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LETTERS TO THE EDITOR

dy
AN APPROXIMATE SOLUTION TO THE EQUATION eXY;CY— = X-Y(Y+1)*

By R. E. MICKENS
Department of Physics, Atlanta University, Atlanta, Georgia 30314, USA
( Received March 14, 1983)

We extend the calculations of a previous paper to include the boundary layer behavior
of the solution to the equation XYY’ = X—Y(Y+1). An iteration technique is used to
calculate higher-order corrections to the solution.

PACS numbers: 02.90.+p

Equation (1) below arises in the study of stellar structure (Jeans 1925, Chandrasekhar
1958). In a recent paper (Mickens 1978), we obtained an exact regular perturbation solution
to the equation

1y
eXYidjy—=X—Y(Y+l), 0<s<l, X>0, 1)

to all orders in the parameter ¢. However, since Eq. (1) has boundary layer behavior near
X = 0, the solution given by Mickens (1978) is only the outer part of the solution to Eq. (1)
(Nayfeh 1981). The inner solution, which exhibits the boundary layer behavior, has to be
calculated using the techniques of singular perturbation theory. The purpose of this paper
is to calculate a uniformly valid first-order approximation to the solution of Eq. (1).
We then show that higher-order approximates to the sofution may be easily obtained by
use of an iteration scheme.
The curve defined by the equation

X-Y(Y+1) =0 @

is an attractor curve; by this, we mean the following: For ¢ small and starting from an
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initial point (X,, Y(X,, €)), the corresponding solution curve drops or rises rapidly to
a neighborhood of the curve given by equation (2) and stays near it for further increase
in X values. This behavior is shown in Fig. 1. (An excellent theoretical discussion of this
type of behavior for first-order differential equations is given in Elsgolts (1970).) The
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Fig. 1. Numerical solution of equation (1) for & values of (1, 0.1, 0.01); the initial X value is 0.75 and
Yo = Y(0.75, £)

initial, very rapid behavior of Y(X, €) is a consequence of Eq. (1) having a boundary layer
near X = (.

To proceed with the.calculation, recognition has to be made of the fact that two cases
have to be considered, namely, when Y(X,, €) > 0 and Y(X,, €) < 0. (This result is a con-
sequence of equation (1) not being defined when ¥ = 0.) A first-order approximate solu-
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tion to equation (1) can be written as follows (Carrier and Pearson 1968)
Y(Xpo8) >0:  Y(X,8) = —(1 4+ 1+4X)/2+£,(2), 3)
Y(Xo,6) < 0:  Y(X, &) = —(1—N1+4X)2+1:(2) “

where the first terms on the right-sides of equations (3) and (4) are the corresponding
lowest-order contributions to the outer solution (Mickens 1978), and the functions, f{(Z)
and f»(Z), are the corresponding lowest-order contributions to the inner solution.
Following the work of Carrier and Pearson (1968), the variable Z takes the form

Z=X% 6=26() )

where 8(¢) is, for the moment, an unknown function of the parameter . The differential
equations satisfied by f1(Z) and f,(Z) may be obtained by substituting Eqs.- (3) and (4)
into Eq. (1) and letting X — 0 at fixed Z. Doing this gives

B ur _
Z dZ - (1’1‘f1)’ 85(8) - 1’ (6)
df, N
z d]; = —fo &) = L. %)

These equations may be easily solved to give
fi = —1+4,/X7 ®
f2= Az/X”Es )

where 4, and A4, are arbitrary constants. Therefore, the first approximation to the solution
of Eq. (1) is

Y(Xo,8) > 0 Yy(X,8) = —(3—V1+4X)]24A4,/X ", (10)

Y(Xo,8) < 0 Yi(X,8) = —(1+VI+4X)/2+ A,/X . (11)

The following features of Egs. (10) and (11).should be pointed out:

(i) The second terms on the right-sides of Egs. (10) and (11) give rise to the boundary
layer. As ¢ decreases in value, the boundary layer behavior becomes more prominent.

(ii) The first terms on the right-sides of Egs. (10) and (11) give the “attractor” curves
to which the solution approaches for increase in X. For sufficiently small e and any given
set of initial conditions, (X,, Y(X,, €)), the solution curve is essentially identical with the
“attractor” curve except for a small interval of X values in the neighborhood of X,; see
Fig. 1.

Higher-order approximations to the solution of Eq. (1) may be gotten by using the
techniques of singular perturbation theory (Bender and Orszag, 1978). However, for the
particular equation studied in this paper, we have discovered an iteration procedure which
converges very fast. The iteration scheme is obtained by noting that Eq. (1) is a quadratic
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function of Y. If we solve for Y and denote the n-th iterate as Y,, then our iteration scheme
is defined as follows

Y(X, &) = —(2) {(1+eXY,_ )V (1L+eXY,_ )’ +4X} (12)

where the (+) or (=) sign is associated, respectively, with the solution which has the initial
condition Y(X,, €) greater than or less than zero and Y (X, ¢) is correspondingly taken
to be either Eq. (10) or (11). For example, for ¥(X,,¢) > 0, then

Yy(X, &) = —(2)+A2Z —eX2NT+4X +(2) {1 +4X +62X /(1 +4X)
+2eXN1+4X —2A4)Z + A*/Z% - 24eX|Z N1 +4X}17 (i3)
where Z = X'/, the initial conditions are (X,, Y(X, ¢))

ci-c,

T 2C(Cy-Cy-1)]

UXYE €y = eXo/N1+4X,,

Ay
I

144X o +62X2/(1+4X ) + 26X N 1+4X,,

0
~
i

Cy = 2Y(Xq, )+ 1 +eX oV 1+4X,.

Comparison of the solution given by the iteration scheme of Eq. (12) with the numerical
solution obtained by using an efficient ODE integrator shows that the iteration procedure
converges very fast; in fact

Y,

<

wYc

-5,

n

= 0(e") (14)

where Y, is the numerical solution and Y, is calculated using equations (10), (11) and (12).
Figuie 1 gives plots of Y,(X, &) for several sets of initial values: (0.75, 20.0) and (0.75,
—10.0).

In summary, we have presented a technique for obtaining approximate analytical
solutions to Eq. (1). The technique consists of using singular perturbation theory to calculate
a first-approximate to the solution; higher-order approximates are gotten by use of the
iteration scheme given in Eq. (12).
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