Bly>ll =0 and ;:0311;)) = |p)), nevertheless the weak limit
;;flim U(t, to) and for P < 1 the limit s—lim Tz, 1,) may exist in #.
=00 t-®

Using the ergodic theorem on the time average (von Neuman’s) [14, 15]

t

J‘ U(o, ty)de = B (23)

to

s—lim
t— oo t"‘to

and the formulae (1), (17) it is easy to deduce that if the weak limit w—1lim U(t, ¢,) exists
00
then it must be equal to the weak limit (when ¢ — o0) of the time average of the operator
U@, ty), ie. if w—lim U{, ¢;) exists, then
t—=

t

1
w—lim U(t,t,) = w—lim —— J‘ U(o, ty)do = B (24)
t= 0 t—oo E— I
fo

or otherwise if w—lim |y; ¢) exists, then

famd- ]

. 1
w—lim |y; ) = w-lim
tooo oo I—1p

jlw; oydo = Bly). (24"

t

Let us remark that relation (23) follows from the property (1) also — introducing
t—tg
an auxiliary quantity h(t, t,) u | Uo, to)ds, calculating the Laplace transform
0

Ll —1) h(t, 1)l (z, to) and taking the s—1lim z2L[(r—1,) h(s, 1,)] (2, t,) one obtains
z—=0
the same result as in the formula (17).
Formulae (1), (18) imply for P < 1 that if the strong (or weak) limit lim Ty(2, )
o

exists then it is equal to the strong (or weak) limit (when ¢ — o) of the time average of
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the operator Ty(t, t) = PU(t, to)IT (2.23), (2.48), i.e. if (in the strong or weak sense)
Him T2, ty) = lim PU(, to)IT exists, then

12w >0

1
hm Tn(t, to) == hm ——— TH(O', to)dO‘ = PBII (25)
t- t—w L1

fo

(in the strong or weak topology in 4 respectively), and analogously to (24') for the vector
Ply; t> (see (2.4), (2.5), (2.24)).

Conditions of the existence of these limits, some consequences and applications of the
relationship found above will be discussed in future.
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