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The Kihler equation for differential forms is interpreted in flat space-time as describing
a system of two Dirac particles, one of which being infinitely heavy.

PACS numbers: 02.40.+m, 11.10.Qr

Recently, some interest was aroused among physicists around the equation introduced
in 1960 by the mathematician Erich Kahler [1]. It is an equation for differential forms (or
sets of antisymmetric tensor fields), following from a mathematical construction closely
reminding the famous Dirac squared-root procedure leading to the equation for bispinors.
The Kéhler equation was lately pointed out as a natural tool to describe the lattice fermions
[2, 3] and also as a possible basis to understand the phenomenon of fermionic generations
[3]. On the other hand, it was suggested that this equation might be more fundamental
than the Dirac equation when passing to the general relativity [4]. In this note we interpret
the Kihler equation in a more cenventional way as describing in flat space-time a system
of two Dirac particles, one of which is infinitely heavy.

In order to write down the Kahler equation in flat space-time let us consider
the inhomogeneous external differential form

4

Z 1

w = a(x)+ I; a,“__,up(x)dxu1 Ao A dx,‘p, (1)
p=1

where x = (x,) = (X, it) (u=1,2,3,4), dx, A dx,= —dx, A dx, a(x) is a scalar

field and a,,...,(x) (p = 1,2, 3, 4) are antisymmetric tensor fields. Representing the form
(1) by its components we can write

o = [a(x), a,,. ., (x) (p = 1,2,3,4)]. )
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Performing the differentiation of the form (1) we obtain

4

z : 1
dw = 0,a(x)dx,+ p! Ay (X)X, Adxy, A A dxy,

p=1

Z =1 p' Z( 1)"0 1"::",-“::“,,(")‘1"#", Al A dx,,,,p, 3)

perm.

where ¢, = 0/dx,, or in terms of components

dw = [ z (- l)naumaun. . (=123, 4)] . “)

Then making use of the operation d+ being Hermitian conjugate of d with respect to the
scalar product [3]

4
(g, W) = —ii—J‘d“x [a(x)b(x)+ Z pi' amm,‘p(x)bm"_,,p(x):l 5)
we get
O) = 0#1 m( )+ z( 1), ma#mz #p(x)dx A A xﬂp (6)

or in terms of components
—d"® = [0, () (p = 1,2,3,4),0]. ™
It follows from Egs. (4) and (7) that d2 = 0 = d+? and
(dd*+d*dyo = — Jo, (8)

where [J = 4 —(8/01)*. Hence, the operation D = d—d* is a square root of the d’Alam-
bertian,

D*w = o, )

playing, therefore, a similar role for differential forms as the Dirac operation y,0, for
bispinors. So the Kéahler equation [1]

(D+m)w =0 (10)
is a close analogue of the Dirac equation
@+t my =0, (11)
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where (y,) = (~ipa, B) and {7 v} = 26, (The Kahler equation in curved space-time
has also the form (10) [4]).
Moreover, defining the 4 x4 matrix

4
: : 1
“P(w) = a(X)+ ;)—' TS yﬂpam“'"l’(x) (12)
p=1
we can show [3] that
(0, +m)p'® = APl = 0. (13)

Thus the matrix 3 satisfies the Dirac equation with respect to its first index if the cor-
responding form o satisfies the Kihler equation, and vice versa. Since under Lorentz
transformations we have!

4
() = a'(x)+ Z ;}3 Vur = Pup@ureasn(X)s (14)
p=1
where
a'(x) = a(x), ay u,(x) = Ay, oo A, 8,0, (%) (15)
we can conclude that
P (x) = Sy I)ST!,  STIyS = A (16)

Then the Dirac-Kahler equation (13) is Lorentz covariant (for the Lorentz covariance
of Eq. (13) alone it would be sufficient to have v (x") = Syp'“X(x)). So both indices of
the matrix 9’ behave under Lorentz transformations as Dirac bispinor indices, though
the second index is kinematically passive in Eq. (13).

Looking at the Dirac—Kihler equation (13) alone, one may make attractive conjectures
that the second four-valued index of %), not being kinematically active; numerates some
fermionic internal states e.g. four fermionic generations [3]. However, if this equation
is derived from the Kahler equation (10) via the definition (12}, both indices of p® are
related to the usual space-time!. It suggests that '’ satisfying Eq. (13) describes in fact
a system of two Dirac particles, one of which being infinitely heavy and so kinematically
passive. Thus 9 is effectively a wave function of one Dirac particle, the only remnant
of the second Dirac particle being the second index at ¢“). It does not mean, however,
that the Kihler equation is logically worse than the Dirac equation in approximate descrip-
tion of the hydrogen atom. On the contrary, one must introduce the spinor index for the
proton if one wants to discuss hyperfine-structure effects in hydrogen.

At this point we should like to remark that if the Dirac equation

(a0, +my =0 a7

Vif ay,...,(x) are Lorentz tensor fields (and a(x) is 2 Lorentz scalar field).



536

for a 4 x 4 matrix y is based not on the Kahler equation but rather on the Clifford algebra
defined by the anticommutation relations

{?w ?v} = 25uv’ {?w ;Iv} =0, {;7;“ ;}v} = 25‘",, (18)

then the second index of y can describe some fermionic internal states e.g. four fermionic
generations [5]. This follows from the fact that relations (18) can be minimally represented
by (4 x 4) x (4 x 4) (or equivalently 16 x 16) matrices including the extended Dirac matrices
9. = 7.®1, where p, and 1 are the usual 4 x 4 Dirac matrices acting on the first and second
index of yp, respectively (when forming the direct product y,®1). Then 9,y = y,v.

It is interesting to write down the system of equations for components of the form
w, following from the Kiahler equation (10) or the Dirac-Kahler equation (13). So, introduc-
ing the notation

a=3S, a,=V, a € a

o Gy = T

uve uvee — —Euvgap’ (19)

we = EuveaAss
where £,,34 = i, we obtain via definition (1) or (12)
oV,+mS =0, 0o,T,,+0,5+mV, =0,
0 V=0,V +8,,050,A,+mT,, =0, 01, T,1+8,,5(0,P+mA,) = 0,
0,A,+mP = 0. 20

Here, x4 = it and d, = —id/0t. The tensor equations (20) imply the Klein-Gordon
equations with the mass m for any of the components S, v, T,,,, 4, and P. It follows from
the construction of D or y,0,.

Let us note that the Duffin-Kemmer-Petiau equation describing one spin-0 or spin-1
particle [6] can be written in the form

3 D 091+ myp@ = 0 (21)
implying via the definitions (12) and (19) the system of equations
mS =90, 4,T,+mV, =0,
0,V,~0,V,+mT,, =0, 8,P+mA, =0, 0J,A4,+mP =20 22)
which reduces to the Proca and Klein—Gordon equations, viz.
(O-m»)V, =0, 9,V,=0 (23)

and
(O —mZ)P = (. (24)

In Eq. (21) both Dirac indices of 3 are kinematically active. Notice that the familiar
Duffin~Kemmer-Petiau matrices f, are represented in Eq. (21) by

B, =30, ®1+1 @), (25)
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where yp; = ¢'y,c = —y" with 7, and 1 being the usual 4 x4 Dirac matrices. In fact,
Y= A®y)9™ = —(1@y)y', so that
B = 5 [V 0,9 (26)

The counterpart in form space of the Duffin-Kemmer-Petiau equation (21) involves,
beside d, the differentiation d defined by the formula

- 1
dw = d,adx, + Z dx,, A ... Adx, A = 0,a,, ., (X)dx, (27)
p=1 P
which leads to
d [0 (—WﬂZ( 1)% x)(p =123 4)] (28)
w = s T - et Qg XD = 1, 450,
(p—l)' " B Hrp
perm
and
—dto = [(=1)"10,a,,. () (p = 1,2,3,4),0]. (29)

Then d? = 0 = d+? and D?w = [Jw with D = d—d*. The antisymmetrized equation in
form space

[L(D=D)+m]w =0 (30)

implies the Duffin-Kemmer-Petiau equation (21), and vice versa, leading to the same
system of tensor equations {22).

In conclusion, our interpretation of the Kihler equation is that it describes a system
of two Dirac particles in the limiting case when one of these particles can be considered
as infinitely heavy. If it is so, the spatial coordinates x can be taken as relative coordinates
referring the Dirac particle of mass m to the other Dirac particle of mass M with M/m — oo
(m > 0). As long as M/m = oo there is no difference between these relative coordinates
and some non-relative coordinates since even in the interaction case the origine of an
inertial frame of reference can be located at the material point of mass M = oo (which
is then at rest in this frame). One can wonder, however, what may happen with this picture
if one supposes that the mass of a point particle cannot exceed some maximal value, say,
the Planck mass My ~ 10'® GeV/c2. Should in this case the Dirac—Kihler equation (13)
be simply replaced by the two-body Breit equation with the masses m < M — My, or,
rather, might something extraordinary happen?
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