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LINEAR POTENTIAL AND SPONTANEOUS BREAKDOWN OF
CHIRAL SYMMETRY*
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After a brief pedagogical reminder of the standard ideas about spontaneous chiral
symmetry breaking, we show, after Nambu, how the ideas of B.C.S. theory of superconductiv-
ity can be applied to explain dynamically spontaneous chiral symmetry breaking. More
specifically, the Bogoliubov-Valatin variational method is applied to a model of massless
quarks interacting via a chiral invariant attractive color linear potential. It is shown analyti-
cally that due to the quark’s negative self energy, chiral symmetry is spontaneously broken
in this model for any value of the parameters.

PACS numbers: 12.40.-y

This paper describes a work which has been done in collaboration with A. Amer,
A. Le Yaouanc, L. Oliver and J.-C. Raynal [1]. The pion’s mass is very low compared
to standard hadronic masses. The pion field has the same quantum numbers as the diver-
gence of the isovector axial current. These two facts led physicists to elaborate more than
twenty years ago the ideas of PCAC (Partial Conservation of Axial Current) and of SCSB
(Spontaneous Chiral Symmetry Breaking). Since a good part of the audience was apparently
extremely young at those times, it might not be completely useless to give a crude reminder
of these ideas.

One assumes that the following description is a good approximation of the physical
world: The Lagrangian of the strong interactions, whatever it may be, is invariant for
the group SU(2) x SU(2) of chiral transformations, and the pion is the massless “Goldstone
boson” for this broken dynamical symmetry.

The notion of “Goldstone boson’” comes from Goldstone’s theorem. The latter theorem
states that if the Hamiltonian of a physical system is invariant for some continuous sym-
metry, then, either the ground state is invariant for that symmetry implying that all the
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transforms of a given physical state by that symmetry group are degenerate in mass, or the
ground state is not invariant, implying the existence of a given number of massless bosons.
The latter case is known as *‘spontaneous breaking of the symmetry” because the spectrum
is not symmetrical although the Lagrangian remains totally symmetrical. Specifically, if the
symmetry group is the SU(2) x SU(2) — chiral group, generated by the three isovector
charges Oy, O and the three isovector axial charges 0;, QS;, and if the vacuum is invariant
only for the three isovector charges, then Goldstone’s theorem implies the existence of
an isotriplet of massless pseudoscalar bosons, or so to say three “massless pions”. Exactly
what we need. On the contrary, if the above mentioned chiral symmetry was not sponta-
neously broken, it would imply the existence of J” = 1/2- baryons degenerate in mass
with the nucleons. This is far from reality.

This idea has been more precisely stated by the PCAC hypothesis which includes
some account of explicit non spontaneous breaking of chiral symmetry since it considers
a small non-zero mass of the pion. From PCAC many ““soft pions” theorems were deduced,
all compatible with experiment but a small discrepancy (less than 159 of error). These
successes are so striking that the validity of this scheme is now well established.

Massless quarks and chiral symmetry

In science, any answer raises new questions, namely: why is the Lagrangian of strong
interactions chiral invariant ? And why is that symmetry spontaneously broken ? The answer
to the first question is rather simple because chiral symmetry is not a far-fetched property
once we admit that fermions are basic constituents of matter. Indeed, a sufficient condition
to have chiral invariance is the following. A Lagrangian of, say, n, massless fermions which
are coupled to other fields only via SU(n)-singlet vector or axial currents, is invariant
for the U(n;) x U(ny) chiral group defined by the following transformations:

N i1
p— ellkakw, Y- P kBk'YSw’

w_)eidow, w__}eiﬂonw’
where 4, are the (nf — 1) Gell-Mann matrices of SU(x;) and «;, f; are real parameters. y are
quark fields and ys is the Dirac matrix.

As a most important example, Quantum Chromodynamics (QCD) with #; massless
quarks is U(ng) x U(ny) chiral invariant. In particular, #, = 2 (u and d massless quarks)
implies the existence of a massless pion isovector. As a matter of fact, simple-minded
application of Goldstone’s theorem predicts an additional massless boson, an isosingiet
one. This is due to the fact that the group U(ny) x U(ny) is equal to U(1) x U(1) x SU(n,)
x SU(n;). The breaking of the additional U(1) axial symmetry induces the isosinglet
Goldstone boson. However, a very light isoscalar pseudoscalar meson does not exist in
nature! This paradox is known as the “U(1) problem™. It has been at least partly solved
in relation with what is known as the “triangle anomaly”. We shall here completely avoid

this delicate topic and treat, in fact, U(1) axial symmetry on the same footing as the
SU(n) one.
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A small explicit breaking of chiral symmetry, and hence a small pion mass is easily
introduced by small Lagrangian quark masses m, and m,. But since we are interested in
the mechanism of spontaneous symmetry breaking we shall totally neglect explicit breaking
and assume exactly massless quarks in the Hamiltonian.

Nambu’s model of dynamical symmetry breaking

Now we come to the main problem: given a chiral invariant Lagrangian, what causes
spontaneous breaking of the symmetry, and under what conditions does it happen? We
shall derive a formalism inspired by BCS theory of superconductivity and then solve
the problem in the case of linear potential. But before that, let us sketch what is usually
understood as “Dynamical Spontaneous Breaking of Chiral Symmetry”. These ideas are
mainly taken from the pioneering work of Nambu and Jona-Lasinio [2]. Let us consider
a Lagrangian of free massless fermions. The Lagrangian is obviously chiral symmetric.
Furthermore the ground state (the vacuum) is clearly chiral symmetric. It is simply defined
as the absence of any massless fermion or anti-fermion (we shall henceforth call these
fermions ‘“‘quarks™ although the scheme is more general):

b(p) 120> = dP(p) 126 = 0,

where b{? (d?) are annihilators of quarks (antiquarks) and [Q,) is the chiral invariant
vacuum,

Let us now switch on a weak attractive interaction between quarks and antiquarks.
The vacuum remains the chiral invariant one defined by the absence of massless quarks and
antiquarks. Let us then increase slowly the attraction. At some point the attraction becomes
strong enough to generate a bound state. But a bound state of massless particles has
a “‘negative energy”’. In plain words this means that the former vacuum is no more the
lowest energy state. The new vacuum is now, grossly speaking, filled up with quark-
-antiquark bound pairs. This is more precisely expressed by the fact that (0)y(0) has
a non zero vacuum expectation value:

<PO)¥(0)>o-

These bound pairs have the total spin zero. This means that the spins of the constituents,
projected along the direction of the momenta, are opposite, and the momenta being oppo-
site, the helicities are equal adding up to a total helicity + 1. For massless particles helicity
and chirality are equal. As a consequence the vacuum, filled with chirally charged states,
is not chiral invariant. This means spontaneous breaking of chiral symmetry. Let us now
look for a more rigorous and quantitative description of dynamical symmetry breaking
in a model where the interaction between quarks is given by an instantaneous po-
tential.
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The Bogolioubov-Valatin transformation and the gap equation

Let us assume a chiral invariant Hamiltonian

#y=Y, 9 R (—id- V)y(@)

[ + A - + 7 Za -
+1 z V(X-3) (1,0 *) % w(x)) (w 03 w(y)> : 1)

w are quark fields (a sum over n; quark fields may be understood), A* are color Gell-Mann
matrices and V(%) is a potential which we assume for simplicity to be spherically symmetri-
call. Chiral invariance is ensured by the fact that y+y is a chiral conserving current. One
might as well add interactions via y+ay (@ = y07) currents but currents with an odd number
of y-matrices between y* and y would not be chiral invariant. The goal is to find the vacuum,
that is to say the state in Hilbert space which minimizes the energy density. But Hilbert
space is a very complicated space in a field theory, even in a simplified field theory like
this one. The way out is to restrict ourselves to a manageable subspace of Hilbert space
large enough to give a decent approximation of reality. The most common technique is
of course perturbation, starting from the free quark Hamiltonian. But this is totally irrele-
vant in our case for the following reason: starting from a chiral invariant unperturbed
vacuum, no perturbation is able to generate a non chiral invariant one. We need then to
find some orbit in Hilbert space which goes, in some sense, beyond perturbation. This is
given by Bogoliubov-Valatin transformations.
Let us write the quark field at 7 = O:

L1 o . .
v(®) = —=p g [us”(R)DE (k) + ()™ (— k) Je™ ™, @)
n
is

where 49, v{% are free massless Dirac spinors. We may as well write the same field as

-

- 1 . - a2
¥(X) = 573 Z [us(R)by(k) +vy(k)dy (— k)]e* ™, (3
K

where u,, v, are now any Dirac spinors verifying the normalization conditions
ug (k) = of (k) = bs.
ug (Kyoyk) = vf (Kyu (k) = 0. 0]

ug and v, might be for instance free massive Dirac spinors, but we do not need to restrict
ourselves to solutions of Dirac equations. Once given u (k) and v k), equality of (2) and

! We use a discrete space for simplicity and the continuum limit is quite trivial. a is the lattice spacing
and »® the number of lattice points.
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(3) define b,, d, and hermitian conjugates as linear combinations of b, d'® and h.c.
These are the Bogoliubov-Valatin transformations. Let us consider the class of states
defined by

by(k) 1) = dy(k) 12> = 0. )

This is only an implicit definition of [2). One can happily get sure that [Q) exists by building
it up explicitly via a unitary transformation |Q2> = U|Q,). Please, take this result for
granted. Our task is now to minimize the energy density inside that class of states. Before
going further we must clarify how we understand the Hamiltonian s#,. We can take it as
a simple product of fields, or as

#, = N°(#)), (6)

where N° means normal order of the fields expressed in terms of the b, d® and h.c. In
literature one usually uses J#, [3, 4]. We postpone the discussion of 3, and #, to the
end, after gathering more information. We will now follow the calculation for the two
cases.

To calculate the energy density &, of #, in the state |Q) (5) we simply apply Wick’s
theorem to the fields b,, d; and h.c. The result is

v, = 3n; Y Tr [a - kA_(K)]
K
4 ng ST A (T
+ — EY V(k—k') Tr [A4(k)A _(K')], (N
v
o

where v = (an)® is the volume of space, V(E—-E’) the Fourier transform of V(x) and

AL(R) = Y ulu(R);  A-(R) = Yo Byof (k) = 1—A,(B). (8)
Note that the energy density only depends on the projectors A_(K) (or A+(ic')), independently
of the choice of a spin basis in the subspaces defined by A, and A_. We will therefore
simply parametrize the class of states (5) by the A_(k) with the condition that it remains
a projector (of rank 2): A% = A_.

Starting form 4, (6) gives the same equation for v&, as (7) with Ai(E) substituted by

APE) = A4(k)~ AD(K), (%2)
where AQ(k) are the free massless projectors
AQ k) = 5 (1+a - k). (9b)

&, and &, are functionals of the real matrix functions A4_(k) and our aim is to find the
function A-(k) which minimizes &,(&,). To simplify the problem we take for granted
that the rotational invariance as well as P, C, T are not spontaneously broken. We can then
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parametrize A_(E) as

L[, Ak, B(K) .
A_(k) = 2[1 0 D ° zz} (10)

with E(K) = [(4(R)?+(BE)?]'".
Comparing with the free massive projector

Y7, _m _ak
AME) = (1 B E)

the physical meaning of the real functions A(k) and B(k) appears clearly. A(K) is an effective
k-dependent “mass” and B(E) an effective renormalisation of the kinetic energy. Note
that 4 and B are defined by (10) only up to a multiplicative constant.

A necessary, but not sufficient condition for A_(k) to minimize &, is that &, is an
extremum:

56, = 3n; Z {5/1 (k)[ k+ 31— z f/(l?—z?)a—zA_(k"))]}

A g
= 3n, Tr {6 A~ (K)H(k)} = 0 @an
with
H(k’)=&-k’+:—v—z V(k—k)(1—24_(K") (12)

e
for any 6A4_ such that (A-+384-)* = (A_+64-) ie. to first order in 64—
ASA+8A4_A_ =dA_. 13)

Take a base where 4_ is diagonal by blocks. Then you see that (13) is equivalent to 54~
being antidiagonal. Equation (11), that is §&; = O for any antidiagonal 64— means that
H(E) must be diagonal. In other terms, independently of any basis, equations (11) and (13)
are equivalent to (12) and (14):

[A-(R), H(K)] = 0. (14)
Using (10) and (14) we get
H(k) = A(K)B+B(k)a - k, (15)
where the arbitrary constant in 4 and B has now been fixed. Equation (12) now reads
(k)
Ak) = —- % V(k—k 16a)
© z " \/Az(k)+B2(k) (
a4 . B(K')
B(k) = |kl+ — - % V(k—K) ———=— (k- k). (16b
®) = [Fl+ }Z C-B) e &0 )

g
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This is known as the “gap equation” in superconductivity. Had we started from #,,
a derivation along similar lines leads to the same equation (16a) but (16b) is now substitu-

ted by
w4 . B(K") . ,
B(k) = |kl— % Z V(k—k') {1— —*—:::-*——;-} (k- k). (17b)
3 "L VAE)+B(E)
2

What have we gained? We have expressed the extremum condition as a pair of coupled
non linear integral equations. Such equations are rather tough to solve, and after solving
them we must still get sure that we got a local minimum, and then wonder if it is the absolute
minimum. We better leave aside this ambitious program which is beyond our present reach,
and turn toward a simpler problem: gather some information on what happens in the
vicinity of the chiral invariant vacuum.

Instability equation

A solution of the gap equation breaks spontaneously chiral symmetry if A(k) # O.
In particular

3 . 6 —A(k
QPO 12 = = Z Tr (4-(DB) = 2 z E(,.E.)) : 18)

=Y =
k k

We now look for chiral invariant solutions of gap equation. From (16) we find trivially
(for %1)

4
0) T — i _ .1 T G LD
B(k) |kl+3v ZZV(k k) (k- &) (19)
":,
and from (17) (for #,)
Ak =0, BO%K) = K| (20)

Solution (20) corresponds to standard massless quarks. Solution (19) is more surprising.
What is the meaning of the second term in B(K)? Inspection shows that it corresponds
to a self-energy. One could also derive this term via first order perturbation. The normal
ordering of s, eliminates this self-energy term in (20) because it corresponds to a closed
loop with only one ¥(x) insertion. But if we start from J, this term cannot be avoided.
Indeed (20) is not even a solution of the gap equation if we start from ;.

Now the fact that (19) and (20) are solutions of gap equations does not prove that
these states are stable, they may be “metastable”. We indeed expect, for symmetry reasons,
that when the syminetry is spontaneously broken, the chiral invariant solution is a maximum
in some direction of Hilbert space. Hence we must now solve the problem of whether solu-
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tions (19) and (20) are local minima or not. The question whether a local minimum is also
an absolute one is difficult and out of our scope here. Let us give go A_(I_E) infinitesimal
variations 5/1_(1-5) around the solution A(_‘))(E) of (19) and (20). If, in some direction of
Hilbert space, the corresponding 626 is negative, then A®YK) is not a local minimum.
A9(K) is given by (9b) for solution (19) as well as.(20). Let us write 4_(k) as (10) with

A(k) e
— —— = 20(k finit 1,
) @(k) infinitesima
then
dA_(K) = pl)p+ ¢ (kya - k;

from (7) we get

526, =t Tr [+ k(A_(k)— A9(k))]

>
k

oy
=

4 ~ o> - —_ - - T
4 § V(k—&') Tr [A-(R) A+ (k) — AR ADE)].
v
T

Calling H®(K) the value of H(k) for solution (19), we have from (9a)

HO®) =5 Ft o
3v

g

with B'® given by (19).

3 -, -
526, = X 5 Tr [HOE)AD)]
1
7

and from (22) we get

56, = 6—;'-{2 2BOG) (o(0))?

x
-z Z Wk‘—k")w(l?)w(l?)}-
v
P

4 ~ = e -+, - ~
-1 E V(k—k)(1—249%FK")) = BO(k)a - k,

21y

22y

(23)

(24)

(25

(26)

Starting from #,, the energy density is zero for solution (20). Then 62¢, is simply given
by (7) with A, subsituted by 54, (which is the infinitesimal form of AD). This leads to
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(26) with BO(k) given by (20):

6 - - - = -
58, = {Z 2R (P — %}Z V(k-k’)¢(k)¢(k')}- @7
i P4

k

The question is now to find some real function (p(l—E) for which §2&, (6%&,) is negative.
Since (26) and (27) are homogeneous in ¢ we can multiply ¢ by a real number without
changing the sign of the expression, and we may thus restrict ourselves to normalized

functions:
1 2
> (p(k))* = L. (28)
%

This does not contradict the infinitesimal character of ¢ since we may multiply a solution
¢ by any infinitesimal real constant.

Looking for the minimum of the right hand side of (26) and (27) is nothing else than
applying the variational method to the search of the lowest eigenvalue of the hermitian
operators:

- - 4 .. .
H(k, k') = 2BO(I)dpi— W V(k—k') (29

or, after Fourier transforming f/,
H = 2B%k)—% V(%), (30)

B® being given by (19) or (20) according to the case. —4/3 is simply due to color. The
equation

ig = Hp (31)

is called “instability equation”. If it has no negative 4 solution, the chiral invariant state
is a local minimum (at least for the class of states (5)). If (31) has a negative eigenvalue,
there is spontaneous breaking of chiral symmetry. With BO(k) = 1| equation (31) has
already been derived via another method by Casher [3]. This equation is a Schrodinger
equation with the non relativistic kinetic energy replaced by an ultra-relativistic one.
Somehow it means that pairs may not get negative energy for the vacuum to remain stable.
But, be careful! In principle the spectrum of relativistic pairs is given by the Bethe—Salpeter
equation. By an happy surprise it simplifies here to a Schrodinger equation. When we start
from #,, B® is given by (19). Again we have a Schrodinger equation, but this time we must
add the self-energy term to the kinetic energy. Let us now discuss the specific example of
linear potential.

Linear potential

2
We start from equations (1) and (6) with ¥(¥) = — —‘z——r. We need a minus sign to
n

compensate the minus coming from color contraction and get an attractive potential.
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Now the Fourier transform of r is not well defined for k — 0 due to the infra-red singular
behaviour of . We therefore regularise it:

=lim— ————,
r=mos ” (32)
2 2
o - g e . 1 2 .,
Vk)y=——|d =1 Sy — — 0 .
() 8n f rirle ml—Ig 8 {kz(k2+m2) m (k)} (33)

We have taken the continuous limit @ — 0 and n — . To get continuous integrals we
simply have to replace @* Y by [ dx and (1/v) ¥ by | dk/(27)3. One can see from (33) that the

k
singularity at k* — 0 is “compensated” by a (k) singularity which multiplies an infinite
coefficient. We shall now apply test functions to (26) and (27). It is enough to find one

test function which gives a negative value to be sure that the chiral invariant vacuum is not
2

stable. Inspecting (27) it is clear that the operator H = 2k + %—r is positive definite
7

and will never give negative 6°€,. This result is of course more general: Iz is impossible
fo induce spontaneous breaking with a positive definite potential and normal ordered Hamilto-
nian #,. One may of course substract from V(x) a big enough positive constant. But this
seems quite unelegant and arbitrary. The model looks rather unphysical if different poten-
tials giving to same force between quarks should give completely different results concerning
the vacuum!

Happily enough #; does not suffer from such a disease: any arbitrary constant in
V(r) is cancelled by the opposite constant appearing in the self-energy. This is encouraging
and we now concentrate on equation (26). We first try the simplest test function:

@(k) = (4no)**exp (= ak?)2), G4
Using (33) we have
4 1 AT NU(L _T! x 3/2 (271:)3
S Teme f dkdi’ p()p(k )WV (k—k') = (;) 30 e
and
R o \3/? 4n
f dk2kg*(k) = (_> @n)’ — . (30
= a

It is rather lengthy but not too difficult to derive

lim | di’ ! _x Ehy= ¥ 37)
mf {@—z'ﬁ[@-zmmq G )}( )==7

whence

3na

4 dkdk'V(E~E") (k - K)p*(k) = - 3/22 2 4 38
3(—2&?] Vk—-k')( )‘P()——(;) (2n)° — (3%)
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and finally from (26) and (35)-(38)

on; (o \*'? 4 g° 4\]
80, = —|— )Pl — + 21— — ]},
! v (n) (2m) {oc2 + 305( n J 39
Since 1—4/n is negative 92&, becomes negative for
12nja < g*(4/n—1). (40)

As a conclusion, for any value of g* the smallest eigenvalue of H is negative and consequently
the chiral invariant vacuum is unstable.

Conclusion

What is the physical significance of this result? It is clear that a potential model is but
a crude approximation of QCD. Furthermore we neglected the 1/r- log r short distance
potential between quarks. Our aim was indeed not to take into account all the complexity
of QCD, but only to understand something about the relation between confinement and
SCSB. Therefore we simply used the confining part of the potential. And if we understood
something, this “something” is undoubtedly the crucial role of self-energy in SCSB.

Thus, a posteriori we prefer the choice of a non-normal ordered Hamiltonian J#, to the
normal ordered one 5#,. Is this choice theoretically groun'ded? If we knew how to derive
some approximate potential from QCD, there would be no ambiguity. But in 4 dimensions
of space and time we do not even know if a “‘potential” has any theoretical meaning. We
shall then rely on what is known: in 2 dimensions [5] QCD does lead to a Hamiltonian
closely similar to 2#,. Once more the non-normal ordered Hamiltonian seems to be favored!

It is worth noticing that at this stage of research, the results obtained by variational
techniques on potential models seem to agree with completely different techniques: Lattice
gauge theory. Namely it seems that in lattice gauge theory, whenever the coupling constant
is strong enough to generate confinement, it also generates SCSB, in agreement with our
present result. But the reciproc d is not true. As shown by Finger et al. [4], a non confining
potential with strong enough coupling constant may induce instability of the chiral
invariant vacuum. We shall end with the optimistic conclusion that these variational
techniques are not pure nonsense and that, due to their relative simplicity and to the wide
range of problems they may tackle, they deserve some attention.

The author would like to warmly thank and congratulate our Polish hosts who took
up the challenge of organizing this year the Zakopane school in spite of all what is happen-
ing, and who incredibly succeeded.
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