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WOUNDED NUCLEONS IN a-« COLLISIONS
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Distribution of the number w of wounded nucleons and of number » of inelastic colli-
sions in @-a scattering at high energies is calculated using nuclear probability.calculus. Corre-
latiors between w and v are also studied. The results are compared with generalized optical
approximation.

PACS numbers: 13.85.Hd

1. Introduction

Collisions of o particles at high energy have recently been studied experimentally
at the CERN ISR [1, 2]. The general characteristics of particle production at low p, were
measured and interpreted in terms of some simple models. In particular a model of
“wounded nucleons” [3] (which is also the first approximation to the dual-parton model
{4]) proved rather successful [5]. This observation prompted us to consider again the
model of wounded nucleons in some detail. In the present paper the results of the calcula-
tions of various distributions of number (w) of wounded nucleons in a-a collisions are
presented. We also show distribution of the number of collisions (v) and several parameters
describing correlations between w and v and also between left- and right-hand hemisphere.
All these results were obtained using nuclear probability calculus. They are also compared
with quasi-optical approximation [6] which is known to work reasonably well for
total cross-sections [7].

In Section 2 and 3 we define probabilities of different scattering configurations and
develop formulae by which they can be calculated. The results of these calculations are
described in Section 4. They are compared with quasi-optical approximation in Section 5.
Our conclusions are listed in the last Section. The Appendices describe various algorithms
used in numerical estimates.

* Address: Instytut Fizyki UJ, Reymonta 4, 30-059 Krakoéw, Poland.
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2. Probabilities in a collision between two nuclei

In this paper we consider only inelastic nondiffractive collisions. The probability
for such a collision of two nuclei A and B, colliding at impact parameter b is

4 B = g e - pos pad
a(b) = [ T] d%s; T] d°5;Da(51, - 5)Ds(Sq, .. Sp)0(B5 5y, - 545 51, .- 55)  (2.1)
i=1 j=1

where 6(b; 3, ... S4; 51 ... 5g) is the probability of the collision for a fixed transverse
configuration of the nucleons inside the nuclei and

Dy(sys o 54) = [dzy ... dz04(Fys o Fa) (2.2)

where g, is the nuclear density and z, ... z, are the coordinates along the beam direction.
Assuming that the individual nucleon-nucleon collisions are independent of each
other we have

- —_

U(b; Sps oee Sg5 8y oo SB) =1- H H {1—'0',]} (23)

i=1j=1

where

is the probability of nucleon-nucleon inelastic collision at impact parameter b —§i+§j.
All these geometrical relations are illustrated in Fig. 1.
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%
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Fig. 1. Geometrical picture of nucleus-nucleus scattering

The physical interpretation of the expression (2.3) is well-known: o;; is the (uncondi-
tional) probability of a collision of the nucleon i from nucleus. A with the nucleon j from
nucleus B (irrespectively if other nucleons did or did not interact). Thus 1—o;; is the pro-

bability that these two nucleons do not interact with each other. Consequently, the product
A B

11 H (1—0)) is the probability that no interaction between any of the nucleons took
i=1 j=1

place.
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We are interested in this paper in finding probabilities for collisions of given groups
of nucleons from nucleus A with given groups of nucleons from nucleus B under the
condition that no other collision between the nucleons took place. Let us denote the
number of collisions in such a particular case by v. The required probability is then given
by a product of v factors o;; (indicating which pairs of nucleons interacted with each other)
and AB—v factors (1—g;;) (indicating which pairs of nucleons did not interact). For
illustration, let us consider two simple examples: probability that there is just one collision,
say nucleon 1 in A with nucleon 1 in B is given by

U(BQEi;:j)P— HH(I ;) (2.5
1“‘711

Similarly, probability that the nucleon I from A collided with two nucleons, say 1 and
2 from B and no other collision took place is

0'120'11
a(b; S.,SJ) (1 o) (-0 0_12) H(l 0ij)- (2.6)

It is not very difficult to verify that the sum of probabilities for all configurations
is correctly normalized to unity. This is seen by considering the identity

A B
1=11 II (1—0y+0;;) Q2.7)
A B
and observing that the right-hand side can be written as H I] 1—0;)+sum of all
i=1 j=1

products of ¢;; multiplied by corresponding (1 —o;;). We thus obtain

ob: )“I_HH“ o) = Z R

all confi-
gurations
A B
x .Hl Hl(l_"ij)- (2.8)
i=1j=

This expansion of the expression for the total cross-section may be contrasted with
the standard “multiple scattering expansion” [8] which is an expansion in terms of different
products ¢;;. The expansion (2.8) has two clear advantages: each term is positive and
each has the definite physical (probabilistic) meaning, as explained above.

It is convenient to represent graphically each term in the expansion (2.8). We used
the representation in which nucleons are represented by two series of points (one represent-
ing nucleus A and another nucleus B) and the factors o;; are represented by lines connecting
the points from one series with the points of the other series (missing lines represent the
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factors (1—o0;;)). For example, the two contributions (2.5) and (2.6) are represented as
A A

..........

............

Another way of denoting different terms is by 4 x B matrices with elements correspond-
ing to o;; equal to 1 and elements corresponding to (1—o;;) equal to 0.

The number of different configurations, or terms in expansion (2.8) is 2*%—1, a very
large number. Fortunately, the symmetry between different nucleons inside each of the
colliding nuclei implies that many different configurations give the same contribution to the

formula (2.1). For example | = | and \ give obviously the same result.
Therefore, in actual calculation it is essential to identify all non-equivalent configurations
(we shall call them graphs and denote them by G,) and to find how many times a given
graph enters in the expression (2.1) or (2.8) (this number will be called multiplicity K,

of the graph). Using this notation, the Eq. (2.8) can be rewritten as

6(5) = Z K,G, 29

where
G, = § [1d%: 11 a5,D.(5)Da(E,) [T oy TT (=04 (2.10)

We do not know solution of this problem for general A—B collision. However, we
found a solution for a particular case of -« scattering considered in this paper. The list
of the graphs and of their multiplicities are given in the Appendix 1.

3. Graphs in o-o collisions

Calculation of contributions of the different graphs from Eq. (2.8) to the total cross-
-section is in general a formidable task, requiring multidimensional (24 +2B) integration
of complicated expressions, For heavy nuclei, this does not seem to be feasible without
some drastic simplifications and approximations. However, the case of a-a scattering seems
to be still tractable (although rather complicated). This is due to the particularly simple
form of the nuclear density of He*, which can be very reasonably described by a Gaussian.
We have taken ’

- 1 ST+s3+s3+s5 Sy +5,+S3+S.
D({s;}) = R exp {- IM—?R"‘i“J} 5@ (144- 314 (3.1

where the last factor takes care of recoil corrections (assuring the straight line motion of
the transverse position s of the center-of-mass of the o particle).

Also the nucleon-nucleon interaction probability can be approximated by a Gaussian
form. We thus take

- o b*
o(b) = — exp{— -5 3.2)
nr r
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where ¢ = _fa(i;)dzb is the total nucleon-nucleon (nondiffractive) cross-section. With
these choices, all functions we consider are Gaussians and we can use the well-known
formulae for integration of two-dimensional Gaussian expressions.

The algorithm for calculating the integral

o 4 4
g = § Guj - T, DS HD((sH 1_[1 d’s; HleEj (3.3)

i= j=
with g;; and D({s;}) given by Egs. (3.2) and (3.3) is known and is summarized in Appendix 2.

The expansion of the graphs (2.8) into the integrals of the type (3.3) is straightforward,
but requires lengthy calculations. The description of the method of calculation and of the
results are presented in Appendix 3.

Using the formulae from Appendices 1-3 we calculated probabilities of all configura-
tions (graphs) entering the Eq. (2.8). These results were used in turn to calculate the distri-
butions of the number of collisions, of wounded nucleons and of wounded quarks. Also
some parameters describing correlation between these quantities were calculated. These
results are described in the next two sections.

4. Number of collisions and number of wounded nucleons
Using the parameters listed in Table I we obtained total a-o. non-diffractive cross
section equal to 220.8 mb.
Distribution of the number v of non-diffractive collisions in a-o scattering is shown
in Fig. 2. One sees that the distribution falls steadily with increasing v. The average value
and dispersion of the distribution are also given in Fig. 2.
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Fig. 2. Probability distribution of number of collisions. Dashed line: quasi-optical approximation
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Distribution of the number w of wounded nucleons is shown in Fig. 3 together with
the distribution of wounded nucleons in one of the a-particles. We see again that the mini-
mal number of wounded nucleons is most probable. It is interesting to note that the pro-
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Fig. 3. Probability distribution of total number of wounded nucleons (crosses) and of number of
wounded nucleons in one a-particle (solid line). Dashed line: quasi-optical approximation
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Fig. 4. Correlation between number of wounded nucleons and average number of collisions. Dashed lines:
quasi-optical approximation
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bability of w = 8, i.e. of all nucleons participating in the collision is not negligible (being
~.449) corresponding to the cross-section of about 1 mb. It seems thus quite possible
to obtain a large statistics of such events even with not very high intensity beams.
As the next problem we studied correlations between v and w. In Fig. 4 the average
number of collisions is plotted versus the number of wounded nucleons. One sees an almost
linear relation, with about 6.5 collisions on the average for w = 8. The dispersion of the
multiplicity distribution is also indicated in the Fig. 4. The relatively large values of the
dispersion show that the number of wounded nucleons is not very precise measure of the
number of collisions. This observation is further illustrated in Fig. S where the distribution
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Fig. 5. Probability distribution of number of collisions for events with 8 wounded nucleons
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Fig. 6. Correlation between number of wounded nucleons in one hemisphere and average number of
wounded nucleons in the other hemisphere
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of the number of collisions for w = 8 is plotted. The distribution is asymmetric, with
maximum at v = 6 and a substantial tail extending up to v ~ 10 and higher. This last
feature is interesting because it indicates that one may perhaps study experimentally events
with many collisions by appropriate cuts, i.e. on very high multiplicity.

Finally; we studied correlations between interactions in left-moving and right-moving
o particles. In Fig. 6 the average number wy of right-moving wounded nucleons is plotted
versus number wy of left-moving wounded nucleons. The observed relation is again close
to a linear one with small deviation at w; = 4. The dispersion of the distribution of wy is
also indicated in Fig. 6.

5. Comparison with quasi-optical approximation

As we have seen in the previous sections, explicit calculation of the probabilities
in a-o0 scattering is very complicated and a successful extension of this method to larger
nuclei seems unlikely. It is therefore interesting to compare our results with the so-called
quasi-optical approximation which is often used in estimates of the total cross-section
of heavy nuclei. :

In quasi-optical approximation, the total non-diffractive A— B cross-section is given
by the formula

oy = [ d*b{l—[1—a\%(b)]*®} : (5.1)
with
ohp = [ d®x,d*y DA(x)Da(y))ope(b—x,+y.) (5.2)
where
! A X
Da(x)) = GTORR xp{-— i "1%7}‘ (5.3)

—1
The substitution R? — -~~A—R2 in Eq. (5.3) takes into account recoil corrections.

The values of total cross-section for different set of parameters, obtained from Eq. (5.1)
is given in Table 1. One sees that they indeed are very close to those obtained by “‘exact”
calculation. Formula (5.1) gives the following probability distribution of number of colli-
sions

aABP(v)=J < ){a BB} {1—dha(b)Y*P (5.4)

i.e. all graphs G,(v) for a given v have the same value equal to

G(v) = | d*bo’\5(b) {1 —cNB(b)}* . (5.5)
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TABLE 1

Parameters of the calculations presented in this paper, and results for cross-section, average values and
dispersion s of quantities indicated. The bottom line corresponds to gquasi-optical approximation (see text)

a};“{) R r
26.5 mb | 137 f 094 1
_ . :
B I R o " D, D, D
220.8 mb 1.89 3.08 1.54 1.57 1.92 0.59
2249 mb 1.90 3.22 1.61 1.49 2.38 0.67

Thus we see that the approximation (5.1) does not distinguish between different configura-
tions for fixed v.

The probability distribution (5.4) is plotted in Fig. 2. One sees that this distribution
is narrower than the exact one and differs particularly from the exact one for v = 10.

Distribution of the number of wounded nucleons is shown in Fig. 3. It is seen that
the general trend is reproduced by the approximation. However, the significant structure
at w = 2 and 3 is not present in exact distribution. The distribution of number of wounded
nucleons in one of the a particles does not differ significantly from the exact one shown in
Fig. 3 and is not plotted.

The correlation between v and w is also affected as is seen from Fig. 4. This is illustrated
particularly by a quite dramatic difference in the distribution of number of collisions at
w = 8 shown in Fig. 5.

Finally, we observed that there is no significant difference in estimates of right-left
correlations.

We thus conclude that quasi-optical approximation gives reasonable results for
average quantities and the probabilities close to the maximum of the distribution. However,
1t cannot be used for estimates of the tails of the distribution i.e. for estimates of the
fluctuations very far off the average.

APPENDIX 1

Graphs in a-a scattering

The Figures 7a—7d show 111 graphs representing different configurations of collisions
in a-a scattering including collisions from 1 to 8. The multiplicities of the graphs are also
indicated in the Figures. The graphs with more than 8 collisions are obtained from those
with less than 8 collisions by adding all the missing lines and removing these which were
present. The corresponding multiplicities are identical. The multiplicity of the last graph
with 16 lines is equal to one.
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APPENDIX 2
Algorithm for evaluation of Gaussian integrals

The general form of integrals considered is

A B - - . =
F(by = | ] d’; H! d’s;DA({s:)Dp({s;))G({b —5;+5,}),
i=1 i=

where
- - -~ -
D({5;}) = ARZSP(Y. s)DA({s:})
i=1

with
A

. . 1
Dp({si}) = (n—sz? exp { - E SIZ/RK}
A

i=1

and corresponding formulae for DB({;}).

(A2.1)

(A2.2)

(A2.3)

We first show how to treat the factors nARZ‘*(Y s;) and nBR3I(Y. 5)) which take

into account the recoil corrections [8].
Introducing Fourier transform of F(b) by the formula

f(A) = | d*be™F(p),

using the expansions for & functions

- 1 .- = 1 2~
5(2) 5; ] = - deelk Es,-; 52 5;) = - 5 dZEelk Ly
(2m) (27)

and changing variables

-~ . kR? = = kR
s; = s +i- fi, i €+t-~—B,
2 2

(%]

b+ i(kRZ—kR2))2

el

we obtain from (A2.1) and (A2.4)

AR? BR2 R2 .
Sy = T8 = | dkexp — = (4K -2kd)
4r  4n 4

R -, e
J d*k exp { — 2 (BK*+2k4 )} j d*be " F(b),
where

Fb) = [ [1 % r_l 45, DAS DR (5 DGB —5i+5,)

(A2.4)

(A2.5)

(A2.6)

(A2.6)

(A2.7)

(A2.3)
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is the integral (A2.1) calculated without recoil corrections. This integral is much easier.
to perform, because the densities 13A and Dy factorize.
The integrals over d?k and d2k can be performed and the final answer is

. A4* (R: R T
PN G L TP 29)
L4\ 4 B

One special case is of importance. If we are interested only in total rates and not in
b-dependence we need only integral

fd*bF(b) = f(4 = 0). (A2.10)

As is easily seen from formula (A2.9), in this case the recoil corrections disappear. Thus,
for calculation of the total rates one can use the nuclear densities (A2.3) uncorrected for
the recoil effects.

The b-dependence can be easily determined if F(b) is a Gaussian

F(b) = F(0) exp (—b?/4?). (A2.11)

It follows from Egs. (A2.9) and (A2.4) that also f(4) and F(b) are Gaussians in this ca-e,
and they are readily calculated as

- 2 R2 2
f(4) = ni2F(0) exp{ - %[A’— —A'l - %’i]} (A2.12)
and
F(b) : ~bAf(A)d* 4 o F(0) ex b*
= e e S e e — T T T .
)= Gy 12_R%A-R%/B P17 72ZRIA-RYB

(A2.13)

From this last formula F(b) can be calculated, provided F(b) is a Gaussian. If F(b) is a super-
position of Gaussians (as is the case in our problem) formula (A2.13) must be applied to
each term separately.

Let us now turn to evaluation of F(b). In the case considered in this paper the function
G({g—gi-*-;j}) in the formula (A.28) can be written as a superposition of the products
of Gaussians. This expansion is discussed in the Appendix 3. We are thus led to considering
the integrals of the type

4 4 -
I(b) = [ 1 d%s; T] d%5;exp {—=w(sy, - 545 D)}, (A2.13)
=] J=1

4 4 4 4
- T S,-Z S‘? » o T,
w({si, 555 b}) = E e E 2t E E my(b—5;+5;) (A2.14)
i=1 ji=1 i=t  j=1

where
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with m;; = 0 or m;; = 1/r?. The matrix m;; defines the integral which is to be performed.

The result of the integration is [9]:
8

I(b) = exp {—b*[z—VTH™'V]}, A2.1
(b) Gorh TP [ 1 (A2.15)
where
4 4 4
Z=Y ¥ my V=3 my; for i=1,..,4
i=1j=1 ji=1
4
Vi= — Y my;_, for i=35..,8,
j=1
1 i 1 .
Hii= I/"+E2_ fOI‘ 1= 1,...,4, Hu= —l/i+1_z—i fOI‘ 1= 1,..., 8,

Hj;=G;=-m;_, for i=1,..,4 j=5..,8 =0 for other i <.
Thus the matrix H has a form

[H;; 0 ]

—m
0 H
H = 44 N
—,’;\1T V"...
L 0 Hgg ]
APPENDIX 3

Expansion of graphs into products of Gaussians

As we saw in Appendix 2, for evaluation of the graphs G,, from Eqgs (2.8) and (2.9),
it is essential to expand integrands into products of Gaussians. The calculation is then
reduced to evaluation of the integrals of the general form given by Eq. (A2.13). Such
expansion is quite straightforward and amounts to expressing the products of the type
[T(1—a;) into sum of the products of the type ] a;;.

We now observe that all different integrals

gn = § H dzsi H dzEjDA({Ei})DB({zj}) H Oij (A3.1)

can be labelled by the same diagrams which were used for labelling the graphs G,. Indeed,
g, differs from G, defined in Eq. (2.10) only by absence of factors [ [ (1—o;;) and thus the
labelling is unaffected.

Using this notation, we can write generally

Gm = Z (— 1)v,,.—v,.— 1Kmngn’ (A32)

where the coefficients K, indicate how many times a given graph g, enters into G,
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Since we have the algorithm for calculation of the graphs g,, the remaining problem
is to determine the coefficients K,,,. To do this we first observed that it is convenient to
introduce another set of parameters L,,, which give the number of ways in whicha given
graph G,, can be inserted into g,. It is then straightforward to see that

Kme = Z (_ l)vm—v"_ll‘mnKngm

Kmen = LmnKn'

The parameters L, can be calculated using the following algorithm

(a) we observe that for v,, > v, L,, = 0 and for v,, = v, L, = O

(b) For v,, = v,—1 L,,, were calculated directly from the definition.

(¢) For v,, < v,—1 L, were calculated by iteration,

There are two sum rules which are very useful in testing the result in order to eliminate
the mistakes during the calculation. They involve coefficients which connect graphs with

given numbers of lines:
Ly =
'mn vm >

(a) For every n
where the sum runs over all graphs with v,, lines

(b) for every m
AB—-v,
_S_ Ko = (AB-—v,,) ’

n
where the sum runs over all graphs with v, lines.

Note added in proof

We decided to add the full list of probabilities wyg = wyy of wounding L left-
-moving and R right-moving nucleons in «-a collisions.

Wii1 = .504 Wyia = .086 Wia = .012

Wig = .001 Waop = 135 Waz = 044
Wag = .006 Wiz = .039 Wig = .010
Waa = .004,
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