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0. Introduction

In General Relativity there is a striking dualism of space-time and matter. The structure
of space-time is governed by the field equations, physical properties of matter, on the other
hand, do not result from the model but enter the picture, via energy-momentum tensor,
from other departments of physics.

Mathematically, one proceeds in an analogous way to that adopted by Newton who
defined a dual geometrico-physical concept of a mass-point. In General Relativity one
defines particles as curves in space-time and associates with them physical quantities
such as density and pressure. To be precise, a particle of 1est-mass m is defined as a future
directed curve y: 7 — M in a space-time M, such that g (y4, 7+) = —m?*. The tangent y, is
the energy-momentum of the particle. Then, a particle flow of rest-mass m is defined to be
a pair (B, #) where 5 is a function 7: M — [0, o0) called world density, and P is the energy-
-momentum vector ficld P: M — T(M) such that each integral curve of P is a particle of

* Address for correspondence: Michal Heller, ul. Powstaiicow Warszawy 13/94, 33-110 Tarnow,
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rest-mass m. The energy-momentum tersor of a particle flow P,p)is T = nf’ ® P; and
pressure p, understood as a function on M, enters it through P (for a detailed formalism
consult [1]). Mc Crea [2] has noticed that since this matter characterizing function is
taken from outside of General Relativity, there are no a priori reasons -— within the
relativistic context — why p should be non-negative. The only way how p should be
interpreted is through effects it produces in a model. For example, p < 0 may be inter-
preted as a creation of matter.

From the mathematical point of view, equation of state also plays an important role
in General Relativity. As it is well known, Einstein’s field equations, together with Bianchi
identities, form an underdetermined system of equations. In order to render it fully inte-
grable one more equation must be added. Usually it is done by assuming an equation of
state. It turns out that Einstein’s equations completed by an equation of state satisfy certain
symmetries which form a group, called symmetry group of these equations (see {3} and
[4D.

It was Collins [5] who noticed that the above procedure can be reversed. One could
a priori assume a symmetry group for Einstein’s equations and out of it deduce the condi-
tion of integrability which has the form of the equation of state. In fact, Collins applied
this method to the case of classical and relativistic stars to obtain physically realistic equa-
tions of state [5, 6]. This illustrates — to use Collins’ expression — a subliminal role of
mathematics in physical considerations which consists in suggesting correct physics on
grounds of logical beauty (such as, for example, symmetry principles). Collins writes:
“In contrast to the incontestable logic of sublime mathematics, which in principle leads
relentlessly to a definite answer to a well-posed physical problem, mathematics can also
act by subtle suggestion, and at times this may even occur without our being aware of it.
This is the subliminal role of mathematics in physics” [5].

In the following we will pursue Collins’ way of thinking applying it to the field of
cosmology. In Section 1 we sketch the theory of symmetry groups of differential equations,
then we show that cosmological equations, together with a suitable equation of state
admit a certain Lie group of symmetries or, vice versa, the invariance of equations with
respect to a given symmetry group singles out a corresponding equation of state. In Sections
24 we show this for ordinary Friedman cosmological models, for Friedman models
with dissipation and for Bianchi type I models with dissipation, respectively. In Section 5 we
briefly comment upon the obtained results.

1. Symmetry group of a system of differential equations

Let us consider, in a Euclidean space E¥(x,u), x = (x!, ..., x"), u = (', ..., u"),
n+m = N, a system of differential equations

Pt =fx,u), a=(,..,m)), (1.1
., o
P =7
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and point-point transformations
X = X(x, u),
T: (1.2)
" = i(x, u),
which map each solution of system (1.1) into a solution of the same system. T is a Lie
group. (All these considerations may be easily generalized to the case when differential
equations are defined on a N-dimensional differential manifold; see, [4].)
Let M: u = u’(x) be a solution of (1.1). M defines a submanifold in EV; if M = T(M)
we have

X = X(x, u(x)),
M: (1.3)
= u'(x, u(x)).
. o’ " u” . ..
The derivatives p® = I and p* = e satisfy the condition
Ix X

p*DX = Dir®, (1.4)
¢ é . . .
where D = —— +p*-— . By solving (1.4) we obtain p* = p(x, u, p). By joining these
[eR cu N
solutions to transformations 7, one gets a new set of transformations T which is
called “extension of T to the first derivatives”.
If the infinitesimal operator of the group T has the form

e . 0
Slx, u) — +u(x, u) 5, (L.5)
0x Ju

X

then that of the group T is
12 Hv a 4
X = X+Dn"=p°'DS¢) .. (1.6)
ap
Functions & defined on E¥ (x, u, p), which are preserved under transformations T, are
called invariants of the group T'; they satisfy differential equations
X(&F)=0 (L.7)

and, vice versa, functions satisfying (1.7) are invariants of the group generated by X.
Now, we may apply equations (1.7) to our original equations (1.1) to obtain

X(p*—f"(x, u)) = 0. (1.8)
Putting (1.6) into (1.8) and taking into account p® = f*(x, u), we get

or o, v

Ox + Ou”f (7xf 6uﬂff
a a a -4

L L =, m) (1.9
ox ou
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Equations (1.9) give us the conditions of the existence of the operator X for system
(1.1). Algebra of these operators characterizes the symmetry group T of system (1.1).
In the following we shall consider autonomous dynamical systems for which ¢f%/éx = 0,
and infinitesimal transformations are generated by X = &(x)¢/0x+n*(1)é/ou”. In this case
equations (1.9) simplify to the form
LI

—F f” . (1.10)

du cu

2. Symmetry group of Friedman equations

As it is well known, the Friedman equations may be written in the form of an autono-
mous dynamical system on the plane (H, ¢), where H is the Hubble parameter and ¢ is the
energy density [7, 8]

. A
H=~H*-1(+3p)+ 3 = fi(e, H),

¢ = —5H(s+ p) = fyle, H). 2.1)

All symbols have their usual meaning. This set of equations will be called Friedman’s
dynamical system. If we assume that the operator of the infinitesimal transformation for
system (2.1) is of the form

;o 1 6 2.4 © .
X=CO5 +nH) i +n°(e) -, (2.2)
ct ¢H o€
then equations (1.10) may be reduced to

a1

on oé i
I, (H)— N () = X{nf)),

= X(Inf). (2.3)

By assuming, in (2.1), the equation of state p = ye, y = const, solving equations (2.3),
and applying the theory presented in the previous section, one obtains the following

Theorem 1: Friedman’'s dynamical system (2.1) with p = ye, y = const, admits
a Lie group with the infinitesimal operator X = — At0/0t+ AHO/OH +2A(e+ A)0/Ce;
and, vice versa, from the invariance of system (2.1) with respect to the operator X it follows
the equations of state p = ye+pg, po ~ 4. The equation of the group invariant is that of
the flat model trajectory e —3H2?+ A = 0. Finite transformations of the group are: H = He",
e+ A = (e+Me, i =te”", (H, ¢) # (0, 0).

In cosmological applications, one usually assumes 0 < y < | with an emphasis on the
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special cases: y = 0 is the equation of state for a dust filled universe, y = 1/3 for a radiation
filled universe.
Introducing to (2.1) the new variable H = ¢—~3H? we ecasily obtain the solution

2
&

3 T%y
e—3H*+ A = 3k (——) , (2.4)

€9

where &k = +1, 0 is the space curvature constant, and ¢, = const. This gives us the phase
trajectory on the phase plane. Phase portraits on the compactified (H, ¢) plane are shown
in Figs. 1-3. From these pictures we can see that if we perturb the dust model (p = 0)
by adding to it a small amount of matter with p = ye, y > 0, the dynamics of the model
does not change qualitatively (i.e. there is a time orientation preserving homeomorphism
between perturbed and unperturbed model trajectory). This means that Friedman’s dynami-
cal system is structurally stable with respect to such changes of its matter content. On the
other hand, by comparing Figs. 1-3, we easily infer that introducing of small constant
terms (cosmdlogical constant or constant pressure) into the equation of state p = ye
does change the structure of the phase plane, i.e. Friedman’s dynamical system with p, = 0
is structurally unstable against such changes in the equation of state.

Y3
AD>0

Fig. 1. Phase portrait of Friedman’s dynamical system with 4 > 0

AE

A=0

I

k=0 H

Fig. 2. Phase portrait of Friedman’s dynamical system with A =0
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N<O0

N

Fig. 3. Phase portrait of Friedman’s dynamical system with 4 < 0

One should observe an interesting fact. Let us assume that, from observational.data,
we know that our universe is correctly described by a model with k = 0, A &~ 0 (which
is not very far from what we know about our universe at present), then, basing on these
data, we cannot predict whether our universe will recollapse to the final singularity or
smoothly evolve to plus infinity. We are met here with a typical bifurcation situation.
Happily enough, our retrodictions have more chances to succeed: the behaviour of models
at early epochs is less sensitive to the changes in the equation of state. (For a more detailed
discussion of structural stability properties of Friedman’s cosmology consult [8].)

3. Symmetry group of Friedman equations with bulk viscosity

Inclusion of dissipative terms into left hand side of Einstein’s equations is not only
desirable for generality reasons [9] but also because of the fact that it may structurally
stabilize the solutions {8]. Dissipative effects in cosmological models with Robertson-
-Walker types of symmetry mean the dependence p = p(H) which gives the bulk viscosity

coefficient {(¢) = —% ,,;ﬁ . Friedman’s dynamical system with dissipation has form (2.1)
cE

with the substitution p <> p = p—3({(e)H. We shall consider the case with A = 0.

Using a similar procedure as that employed in the preceding section one can easily
establish the following

Theorem 2: Friedman’s dynamical system with dissipation, with p = ye, y = const,
and {(¢) ~ ¢'? admits a Lie group with the infinitesimal operator X = — At3/0t+ AHO/0H
+2Aed]0¢; and, vice versa, from the invariance of the system with respect to the operator X
it follows the equation of state p = ye—ue'/?H, y, 1 = const. The equation of the group
invariant is that of the flat model trajectory ¢ = 3H? which is independent of the equation
of state.

Introducing the new variable H = He™'/?, Friedman’s dynamical system with dissipa-
tion can be easily integrated. The structure of the phase plane (H, ) for this case is shown
in Fig. 4. One can see that the solutions presenting (a) all closed models (k = +1), (b) all
flat models (k = 0), and (c) those open expanding models (k = —1) which satisfy the
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Fig. 4. Phase portrait of Friedman's dynamical system with dissipation

strong energy condition ¢+ 3p >> 0, are structurally stable against small viscous perturba-
tions. Moreover, world models with {(s) ~ ¢'/* are interesting in that they have initial
singularity but have no horizons, and consequently in these models Misner’s paradox
disappears [10].

4. Symmetry group of the Bianchi type I cosmological models

This class of cosmological models was first considered as a dynamical system with
dissipation by Khalatnikov and Belinsky [11]. Bianchi type I metric is

ds? = dt* — R}(t)dx? + R()dx3 + R3(1)dx3 (4.0

and the components of the energy momentum tensor with dissipative terms may be written
in the form

Td = —¢, TP =0 Tf=pd—uyt, (0, p=1,23), 4.1)

Kf = gﬁylgm’ pl = P_(C_”g"l) (ln \/g)-’
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where 5 and ¢ are cocfficients of shear and bulk viscosity, respectively. In this case, Ein-
stein’s field equations may be reduced to the form of a dynamical system

o= e=3H w3 LH,

&= 9IH? +4y(3H? — &) - 3Hw, 4.3)

where w = ¢+p, and H = (R R,R;) = (In(,'g))". The first of these equations is the
Raychaudhuri equation, the second — the conservation principle 7, = 0. Now, we have
the following

Theorem 3: Dynamical system (4.3) with p = ye,y = const, and {(e)~ &'/?,
n(e) ~ % admits a Lie group with the infinitesimal operator X = — Ar&/ét+ AHC/OH
+2A4ec/de, and, vice versa, from the invariance of system (4.3) with respect to the op-
erator X it follows that {(¢) = ue'’?, n(e) = fie"’? where y, fi = const. The equation of the
group invariant is that of the flat Friecdman model trajectory ¢ = 3H?2,

H

Friedman
¥

.

&,

\\

Fig. 5. Phase portrait of Bianchi 1 dynamical system

The phase portrait of the system is shown in Fig. 5. These models drastically differ
from the flat Friedman model at infinity of the phase plane; however, at later stages, they
approximate it in the structurally stable way.
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3. A short comment

As we can see, symmetry groups of Friedman’s equations — both viscous and non-
-viscous — correctly select physically meaningful equations of state. One could look at
this fact in the following way. Usually equations of state are taken from local (non-cosmo-
logical) physics without gravitation (from outside of General Relativity). One should ask
about compatibility conditions of such local physics without gravitation with the gravi-
tation theory without local physics. It has turned out that there are symmetry groups of
cosmological equations which provide correct compatibility conditions. We think that it is
a non-trivial fact, the significance of which might have important implications for cos-
mology.

The symmetry group of Bianchi type I dynamical system selects equation of state
which has no such clear physical meaning. However, one should remember that Bianchi I
cosmological modeis do not describe as directly the observed universe as Friedman’s
solutions do, and usually they are considered because of their mathematical simplicity
within the class of anisotropic homogeneous models.

As we have seen in the preceding sections, the considered problem is evidently connect-
ed with the question of structural stability of world models against perturbations of the
equation of state. The logical connection is the following. The symmetry groups of the
considered equations are groups of similarity, admissible rescallings being homeomorphic
expansions and compressions of the phase plane (H = He", £ = ce®’, f = te™") such that
the trajectory of the flat model (k = 0) is left unchanged, every closed model (inside the
parabola k = 0) goes into a closed model, every open model (outside the parabola k = 0)
goes into an open model, and there are no transformations from a closed model into an
open one, and vice versa. On the other hand, a system is structurally stable if its small
perturbations give topologically equivalent (homeomorphic) dynamics. From this follows
that the equations of state, being obtained from the symmetry groups, cannot spoil the
structural stability of the system. (One should remember that, from purely mathematical
point of view, transformations are admissible which send phase trajectories into the half-
-plane ¢ < 0.)

The structural stability problem of cosmological models has been considered by us
elsewhere [8]; we are inclined to think that it is another crucial problem for methodology
of physics and cosmology.
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