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AN EFFECTIVE ENERGY-DEPENDENT ONE-BODY POTENTIAL
FOR THE LOW-ENERGY PARTICLE-NUCLEUS SCATTERING
PROBLEM. THE ONE OPEN CHANNEL CASE

By J. TOKE* anD T. MATULEWICZ
Institute of Experimental Physics, Warsaw University**
( Received February 10, 1983)

A simple method of generating the relative motion continuum wave functions in the
region of isolated resonances by using an energy-dependent cffective one-body potential
is proposed. The method accounts for the effects of the configuration mixing and predicts
splitting of the single-particle resonances in quantitative agreement with the shell modet
diagonalization approach.

PACS numbers: 24.10.-i

1. Introduction

1t is common practice to generate the wave functions of relative motion of a projectile
plus target nucleus system using a suitably chosen optical potential [1]. In many applica-
tions, where the corresponding compound system excitation energy is high, a smooth
energy dependence of the optical potential parameters is sufficient to account properly
for the behaviour of the phase shifts (see e.g. [2]). In the region of isolated resonances,
however, such a commonly used potential fails to reproduce the phase shifts and in specific
applications recourse to other approaches, such as, e.g., the R-matrix approach [3], has
to be made. At the same time, from the point of wiew of some particular applications,
such as, e.g., the DWBA calculations or other direct reaction amplitude evaluation, it
is desirable to have a possibly simple method for generating the wave function of the
relative motion with proper phase shift, i.e. describing properly the elastic scattering ampli-
tudes.

In the present paper we propose a simple phenomenological extension of the common
optical potential approach consisting in the introduction of a special energy dependence
of the one-body optical potential. The proposed approach is much more simple than the
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more complete theories of continuum plus bound states problem worked out in the past
(see e.g. [3] and [4]) and at the same time it accounts for major (from point of view of the
particular applications mentioned above) effects of the mixing of the pure single particle
(cluster) states with the bound states embedded into the continuum (BSEC). Therefore
we expect it to be a convenient tool for analysing direct reaction data in the region of
isolated resonances and especially of those having considerable single-particle strength.

In Section 2 the structure of the effective one-body potential for the considered scatter-
ing problem is derived starting from the Ritz-Reyleigh variational principle. At the cost
of a few approximations extreme simplicity of the final formula has been gained. Although
the assumptions made are not controvessial (they do not go beyond those lying behind
some commonly accepted and applied procedures) their effects cannot be assessed before-
hand and therefore the question of the usefulness of the proposed approach is to be solved
by applying tests.

In Section 3 the proposed approach is subjected to tests which reveal its equivalence
with the shell model diagonalization problem as far as the predicted positions of the reso-
nances (each of which now carry only a fraction of the original single-particle strength)
and their single-particle (cluster) spectroscopic factors are concerned. This we view as
an important property of the proposed energy-dependent potential which proves its use-
fulness no matter how well founded were the assumptions made when deriving its general
structure.

Section 4 discusses some possible applications, analogies and further developments
of the proposed approach.

2. Derivation of the general structure of the energy-dependent effective one-body potential

We consider a target plus projectile system with one open reaction channel. For the
sake of simplicity we consider one partial wave only and disregard the angular momenta
coupling game.

We start with the Ritz-Reyleigh variational principle:

(OWE(E, 1) IH—EI¥E(E 1) =0, (D

where H is the full Hamiltonian of the system, E is the total energy and ¥(&, r) is a tria
wave function as determined by the physical problem.
For the trial function we assume the following ansatz:

N
Yel, r) = P)e(r)+ ) bibhesc(S, 1), 2
=1

where @ () is the product of intrinsic wave functions of the target and projectile nuclei,
assumed to be given, yx(r) is the wave function of relative motion of the projectile and
target nuclei, ®§2.-(, r) are the wave functions of the bound states embedded into the
continuum which are also assumed to be given and b; are the unknown spectroscopic
amplitudes of the BSEC.
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At this stage it is assumed additionally that:
<(pc(é) |Hi¢r(€)>§ = hO(r)+Ew (33')

where /,(r) is the optical model one-body Hamiltonian for the relative motion of the
projectile and target nuclei, £, is the intrinsic energy of the projectile and target nuclei
and { ), denotes integration over the intrinsic coordinates only,

(DLE) | PREc(E, e =0, (3b)
(Sl PYec) = 6,  and (3¢)
(PREectHIDRE) = E:idy. (3d)

Next, we decompose the total Hamiltonian:
H = Ho(S, r)+ VS, 1), 4)
50 that:
(P HolPhsec) = 0 (5)
and introduce the following quantities:
(i) norms  Np = (z(r) 12e(r)>E?, (6a)

where { > denotes integration over the relative distance r from zero up to a “‘reasonably”
chosen channel radius R (the choice of the channel radius value is not crucial),

(ii) formactors  wi(r) = {PLE) [Vies| Padec(és M)e, (6b)
(iii) matrix elements V= (e (r) Iwd(r)DrNz, (6¢)

where &, denotes the cnergy of the single-particle (cluster) resonance,
(iv/r) formfactors f(r) and g (r) defined by:

wir) = fi(MigdrIWVaN g Fi ' (6d)
where Fi = (ot fi0) It (6¢)
and Laolr) = gelr)yelr). (6f)

Now, equation (1) can be replaced by a set of N+ 1 coupled integro-differential
equations;

N
{PAE) [H=EI@ i)+ Y bdec(é, 1)pe = 0 (7a)

i=1

and

(DYEc(E, 1) |H—Eld (Ee(M+ Y bd§lec(é, 1)y =0 (7b)
i=1



612

(k goes from | to N) which under the above listed assumptions and definitions can be
rewritten as:

N
(ho—E)e(r)+ Z bifi(")gx("')ll;(")I';i‘\/rsofi.1 =0 (8a)
i1

and
VaNsoF i e 1ADEE (D igo(r)yr + bi(E,—E) = 0, (8b)

where £ and &, are now energies counted with respect to the sum of intrinsic energies of
the nonexcited projectile and target nuclei. The approximation which allows for a major
simplification of set (8) and which at the same time is decisive for the range of applicability
of our approach consists in putting:

S4r)gE (r) = fr)Ny. )

This means that within the range of nuclear interaction (set by the formfactor fi(r)), the
wave function of relative motion of the projectile and target nuclei s, except for normali-
zation (Np), independent of energy (see Eq. 6f). This approximation is valid as long as
the range of energy variation is small compared to the interaction potential depth i.e. for
the energy range of the order of a few MeV.

Assumption (9) allows to rewrite (8b) as:

VeilNg Ng—b{E—~&;) =0 (10)
and consequently rewrite (8a) as:
N
. . ) P ‘ |
[ho+ E VaNaFi! ,/,-m] 1e(r) = Exg(r), (11
-6,
i=1

which is a Schrodinger cquation for the relative wave function y(r). The effective one-body
potential has thus the form:

N
Vi) = Vo(r) + Vi o 12)
cff(' — ¥o0 T) E__éf! i(’ 3 (
i=1
where a = N;F. (13)

As approximation (9) breaks down also then, when the correction to Vy{r) (i.e. the
sum over the BSEC in Eq. (12)) becomes comparable with Vy(r) itself, formula (12) is
invalid in the close vicinities of &,. Fortunately, however, the regions where our approach
based on formula (12) fails seem to be of negligible widths in many practical applications.

Parameters V., a, &; and the formfactors fi(r) are unknown. Therefore they are to be
considered as adjustable quantities when applying our energy-dependent effective potential
approach in the course of analysis of experimental data. It is vetry much in the spirit of
a phenomenological approach to adopt a simple function for the formfactors fi(r) based
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on general considerations. In the tests described in the next section, like in the first practical
applications ([8] and [9]) common Woods-Saxon formfactors were assumed for V,(r)
and fi(r), so the energy dependence was limited to the potential depth parameter only.
This simplification is exactly in line with the commonly accepted practice of generating
the bound state wave functions for DWBA purposes. (See the last paragraphs of the
Discussion.)

3. Analytical and numerical tests

The action of potential (12) can be understood from Fig. 1. The almost straigth line
in Fig. 1b labelled U, (E) describes the dependence of the single-particle (cluster) resonance
energy for a particular partial wave on the Woods-Saxon well depth. Variation of the well
depth with particle energy in accordance with (12) (Fig. 1b) causes that the pure single-
-particle (cluster) resonance (Fig. 1a) splits into N+ 1 resonances, where N is the number
of relevant BSEC (here N = 1). Those new resonances (Fig. 1¢) occur at the energies where
the effective potential and the resonance-adjusted depths are equal, i.e. their positions can
be found by equating U.(E) to U, (E):

Ueff(Eres) = a(Ercs_(fO)'*' UO' (14)
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Fig. 1. Excitation function for the (p, y) reaction for a hypothetical 4 = 28, Z = 14 nucleus as calculated

using in the entrance channel a constant depth potential (upper section) and the energy dependent effective

potential with Ugge(E) shown in the middle section (lower section). The U s(E) line in the middle section

represents the dependence of the single-particle resonance energy on the well depth for the particular well
geometry
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The right hand side of Eq. (14) is an approximate parametrization of the U (E)
dependence. It is worth pointing out that the parameter @ in formula (14) has the same
meaning as that in (13). This is quite encouraging (though not crucial) as it leads to
a detailed correspondence with the shell model approach. Namely, equation (14) can
be cast into the familiar determinant form:

?(("aO - Eres) VN ;N !

| ‘

t Vcl (gl—Ercs) 0 i =0 (15)
I/‘cN 0 (gN—Eres)?

exhibiting the equivalence of our approach with the shell model diagonalization problem
as far as the predicted positions and therefore also the spectroscopic factors of the resonances
(resulting from admixing fractions of single-particle strength to the BSEC) are concerned.
1t may be verified that the structure of the determinant in (15) corresponds exactly to the
assumptions and definitions adopted in Section 2.

Numerical testing of our approach was carried out by calculating the “direct’ proton
capture (p, y) 1eaction excitation functions for a hypotherical nucleus with 4 = 28 and
Z = 14. In those calculations the continuum state wave function of the entrance channel,
calculated using the energy-dependent effective one-body potential approach, was inserted
into the standard direct capture code [6] to yield the cross sections shown in Fig. 1. It is
interesting to note the “interference” pattern, which was obtained even though the reaction
amplitude was not calculated in parts but rather as a single El transition amplitude from
the entrance channel scattering state to the final bound state.

In Table I, displaying some other results of the calculations it is interesting to note
the rather impressive compliance with the sum rule for the spectroscopic factors which
were calculated as quotients I',/I'%), where I', is the width of the k-th resonance and I'{¥ is
the width of the single-particle resonance generated (by an appropriate choice of the
constant well depth) at the energy where the k-th resonance occurs.

In the calculations the El transition from the p-wave to the 2s,,, bound orbital was
assumed. A standard Woods-Saxon geometry with ry = 1.3 fm and ag = 0.5 fm was
adopted. The values of other parameters involved in generating the entrance channel wave
function were: U, = —60.8 MeV, &, = 1.7MeV, aV’ = 0.0492 MeV (corresponding
to the interaction matrix element of 0.169 MeV) and the Coulomb radius parameter
rc = 1.3 fm. It is perhaps worth mentioning that both the direct and resonant captures
contribute here to the calculated cross sections, although in more realistic calculations
one has to account also for the decay of the BSEC itself, e.g. by renormalizing appropriately
the effective charge [7].

4. Discussion

The proposed eneirgy-dependent effective one-body potential approach has been
designed for the subbarrier energy ranges where only a few resonances for a given partial
wave occur, It has been applied by us successfully for analyzing the direct capture (p, v)
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TABLE 1
Analysis of the resonances computer-generated by using the energy-dependent effective one-body potential
approach
px U E Si
C 5] o T F Q) k
ase &; @V o« | L e 5k
MeV | MeV  MeV | keV | keV |
- L A ! — o
1 1.470 --60.0 1.508 i 326 38.5 ! 0.847
1.300 0.453 1.261 2.20 14.4 0.153
1 1.000
1.152 -60.8 0.939 1.09 2.24 0.488
11 1.100 0.222 1.183 1.83 9.91 0.185
1.300 0.222 1.387 624 | 247 0.253
1.700 0222 | 1.738 571 ¢ 718 0.073
! — e e
| [ 0.999

# § varies from 1 to N and k varies from 1 to N+ 1 where N is the number of BSEC coupled to the
entrance channel.

Y The energies are counted with respect to the energy of the system of noninteracting target and
projectile nuclei.

¢ Errors of the S values are of the order of 0.001. No special effort was made to minimize them,

reaction data on 28Si target nuclei ([8] and [9]), where it allowed us to avoid the use of the
R-matrix formalism for accounting for the observed broad resonances [10]. Generally,
we do believe that our approach may be considered as alternative to the R-matrix one
as far as the description of the subbarrier resonances is concerned. It has, however, the
advantage of being able to produce directly the wave functions which are required by the
direct or semidirect reaction analysis codes.

One possible way of extending the range of applicability of the presented approach
consists in introducing the energy dependence of the one-body potential formfactor itseif.
So, e.g., a self-consistent formfactor g.(r), which can be derived by iteration from Eq. (8),
would most probably be a remedy to the E~ &; problem (where our approach fails),
however, derivation of such a self-consistent formfactor destroys the simplicity of the
proposed approach.

A natural generalization to the many open channel cases seems to be possible via
setting the BSEC energies complex, with the imaginary parts related to the decay widths
of those BSEC into other channels, This would affect the real potential well, though the
main effect is the introduction of the energy-dependent effective imaginary well. Qualita-
tively, effects such as broadening of resonances and the loss of flux in the only explicitly
treated channel are correctly reproduced. Further investigation in this direction is in prog-
ress. ‘

It is worth pointing out the analogy of the proposed approach with the one which
is widely used when generating bound state one-body wave-functions for DWBA purposes.
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In that case too, the residual interactions cause that the strength of a shell model one-body
(bound) state of interest spreads among a number of discrete physical states. It is then
assumed (and has been proved to be a reasonable assumption by the long history of DWBA
analyses) that some important effects of mixing the particular shell model bound state
of interest with more complicated states (the BSEC) can be mocked up by an appropriate
choice of the one-body potential depth. This depth is different for each physical state (i.e.
the effective one-body potential is energy-dependent) which contains an admixture of the
shell model state of interest and is being in practice found by requiring that the binding
energy be equal to the experimentally observed separation energy.

Our proposition (12), simplified additionally by assuming an energy independent
Woods-Saxon formfactor, can be considered as a gencralization of such a bound state
treatment. Except that now, when the energy changes in a continuous manner rather than
in a discrete, a formula for the depth of the potential is being given. (A similar formula
is valid also for the bound state case, however, there its usefulness seems doubtful.) This
formula contains a (small) number of parameters which are to be determined by fitting
the “theoretical” resonances (their positions and widths) to the experimentally observed
ones. This formula tells, how the potential depth should be chosen now (i.e. in the contin-
uum wave function case) in order to account for the same effects that in the case of bound
state wave function are accounted for by applying the fameous separation energy recipe.
The assumptions lying behind that recipe are the same as those lying behind our approach
(which are exhibited in Section 2).

The authors wish to acknowledge discussions with H. A. Weidenmiiller, P. Decowski
and B. Sikora.
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