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It is proven that the linear Schrodinger (Klein-Gordon) field coupled to Yang-Mills
fields has no non-zero static, finite energy, solutions. The case of nonlinear scalar fields is
discussed, and necessary criteria for existence of nonzero solutions are given.
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1. Introduction

The interest in classical Yang-Mills theory stems from the hope that classical Yang-
-Mills fields, after semiclassical quantization, can elucidate the fundamental problem of
hadronic physics, i.e., the quark confinement. As is well known, the quantum chromo-
dynamics is asymptotically free and, morever, the asymptotic freedom alone seems to
explain the scaling phenomena and the tendency of quarks to behave like pointlike and
free particles in deep inelastic scattering. The asymptotic freedom has been demonstrated
within the framework of the perturbative QCD, but the perturbation theory fails to incorpo-
rate the quark confinement. There is a common belief that this problem can be overcome
by nonperturbative approach, i.e., by quantizing around a nonzero background [1].
Note at this point that fully consistent approach should take into account the gauge and
the matter fields simultaneously. Because of that the Yang-Mills fields coupled to scalar
(Schrédinger or Klein-Gordon) fields will be considered in this paper. We will study the
existence of static solitons in Minkowski space, i.e., static finite energy solutions of Yang-
-Mills equations with sources introduced dynamically via the coupling with a scalar Schro-
dinger (Klein-Gordon) fields. As we have indicated above, this problem can be important
from the quantum point of view. If there exist such solutions, they should be used as
a background for quantum fluctuations, thus allowing for a nonperturbative investigation
of the theory.

As is well known, contrary to the 4-dimensional Euclidean case, the sourceless Yang-
-Mills theory in Minkowski space does not possess solitons [2]. We will show that for
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the Yang-Mills-Schrodinger (YMS) and for the Yang-Mills-Klein-Gordon (YMKG)
theories there are no solitons either, provided the scalar fields are linear. So if one believes
in success of semiclassical quantization, then one has better use a nonlinear scalar fields.

The organization of the paper is as follows. In Section 2 we describe the model and
prove our main results concerning the YMS model. In Section 3 is discussed a quantum-
-mechanical version of the YMS theory. In Section 4 we show that if a scalar self-interaction
is included, the occurence of solitons may not be suppressed. In Section 5 the YMKG
theory is considered. The last Section comprises a summary.

2. Description of the models. YMS theory

Let a Schrodinger (Klein-Gordon) field be an n-component SU(#n) isospinor denoted
by . Yang-Mills potentials are denoted by 4;, where the upper isospin indices change
from 1 to n? — 1, while the lower space-time indices range from 0 to 3. The covariant deriva-
tive D, acts on y as follows

Duw = au’/’—igA,ﬁ’- (1)

A potential 4 is a one-form with values in a fundamental algebra of the SU(n) group.
A Yang-Mills strength field tensor is defined as usual

F,, =0,A,~0,4,~ig[A, A], (2

where A, = A,T"; T" are the hermitian generators of SU(rn) algebra.
A Yang-Mills potential A4, its strength field tensor and y transform as below under
a gauge rotation 4 (h is in a fundamental representation of SU(n)):

(A" = hAh™" —ig(@,mh™", (3a)
(F,)' = hF h™1, (3b)
(" = hy. (3¢)
The Yang-Mills equations are
DF? = j°, (4a)
D F* = j, (4b)

where the Schrddinger current (the Klein-Gordon current is given in Section 5) is
" a P a
jo =gy Ty, = (0 TDy—(Dy) T), 5)

and the Schrodinger equations are

- 1
—~—DDiyp+ — Doy = 0. ©)
2m i

The signature we used above is (—, +, +, +).
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Let us suppose that 4, and y are static and vanish on the boundary, which may be
taken at spatial infinity. In the last case we demand in addition a sufficiently fast decrease
of the fields as the radius r tends to infinity:

: é s
A~ AT AL~ P ]~ R 4

It can be easily seen that these requirements are sufficient and, morever, necessary for the
finiteness of energy (although the condition on y can be weaker)

~

o, 1
&= } av [% (3 FF™V + FFg) + i—(Diw)+Di7:U] .
m

Remark 1. In Yang-Mills-Higgs model (with or without scalar selfinteraction) one usually
imposes boundary condition on the scalar field, (0Q) = const [3]. This is unlike above.
Our option is closely connected to the following intention: to test basic assumptions of
the bag model [4], according to which matter and gauge fields are confined within a bounded
volume of space.

Let us multiply a static version of Egs. (4a) and (6) by A§ and y* respectively and
integrate over all volume bounded by a boundary éQ. Then, integrating by part and
dropping out boundary terms (which vanish because of the boundary conditions assumed
above), one obtains:

{
_2}5J‘(Di'P)+Di'P‘1’-’—gJW+Ao'/’dl’ =0, (8a)
N N
—Nj FioFiaJv =g y* Agyde. (85)

We will analyze these equations. At first note the weak inequality

g v  Agpde <0, 9
N

which follows immediately from Eq. (8b), because its left hand side is nonpositive. But,
if (9) holds, then all terms in (8a) are weakly positive and each of them must vanish separa-
tely, since their sum vanishes.

From (8a) it follows that

Dy =0 (10)
ie.,
oy = igAy. (11
The integrability condition for (11) is
0 = (8,0, — 0,0y = igFyy. (12)
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From (12} it follows that v = 0 (if one chooses F; = 0, which satisfies (12) also, then the
potential A7 can be gauged away to zero and from (10) we obtain y = const: since the
boundary condition is p(¢Q) = 0, it forces » = 0, as above).

Turning back to Eq. (8b) we see¢ that

Foi = 0. (13)

i.e., the electric field is a pure gauge and the potential 4; can be gauged away. Inserting
p =0 and Ay = 0, we may write Eq. (4b) as

DiFij = 0, (14)

from which (after multiplying by A4;, integrating by parts and omitting boundary terms)
we get

§ FF™de = 0. (15)
N

Hence F;; = 0, and the corresponding potential 47 could be gauged away. Thus we prove
the following

Theorem 1. The Yang-Mills-Schrodinger system does not possess non-zero static finite
energy solutions satisfying homogeneous boundary conditions, provided the scalar field
is linear.

Remark 2. In the above calculations we have used positivity of the Killing form of SU(n).
It is well known that the Killing form is positive for all classical (A(n), B(n), C(n), D(n))
and exceptional (E,, E4, Eg, Fy, G,) real algebras [5]. This allows, as can be shown, for
an extension of the above results for all semisimple compact Lie gioups — classical and ex-
ceptional.

3. Further discussion

The boundary condition (7) on y allows for its normalization
fwTpde =1 (16)
N

and, consequently, for its quantum mechanical interpretation. Eq. (16) implies in Eq. (6)

5

a term proportional to the Lagrange multiplier 2. Eq. (6) now reads

L DDy gdoy = 2. a7
2m
The multiplier 4 is usually interpteted as energy of the system described by a field p.

It is an easy exercise to prove that for 2 < 0 Theorem 1 still holds, and the case of
negative energy is physically reasonable, since then one can hope that gauge and scalar
fields are concentrated within a small volume of space. If, however, we set 2 > 0, the
fields are long-range. Indeed, if a potential 4}, is short-ranged, Eq. (17) becomes asymptoti-
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cally

—1

e A = Ly, i8

2 ¥ ¥ (18)
Its solutions behave as 1/r for r — oo and A positive, or as exp (—(—2A)!'2 r)/r, for r — oo
and A negative. Hence a scalar field is long-ranged when the energy is positive.

4. The nonlinear Yang-Mills-Schrédinger system

Now let us consider a modification of the Schrodinger equation, which consists in
inclusion a nounlinear term V(y) describing self-interaction of the scalar field y. The static
Schrédinger equation is now

S DiDiy—gAop+Viy) =0, (19

while Yang-Mills equations are unchanged, hence given by (4a, b). The question that arises
here is this: wunder what circumstances Eq. (19) coupled to Eqs. {(4a, b) has nonzero static
solutions? An incomplete answer is given by the following:

Theorem 2. The Yang-Mills nonlinear Schréodinger (YMnS) system can possess nonzero
finite energy solutions only if

st p V(p)de < 0. (20)

The condition (20) is necessary but not sufficient.

Proof. Let us multiply (19) by w* and integrate over all space R>. After integration by
parts and omission of boundary terms one arrives at the equality

1 fid Iad n
E-J (D,«q))*D,-zpdv—gJ w* Agpde+ J P V)p)de = 0. 21
m
R3 R3 R3

The first and the second terms are positive if there exist nonzero solutions y, 47 (the second
term is positive because of (9)), hence the last term must be negative.

§ v V(p)de < 0.
RS

Thus the inequality (20) is necessary, but of course not sufficient condition.
Here is an example of V() satisfying (20):

V(y) = F(iyiy, (22)

where F(|y!) is any positive function that tends to a finite limit as |y} tends to zero. This
condition on F is imposed in order to guarantee that the integral

[v' Ve = J19PF(lyhdr

R3

is finite (see (7) for the behaviour of y at infinity).
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Remark 3. Theorem 2 can be extended to all semisimple compact gauge groups (see Re-
mark 2).

Remark 4. There is an important class of scalar field self-interactions, V(y) = A(|y}>—a®)y,
for which our criterion (20) does not work effectively; in practice it is not possible to
determine the sign of A | ly|?(1y|2—a®)dv without knowing a solution. In spite of this,
the qualitative analysis still can be done without too much effort. One can proceed certain
techniques taken from bifurcation theory (some elementary facts about it and related
mathematical references can be found in [6]). Without going into details, we recall that
the bifurcation theory is a powerful machinery for studying whether near a given exact
solution there exists another. Presently we will describe it using above mentioned example.

0
As can be easily seen, the YMnS system has one exact solution 4} =0, » ={ 1 |;
0
linearization near this solution gives
-1 e
ddy—Aia oy =0, (23a)
2m
4045 = 0, (23b)

where variations d A}, oy satisfy homogeneous conditions and the Coulomb gauge condition
;A7 = 0. It is easily seen that for certain values of Aa? (assuming that the boundary 6Q is
finite; in the unbounded, noncompact case the spectrum of 4 is continuous and a theoretic-
-bifurcation discussion is harder — we omit that case) the linear system (23a) has nonzero
solutions dy. This means (according to bifurcation theory [6]) that there exists a nonzero
solution of the full YMnS system if and only if certain “second order” condition is satisfied.

The term V(y) = A(ly|>—a?)y is typical for the Yang-Mills-Higgs theories, in which
a large number of monopole-like solutions was discovered (see e.g., {3]). However, they
satisfy nonhomogeneous boundary conditions: at infinity |y(c0)! = const # 0.

5. The Yang-Mills-Kiein-Gordon system
The YMKG system of equations is (assuming a linear scalar field);
(DiD;—DyDo)y = 0 (24a)
D,F* = j". (24b)

Here the signature is (—, +, +, +), the covariant derivative is as in (1) and the current
Jy is given by

j*" = igly Ty —(D"y) T*y]. 29)
The static equations are as follows

DDy +g*(4o)’y = 0, (26a)
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(DiFop)" = ig[y” T(—igAg)y—(—igdoy)* T], (26b)
(D F*)" = igly” T3" ~igA" Yy —((&" —igd")p)* T*y]. (260)

Multiplying Eq. (26a) by y*, (26b) by A, integrating by parts and omitting boundary terms
(as for the Schrodinger field, we impose homogeneous boundary conditions) one gets the
equations:

§ (D) Diyde = 2¢% | v* Agydv, (27a)
§ FioFiodv = — g [ p* AJpde. (27b)

From (27b) it follows that 4§ = 0 or » = 0. After computations similar to the ones of
Section 2, one obtains

4;=0, yp=0 (28)

Hence we prove

Theorem 3. YMKG system does not possess non-zero static finite energy solutions such
that vanish on the boundary (possibly at infinity), provided the scalar field is linear.
Theorem 3 holds for all semisimple compact groups (compare the Remark 2).

Remark 5. Nonzero solutions are not excluded, provided that the scalar field is nonlinear.
In this case one can repeat all considerations from Section 4 and arrive at identical con-
clusions.

6. Summary

We studied the problem of existence of static solutions of the Yang-Mills-Schrédinger
(Klein-Gordon) equations. The scalar fields were in the fundamental representation of the
algebra of a gauge group. We proved that in these models there are no nonzero static
solutions provided that they vanish sufficiently fast at infinity and that the scalar Schrédin-
ger (Klein-Gordon) field is linear. The case of a self-interaction of a scalar field was also
investigated, using global as well as local (bifurcation theory) techniques. Nonzero solutions
may exist whenever the nonlinearities are of type V(y) = F(Jy!)y, where F is some positive
function that tends to a finite limit as {! — 0. This holds for both Schrédinger and Yang-
-Mills fields coupled to the Yang-Mills fields and for all semisimple and compact gauge
groups. The assumption that the scalar fields are in fundamental representation, is in fact
irrelevant. As one can show, all previous results are true, provided that they carry an adjoint
representation of any compact semisimple gauge group.

At the end let us stress that above results indicate that phenomenological assumptions
of the bag model [4] cannot be obtained within the framework of matter-gauge theory,
provided the matter field is linear. The existing lagrangian models overcome this difficulty
by introducing new unobservable fields {7] — but this strips the whole charm from the
theory which is attractive because of its conceptual simplicity.
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