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The paper discusses certain properties of locally Hermitian and locally Kihlerian
manifolds. It is shown that a manifold is Jocally Hermitian iff some of its spinorial connection
coefficients vanish., Conditions of a simitar type are obtained for locally Kihlerian manifolds.
Subsequently, locally Kihler-Einstein gravitational instantons are investigated. Their vacuum
Einstein equations with the cosmological term have been reduced locally to a single non-
-linear equation of the second order for one real function. This, in turn, has enabled the
authors to show that any locally Kdhler gravitational instanton with R = --44 = const.
admits locally a real, source-free Maxwell field which for a Kahler gravitational instanton
appears to be global. In the latter case, the Einstein-Maxwell equations have been reduced
locally to a single differential equation of the fourth order for one real function.

PACS numbers: 04.20.—q

1. Introduction

The notion of a gravitational instanton was introduced in 1976/77 (see [1, 2, 39, 40)).
By analogy to a ‘Yang-Mills instanton [3], we define a gravitational instanton to be a solu-
tion of the classical field equations with positive definite metric which is complete and
which is either compact or its curvature tensor dies away at large distances (see [2, 10]).

Recently gravitational instantons have attracted a great deal of interest [4-14]; they
seem to play a distinguished role in quantum gravity.

Hacyan [12] has proved that every self-dual gravitational instanton with R, = 0
is a locally Kahlerian manifold and he has shown that in this case the Euclidean Einstein
vacuum equations can be reduced to a single second order non-linear equation for one
function (the Kihler function).

Consequently the natural programme arises: to study the general, locally Kéhlerian
manifolds. The gravitational instanton with R,, % 0 will be called a non-vacuum gravita-
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tional instanton, otherwise, i.e., if R, = 0, the giavitational instanton is called a racuum
gravitational instanton.

In our opinion the non-vacuum gravitational instantons play a significant role when
the interaction between the gravitational and other physical fields are considered. We
also hope that the study of non-vacuum gravitational instantons as well as of vacuum
ones will be useful for finding some procedure to generate the physical space-times from
the gravitational instantons.

The main aim of the present paper is to study the geometry of a locally Kéhler gravi-
tational instanton.

In Sec. 2 we consider locally Hermitian manifolds. First, the spinorial formalism
as given in [17, 20, 41] is presented and then a theorem (theorem (2.1)) concerning the
necessary and sufficient conditions under which a manifold is locally Hermitian is proved.
The theorem (2.2) gives the sufficient condition for a manifold being Hermitian. Then,
using the results of theorems (2.3), (2.4) (analogs of the Goldberg-Sachs theorems) we find
some connections between the local Hermiticity and the algebraic speciality of the Weyl
tensor (propositions (2.1), (2.2)).

Sec. 3 is dedicated to the locally Kahlerian manifolds. The analogs of the theorems
(2.1), (2.2) are given for this case (see the theorems (3.1), (3.2)). Then the local expressions for
the connection forms, the Weyl tensor field, the traceless Ricci tensor field and the curva-
ture scalar for the locally Kahlerian manifolds are given in the appropriate extended spinor
frames.

In Sec. 4 locally Kihler-Einstein gravitational instantons are investigated. Their
Euclidean Einstein equations have been reduced locally to a single second order non-linear
differential equation (4.7) for one real function (the Kahler functon). An interesting pro-
position (the proposition (4.2)) presents the sufficient condition under which a locally
Hermit-Einstein gravitational instanton is a locally Kéahler-Einstein one.

Sec. 5 is devoted to the general non-vacuum locally Kahler gravitational instantons.
We find that for any point of a locallv Kahler gravitational instanton, the traceless Ricci
tensor is of types ((i, 1), (1, 1)) or ({1, 1, 1, 1)) (the proposition (5.1)). Then we show that
any locally Kihler gravitational instanton admits (locally) a real, source-free Maxwell
field iff (locally) R = —4A4 = const. If M is a Kahler gravitational instanton and
R = —4A = const. on M, then M admits a global, real, source-free Maxwell field. If
R = 0 on M then the Kihler gravitational instanton is self-dual in the natuial oiientation
of M. 1t is shown that the Einstein-Maxwell equations can be reduced (locally) to a single
fourth order non-linear differential equation for one function {see (5.34)). The conclusions
and the hst of references close the article.

2. Locally Hermitian manifolds

Let M be an oriented four-dimensional connected Riemannian manifold with positive
definite metric ds?. For each point pe M there exist a neighbourhood U of p and four
independent complex-valued 1-forms on U, {¢°} a =1, 2, 3,4, such that

ds* = gae” ® ¢ on U, (2.1
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where

oo O

) ol
(8ap) = . (2.2)
0 0 1
Lo 010
and (see [12],
ol = e?; e = ¢t 2.3)

If for any point ge U the oithonormal frame {E,} defined as follows

EY(Ep) = 0%, (2.4)
where
E! :i_(e‘-i»ez), E’ = _—1—_(e1—e2)
J2 z\/2
E’ = i_(e3+e“), E* = —‘—. (e’ —e*) (2.5)
V2 i2

possesses the positive orientation then four 1-forms {e} arc called a null tetrad on U.
{We shall omit the words *‘Jocal”, “on U” etc., of course, only if these abbreviations do
not lead to any misunderstandings). Let us define (see e.g., {16, 17, 19))
4 2
e

(g =2 (e 3), (2.6)

el —e
A=12 B=1.2
Then relations (2.3) lead to
g = g4 @7

where the “‘spinorial” indices A, B, A, B etc., ate to be manipulated according to the
formulae

Y, o= e, PE W= et (2.8)
T\ A A (2.9)
with
0 i
(eap) 1= (_1 0> = «(e*?), (2.10)

(£4p) == (_? é) = ('), (2.11)



640

Using the I-forms {g*?} one has

d = 325 ® g =g @ ' —g'' @ g** (2.12)

where ® denotes the symmetrized tensor product, P ¥ =z (PR ¥PY-¥ ® D).
Let now (I4,), (1" ;) e SUQ), and define

A"E AB

gt = 11 gt (2.13)

One can easily check that there exists a null tetrad {¢*} (only one of course) such that

A 5(¢ e
") =2 1 _ ) (2.14)

—e

Conversely, for each null tetrad {e”} there exist 2x2 complex matrices (I*",), (11" ;)
€ SU(2) such that (2.14) holds These matrices are defined by (2.14) uniquely up to the
simultaneous changing of the signs in both matrices. Keeping in mind the connections
between the null fetrads and rightly oriented orthonormal frames (see (2.4), (2.5)) we
conclude that our construction leads to the cencrete realization of the group isomorphism

SO(4, R) = SU(2) x SU(2)/Z,, (2.15)

here Z, is the cyclic group {I, —1}.

Then one can construct two complex spinor bundles over U, the first one denoted
by S (the bundle of undotted spinors) is connected with the leftmost factor SU(2) in (2.15)
and the second one S (the bundle of dotted spinors) is connected with the rightmost factor
SU(2) [9, 17]. For the future we shall conventionally distinguish the leftmost factor SU(2)
and the rightmost one by means of a dot, as follows

SO(@4, R) = SUQ) x SU(2)/Z,. (2.16)
Having all that, we can treat {g’“é} as components of the bundle section
gAéeA®el§ = gAéaeA®e,;®e“eF(S®S'® T*) 217

where T*¢ is the complexified cotangent bundle and I' (...) symbolizes the set of bundle
sections. Therefore, we say that {g"?} defines a spinor-valued 1-form, or that g*# is a spinor-

-valued 1-form. Similarly e,p, £*% &5, e4? are spinor-valued O-forms, or simply, spinor
fields.
Let @ be p-form

ai...ap

p 1
TFAT*) 2w = ~ o P N (2.18)
p!
then we define Hodge’s star operation

r 4-p
# T(AT*) > I'( A T*) (2.19)
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according to the formula [16]

1 in
R - - ay...ap by ba-
* @ 1= p!(4——p}iexP[2 p(4 p)‘} Cayoapbyba 00 TET A LA €T (2.20)
One can easily find that this definition of the star operation assures that ** = 1 It is evident
how to extend Hodge’s star operation onto arbitrary spinor-valued forms.

2
Now, let us define the spinor-valued 2-form S el (S ® S ® AT*S) as follows
[16, 17, 41]

<AB

_ 1 _...4R BS
D (= 5 ERpsE A g

(2.21)
One finds that

« §'F = 518 (2.22)
.. . . 2
Analogously, the spinor-valued 2-form S** e (S ® S ® AT*) defined by the formula

AB , _ 1 RA sB
ST i=zersg T A g

(2.23)
fulfils the relation
« SAB — _gAB (2.24)

By (2.6) the Riemannian connection on M induces in a natural manner connections on S
and S. These connections are uniquely defined by the formula (the first Cartan structure
equation) [16, 17, 19, 41}

Dg*® = dg*P 1. A gB+T8: A g*€ =0, (2.25)
g ¢

where I' := (I'*p) and ro= r 4 4) are the connection matrices on S and S respectively;
they are traceless

M, =0=r" (2.26)
Now the curvatures on S and S are defined as follows
RA, i= dI 4T A TSy =: DIy,  RAz = dIli;+1%: A TS =: DI 2.27)

Then the decomposition of these curvatures into the irreducible components {9, 16, 17,
20, 41] is of the form

R ..
Rup = — 75 CapcpS"+ N Sits CapesS>,
.. R
Rij = —5CipcsS+ — - Sis+3CcpisSPs 2.28)

24
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where
Casco = Ciancpy = Y SABabCabcdSCDCd3
Ciscs = Ciibchy *= To Sis" CaveaSén™,
Cusedp = Cumed = Cupep) -= 3 gAc'agmibCab (2.29)

and C,,., is the conformal curvature tensor field (the Weyl tensor field), C,, is the traceless
Ricci tensor field and R is the scalar curvature; moreover,

SAE = LGB o0 n o SAB i 1gdb o\ o (2.30)
Observe that with (2.6), (2.21), (2.23) and (2.25), using also (2.30), one finds
Tup = =4 TapSas™  Tig = —5TSiz™ (2.31)

where (I'%,) is the Riemannian connection matrix on the complexified tangent bundle 7.
Then we have:

1‘(/21 ™e® fiT*C) 3 (Gt * Cap) = 5 SC 5cpSP, (2.32)
FAT* @ AT*)3 (@~ *€p) = + S9,C 555, (2.33)

where
Gt xC oy i = % Copege® A €+ %L Crpegt® A % (2.34)

Theretore, the spinor field C pcp defines uniquely and is uniquely defined by the self-dual
part of the Weyl tensor field; similarly, C; z¢p repiesents the anti-self-dual part of the
Weyl tensor field.

Now, using the relation (2.7) and the definitions of our spinorial objects one finds
the following relations (see [17, 20, 411,

48 — I, ri = I g, S4E = S 4ns N Sis (235

CABCD CA’I;C‘I; — CAé(f[), CABéb — CABéb, R = R. (2.36)

= CABCD’

Then using relations C*2P = C ,pcp, CAPP = C ;65 We can give the Petrov-Penrose
classification of the Weyl tensor analogously as it has been done in complex relativity

(see [16, 12, 20]),

Casep Ciscp
[1—1-1-1] [M—1=1-1]
! § !
[2-2] [2=2]

i !

[-] (=]

Fig. 2.1. The Penrose-Plebanski diagram
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Now we would like to introduce the notion of a locally Hermitian manifold. A locally
Hermitian manifold is a generalisation of a Hermitian manifold ([18], [21] vol. II, [24])
and such a generalisation is necessary for our purposes. Let N C M be some open sub-
manifold of M with a metric induced by the metric ds? on M. Manifold N is said to be
a locally Hermitian manifold if for each point p e N there exist an open neighbourhood
UC N of p and a complex structure J on U such that the metric ds? is Hermitian on U
with respect to J

ds*(JX, JY) = ds*(X, Y) (2.37)
for any vector fields X, Y on U; in other words U is a Hermitian manifold with respect
to J. We prove now the following important theorem

Theorem 2.1.
An open submanifold ¥ C M of M is a locally Hermitian manifold iff for each point
p € N there exist an open neighbourhood V' C N of p and spinor frames on V such that

Iiji =Ti12i =0 (2.38)
or
Fyyi =T =0 (2.39)
on V, where
Tyiasg™® = Tipn Tyoase®® =T (2.40)

Proof:
First we prove the “if part” of the theorem. Let p be any point of N and let ¥ C N be an
open neighbourhood of p such that there exist spinor frames on ¥V for which

Iiii =T =0

Then with the above assumption, from the first Cartan structure equation (2.25) one
finds that

t3 3

g2 A g A dg”.2 =0 (2.41)

on V. Using the Frobenius theorem [22, 23}, the relations (2.7) and then the independence

of the four l-forms {g*%}

g A g At AP 4B AE2AESAE £ (2.42)
we find that there exists a local complex chart {U, {z*}} of V (x = 1,2; p e U) such that

gnz' -'=f‘lxd2a, gZZ =f2adzaz

g21 — glz :fladza’ gn — _g22 — _fzadza’ (243)
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where {f®;} are four functions on U and for each point of U
det (f%) # 0 (2.44)
Using (2.12) one has
ds* = gpdz* @ dzf + gg,dz* ® dz° (2.45)
on U, where, f = 1,2; dz := dz* and
Bap 1= 3 LS %) = g (2.46)
From (2.46) it foliows that the matrix (g,;) is Hermitian
(&) = (8ap)- (2.47)

Let us define the complex structure J on U
J ( 0 ; J ¢ ;.0 (2.48)
— 3 — - = = —, .
0z" l 0z" oz" 0z"

ds*(JX, JY) = ds*(X, Y) (2.49)

Hence

for any vector fields X, Y on U.

Therefore, the metric ds? is Hermitian on U with respect to the complex structure J
on U. Now as pe N is an arbitrary point of N then, by the definition, N is a locally Her-
mitian manifold. If I'y,,;; = I';;{;3 = 0 on V, the proof proceeds similarly (interchange
gl e gz‘1 in (2.43)).

Now we prove the “only if part”. We assume that an open submanifold N C M
of M is a locally Hermitian manifold. Hence, if p is any point of N then there exist an
open neighbourhood V C N of p and a local complex chart {¥, {z*}} of N such that the
metric ds? on V is of the form (2.45), with (2.47). From (2.47) it follows that .there exist
four functions {f”;} on V such that the metric tensor is determined by (2.46).

Therefore there exist spinor frames on V such that (2.43) or

gl =gl =g gl = g2 o f2 g (2.50)

hold on V. (Let us recall that M is oriented). Then using the first Cartan structure equation
(2.25) one casily finds that

if (2.43) holds then I'jy,; = ;1,1 = 0.

if (2.50) holds then 'y,,; =T,,,3=0.

Now, as p is an arbitrary point of N then we conclude that the “only if part” of the theorem
has been proved. This completes the proof. Il



645

Note that from (2.7) and (2.35) it follows that

Fiiii = —T3303, (2.51)
Fiizi = I35, (2.52)
Tyii = —Tags3 (2.53)
Fyiis = Taaaie (2.54)
Hence
Fitii = Fija; = 0 Ti3p3 = T333 =0 (2.55)
and
Fiyi =T003 = 0 D5 = T3, =0 (2.56)
Using (2.31) and (2.6) one has
Fiji = — % Faey T35 = \/'1-5 333, (2.57)
iz = — lt Farns Tz = — 'i—-Fm, (2.58)
V2 V2
I = —l:I‘424, F2225=71—_F313, (2.59)
V2 J2
s = — _}:rm, [y = — »f:rw. (2.60)
V2 2

Of course if N is a Hermitian manifold then it is also locally Hermitian but the converse
statement does not hold geneially (e.g., S*, see [25]). However, if N possesses an almost
complex structure J and if N is also locally Hermitian with respect to J, then N is a Her-
mitian manifold (see [21], vol. II, p. 321).

The following theorem gives the sufficient condition for an open submanifold N C M
of M being a Hermitian manifold.

Theorem 2.2.
Let N C M be an open submanifold of M so that there exist (global) spinor frames on
N such that (2.38) or (2.39) hold on N; then N is a Hermitian manifold.

Proof:
Let {e4}, {e;} be the spinor frames on a submanifold N C M such that (2.38) holds on
N and let {¢°} be the null tetrad on N defined by {e,}, {e;}, according to (2.6). Then (2.38)
and (2.51), (2.52), (2.57), (2.58) imply

Faya =1T41y =T33 =13,=0 onN. (2.61)
Let us define the following tensor field on N

(T Q@ T*)DJ :=ie; @ e’—ie, ® e*+ie, ® e*—ie; ® e, (2.62)
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where T, T*® are complexified tangent and cotangent, respectively, bundles of N and
e, € I(T%) for any a = 1,2, 3,4; moreover, ¢(e,) = 6.

One can verify that J is an almost complex structure on N and then, that (2.61) is
equivalent to the vanishing of the torsion of J. Therefore, by the Newlander-Nirenberg
theorem ([21] vol. 1) J is a complex structure on N. Moreover, one finds that the metric
ds? on N is Hermitian with respect to J. Hence N is a Hermitian manifold.

Suppose that (2.39) holds on N C M. Consequently

Fa2a =142, =T3,35=1T3,;,=0 onAN, (2.63)
Let us define the tensor field 'J on N as follows
TR T*)3'Ji=ie, ® e —ie, @ e*+ie, ® e' —ie, @ e (2.64)

Then one can show analogously as in the previous case that by (2.63) 'J appears
to be a complex structure on N and the metric ds? is Hermitian with respect to 'J ie., N
is a Hermitian manifold. |

{(Compare this theorem with the one concerning integrability of the so called “modified
almost Hermitian structure”, Flaherty ([26] p. 199)).

Notice that the complex structure J{'J, resp.) in the theorem 2.1 is equal to the comp-
lex structure J('J, resp.) as intruduced in the theorem 2.2.

Now the problem arises: what is the connection (if any) between the local Hermiticity
and the algebraic speciality of the Weyl tensor ? Recall that the spinor C ;5¢5 (C g p, fesp.) is
called algebraically special at some point pe M if it is one of the types, [2=2] or [+]
({12—2] or [—1], resp.) at p. Moreover, Ciz¢p (Capep, Tesp.) is of type [2=2] ([2~2], resp.)
at p iff there exists a spinor frame {e;} (le,}, resp.) at p such that

Ciiii = Ciii3 =0,  Cijs3 # 0, (2.65)
(Ciyip = Ciy2 =0, Cyyay # 0, 1e5p.) (2.66)
Notice, that by (2.36) one has
Ciiii = 0 C335 = 05 Cijjs = 0= Cy337 = 0, (2.67)
Ciii =00 =00 Ci12 =00y, =0, (2.68)

The spinor e; (e, resp.) such that (2.65) ((2.66), resp.) holds will be called the double
ﬁ-spinor (P-spinor, tesp.) at the point p e M. Recall also that the spinor Cz¢5{Capeps
resp.) is said to be of type [=]([—1, resp.) at the point pe M if C,iz¢p = 0 (Cypep = 0
resp.) at p.

We now have the following fundamental result (see {20])

Theorem 2.3.
Let U be an open subset of A such that

Cipep =R =20 (2.69)

on U (i.e., the vacuum Einstein equations are fulfilled on U). Then
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() If there exists a spinor frame {e;} on U such that (2.38) holds on U then the spinor
field C z¢p on U is algebraically special and in the case of [2+2] the spinor field ej on U
is the double P-spinor field.

(i) If the spinot field C 3¢p on U is algebraically special of type [2+2] and {e;} is
a spinor frame on U such that the spinor field e; on U is the double P-spinor field then
(2.38) holds on U.

If the spinor field C;z¢p on U is algebraically special of type [=] (e, Cipep =0
on U) and U is simply connected, then there exists a spinor frame {e;} on U such that
(2.38) holds on U.

Proof:

Notice that the theorem 2.3. with some modification is known in General Relativity as
the “Goldberg-Sachs theorem” (see [27-29]).

The proofs of both theorems are similar and hence we give here only the outline of
the proof.

(i) Assume that (2.38) bolds on U. Using then the definition of C ;3¢5 one finds that
this assumption yields the formula, Ci;;; = 0 on U. Using then some of the Bianchi iden-
tities and their intergrability conditions one finds that Cj;i5 = 0 on U.

Hence, C ;3¢5 is algebraically special on U and if it is of type [2-2] then the spinor
field e; on U is the double P-spinor field.

(i) Suppose that (2.65) holds on U (the type [2=2]). Then, fiom some of the Bianchi
identities one finds immediately that (2.38) is fulfilled on U.

Assume now that Cjz3c5 = 0 on U (the type [=]). We also have (2.69). Hence, the
curvature on the complex spinor bundle S over U vanishes identically (see (2.27)). Using
also the assumption that U is simply connected we conclude that there exists a spinor
frame {e;} on U such that the connection matrix (I'4;) = 0 on S (see [21], vol. I, pp. 92,
93). The proof is. completed. W

Consider now the non-vacuum case. One finds the following

Theorem 2.4,

Let U be an open subset of M such that for some spinot frame {e;}
DC**{1(051) = 0 (2.70)
on U, where 8,3¢e I'(T*) for any 4, B and

g"%@cs) = %% 2.71)
on U, (T is the complexified tangent bundle over U. D denotes the exterior covariant
differentiation). Then

(i) If (2.38) holds on U then the spinor field C 3¢5 on U is algebraically special and
in the case of [2-+2] the spinor field e; on U is the double P-spinor field.

(ii) If the spinor field C ;3¢5 on U is algebraically special of type [2=2] and e; is the
double P—spinor field on U then (2.38) holds on U.

Proof:
One easily finds that the theorem 2.4 corresponds to the so called “Generalized Goldberg-
-Sachs theorem” well known in General Relativity (see [28-32]).
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The proof is based on the non-vacuum Bianchi identities. With the assumption (2.70),
some of these identities, precisely those which are necessary for the proof, are of the same
form as the vacuum ones. Hence, using the same arguments as in the proof of the theorem
2.3 we find that our theorem holds. Il (Notice that the relation (2.70) is fulfilled if e.g.,

Ciiii = Cpaii = C2i3 =0 on V). (2.72)
By (2.36) we have also
Ci1ii = Cr2ii = Ca2i1 = 0 Ca333 = Cip33 = Cyq33 = 0. (2.73)

We do not know yet, if there exists a non-vacuum version of the second part of the theorem
2.3 (ii).
However, using the results of the deformed twistor spaces (see [33]) we have
Conjecture 2.1. .
If the spinor field C ;p3¢p on an open subset U of M is of the type [~] (i.e., the Weyl tensor
is self-dual on U) then for each point p e U there exist a neighbourhood V of p (V C U)
and a spinor frame {e;} on V such that (2.38) is fulfilled on V. R
Combining the theorem 2.1 with the theorems 2.3, 2.4 we have the following results

Proposition 2.1.
Let N C M be an open submanifold of M such that the traceless Ricci tensor field and the
scalar curvature vanish on N and the anti-self-dual part of the Weyl tensor field is algeb-
raically special of the definite type on N, then N is a locally Hermitian manifold. |l
Proposition 2.2.
Let N C M be an open submanifold of M such that the anti-self-dual part of the Weyl
tensor field is of type [2+~2] on N and, for each point p € N, let there exist an open neigh-
bourhood U of p(U C N) and a spinor frame {e;} on U such that DC*%;;(d5;) = O on
U and e; is the double P-spinor field on U, then N is a locally Hermitian manifold. W
(Notice that in the “null tetrad language” we have [29, 32]

(a) DCABii(aai) =0+ Caa1y = Ci1;a =0, (2.74)
(b) e; is the double P-spinor at some point pe M iff

Cirar = Cay214+Cu134 =0, Cay3, #0  at p, (2.75)
(©) Ci11i = Cra11 = Cp3i1 =0 Cyy = Cyy = Cy; =0, (2.76)

If the -conjecture 2.1 is true then consequently the following conjecture is also true.

Conjecture 2.2.
If NCM is an open submanifold of M such that the Weyl tensor field is self-dual on N
then N is a locally Hermitian manifold. B

Of course, the conjecture 2.2 is true for the vacuum case. Now assume that M is a lo-
cally Hermitian manifold and let U C M be an open subset of M such that the formulae
(2.43)-(2.46) hold. (We shall omit the words “on U™, “over U” ... etc.).
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Now it is very useful to extend the spinor group SU(2) to SL (2, C). This procedure
corresponds to the extending of the SO (4, R) group to SO (4, C) (see (2.15). Then

we can construct two complex spinor bundles: S, which corresponds to SL (2, C) and S
which corresponds to SL (2, C). Of course one has the natural isomorphisms

r(S) = (s, .77
rs) = re). (2.78)

i.e., we can extend the spinorial objects introduced previously, to the SL 2, )
(SL (2, C))— spinorial objects. One finds that the formulae (2.7), (2.35), (2,36) are not (gen-
erally) true for these extended objects but we still have

ds* = —3 845 ® g*°. 2.79)
We find that if (2.43) holds then for some extended spinor frames
éli = \/i dz', éz'z = \,/2 dz?,
' = /2 g,5d2, gif = _ V2 g25d2". (2.80)
From (2.71) and (2.80) one has

LR I
J2 ozt J2 022
dyi = {/l'i g 5‘7—,, dii = — jzg”a—; (2.81)
where the 2x2 matrix (g°*) is the reciprocal matrix to (g,
258" = o', (2.82)
Using (2.80), (2.21) and (2.23) we obtain
§Y = —2gdz' A dZ2, (2.83)
§12 = gdz* A d2P, (2.84)
§2 = 242" A dz?, (2.85)
S' = 2g,5dz" A d7P, (2.86)
S'2 = g,5dz* A dzf—g5dz' A d2P, (2.87)
S?? = —2g,5dz% A dZ°, (2.88)

where

g 1= det (g.z)- (2.89)



650

Observe now that with (2.43) and (2.46) one has

si? = g.gdz" A dzf = §i2, (2.90)
If J denotes the natural complex structure (2.48) then
‘]aﬁ = _Jﬁz = igvzﬁ9 Jaﬂ = J&ﬁ = (291)

and the fundamental 2-form (the Kéhler form) defined according to the formula (see
[21] vol. 11, p. 147)

P(X,Y):= ds*(X, JY) (2.92)
for any vector fields X, Y, can be found to be
& = —igdz* A dZ* (2.93)
(recall that we assume the convention according to which
dz* A dZ* = dz* ® dzf —dz? @ dz%).
Comparing (2.93) with (2.90) one has
—i§i? =& = —is'2, (2.94)

Consequently, U C M considered as an open submanifold of M with the induced metric
and with the complex structure J defined as above is a Kihlerian manifold iff

dS'? =0, or equivalently, d§'% = 0. (2.95)

(In the case of complex space-times this fact was observed by Flaherty [26]).
But this is the point to introduce the notion of a locally Kahlerian manifold.

3. Locally Kdhlerian manifolds

Let N C M be, as previously, an open submanifold of M with the induced metric.
Then, we shall call N a locally Kéhlerian manifold if for each point p € N there exist an
open neighbourhood U C N of p and a complex structure J on U such that U is a Kihle-
rian manifold, i.e.,

)] ds? (JX, JY) = ds* (X, Y) for any vector fields X, Y on U 3.1
and the fundamental 2-form & defined by (2.92) is closed
@) ad = 0. (3.2

Now, in the theory of the locally Kahlerian manifolds we have a theorem similar to
theorem 2 1.
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Theorem 3.1.
An open submanifold N C M of M is a locally Kihlerian manifold iff for each point
p € N there exist an open neighbourhood ¥ C N of p and spinor frames on V such that

riy=0 o I'yy=0 on V. (3.3)

Proof:
Assume that I';; = 0 on V.

Hence, we find that there exists a local complex chart {U, {z*}} of V such that the rela-
tions (2.43) are fulfilled on U (see the proof of the theorem 2.1). Then one has (see (2.94))

¢=-iS'? onU (3.4)

where ¢ is defined with respect to the complex stiucture J on U given by (2.48). From
(3.4) it follows that U is a Kéhlerian manifold iff

ds'? = 0. (3.5
But the first Cartan structure equation (2.25) implies the relation
Ds# = 0. (3.6)

Consequently
DS = ds' i A Stor;; A st =0, (3.7)

Now, with I';; = 0 we also have I'y; = 0 (recall that I'y; = I'y3, see (2.35)). Therefore,
(3.7) yields (3.5) and one concludes that U is a Kahlerian manifold. But p is an arbitrary
point of N, hence, by definition, N is a locally Kahlerian manifold.

If I'y; = 0 on ¥V then the proof is similar.

Therefore the proof of the “if part” of the theorem is completed.

Suppose now that N is a locally Kdhlerian manifold. This implies, of course, that N
is a locally Hermitian manifold. Hence, for each point pe N there exist an open
neighbourhood ¥V C N of p, complex coordinates {z*} on V and spinor frames on V such
that (2.43) or (2.50) hold on V. With (2.43) one has

SU = fazt A dz? = $2, S1 = gt A 2P (3.8)

with (2.50), the analogous relations for S*® are fulfilled. Now, as N is a locally Kéhlerian
manifold then dS!'2 = 0 or 45'? = 0.
From (3.7) and (3.8) we have

dsi2 =00 =I5 =0 3.9
analogously
dS? =01 = [,, =0 (3.10)
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Therefore, the proof is completed. (Compare this with the “modified Kéhlerian space-times”
of Flaherty [26], p. 202). W
For future purposes it is important to remark that with (2.83), (2.85) and (2.90) one has

dsi? — 0= dS1? =0Ty = I'y3 = 0. (3.11)

Analogously as it has been done in the previous section we can find the sufficient condition
under which an open submanifold N C M of M is a Kéhlerian manifold.

Theorem 3.2.
Let N C M be an open submanifold of M such that there exist the (global) spinor frames
on N such that

r;;=0 or I, =0 (3.12)

on N, then N is a Kihlerian manifold.
Proof:

First, notice that by (2.31) we have

Fii=0sT, =0 TI;,;=0xsl,=0

F33=0«=TI5,=0, I,;=0<«1[, =0. (3.13)
Then, similarly to the proof of the theorem 2.2 one finds the complex structure on N (2.62)
(or (2.64)). It is a straightforward mattet to show that if (3.12) holds on N then the respec-
tive fundamental 2-form is closed on N and consequently N is a Kéahlerian manifold. Il

Now if N C M is a locally Kihlerian manifold then (locally) for some complex coor-
dinates {z"}

d(ggdz* A d2Fy = 0. (3.14)

But it can be shown that by the Dolbeault-Grothendieck Lemma and Poincare’s Lemma
the formula (3.14) is equivalent to the statement that locally

0’K
- _ 3.15
8ab = 2lags (.15)
where
K = K(z%, 2% (3.16)

is a real-valued function (for proof see, e.g., [26]).

We would like to find the (local) expressions for the connection forms, the Weyl
tensor field, the traceless Ricci tensor field and the curvature scalar on a locally Kéhlerian
manifold. We assume that (2.80) and (3.14) hold. (This assumption corresponds
to I';; = 0; by interchanging §1.2<—> §2i we obtain the case of I'y, = 0).

Then from the first Cartan structure equation one finds (compare with (3.11))

[j; =0, TIy3=4(ng)d @3 =0, (3.17)



653

[y = ¢785.d7% T3 = 5(8%8:5.— 8" 815,047,

[y = —glgy.de” (3.18)
where the parenthesis *,” denotes the partial derivative, e.g., g5, := %gleB-
Applying (2.27), (2.28), (2.83) — (2.88) and (3.17), (3.18), we find

Ciiii = Ciiiz = Cizns = Cizzs = 0, (3.19)

T - R _
=20 = o = 38"(n g (3.20)
Cuii = 612'1'1 = ézzii = éuii = 612’2'2 = ézzié = 0, (3.21)
Ciiiz = =3 ¢7(n @) 15 (5.22)
Cizis = 4 [£'(In 2,15 — 27(In 2) 2], (3.23)
Ca2iz = 3 8°'(In ) 25, (3.24)
€= Cn = U800 (3.25)
3 C9 = Criny = (88250~ 87 215.0) 5 (3.26)
3 C = Ciipx = § 870 g) 5~ 2"%(g" 215.0) (3.27)
$C? = Cippp = 82 (8 8172~ 8782720 (3.28)
3 €M = Caaaa = £7(8" 2505 (3.29)

Now we are in a good position to study the locally Kahler gravitational instantons.

4. Locally Kdhler-Einstein gravitational instantons
A gravitational instanton is said to be an Einstein gravitational instanton if
Cupep = 0. 4.1
From (4.1) and from the Bianchi identities it follows that
R = —4A = const. (4.2)

An Einstein gravitational instanton which is, at the same time, a locally Kéhler gravita-
tional instanton will be called a locally Kdhler-Einstein gravitational instanton.

From (4.1), (4.2), (3.20)~(3.24) ‘and (3.15), (3.16) one finds that the metric of any
locally Kiahlei-Einstein gravitational instanton is defined locally by the relation

2 = Kz (4.3)
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where the real-valued function K = K(z% z%) is a solution of the following differential
equation

K 1K 53— K 13K 7 = [H[?e™ %, (4.4)

H = H(z") is a holomorphic function.
Performing the transformation of the local coordinates (see [26], p. 344)

zbi— F(z1,22), 27— 2? 4.5)
where F(z!,z%) is any holomorphic tunction such that
F,=H (4.6)
we find that in the new coordinates the equation (4.4) is of the form (see [8])
K 1K 3~ K 3K 57 = e K 4.7

This is our fundamental result. (For complex space-times this result has been given in
[34]). Using then (3.20) and (4.2) one has

¢ = —2 A = const. (4.8)

Then from (2.27), (2.28), (4.1), (4.2) and (3.19) we find that
A3y e R 2
C” = 2Cq535 = - = —5 /4 = const. 4.9)
6

for any extended spinor frame such that I';; = 0 or I';; = 0. Therefore we have
Proposition 4.1.
(i) For any locally Kihler-Einstein gravitational instanton

5 R 2 R
<C”) == const,> or (Cm =% const.)

for an arbitrary extended spinor frame such that
(f;3 =0 or I;§§=0) or (I'yy=0 or T, =0,resp.)

(i) If a locally Kahler-Einstein gravitational instanton M is such that R # 0, then for
each point pe M the Weyl tensor is non-zero.
(iif) A locally Kahler-Einstein gravitational instanton M is a vacuum one iff for each
point p € M there exists a neighbourhood U of p such that the Weyl tensor field on U is
self-dual or anti-self-dual. |l

Now, one can easily show that every vacuum gravitational instanton such that for
each point p there exists a neighbourhood U of p such that the Weyl tensor field on U is
self-dual or anti-self-dual, is a locally Kahler-Einstein gravitational instanton (see, proof
of the theorem 2.3 (ii)); consequently it is defined locally by the solution of the following



655
differential equation (Eq. (4.7) with 4 = 0)
K 1K 5-K 3K 7 = L. (4.10)

This is the equation given by S. Hacyan [12].

We can find the sufficient condition under which a locally Hermit-Einstein gravitational
instanton (i.e., an Einstein gravitational instanton which is, at the same time, a locally
Hermit gravitational instanton) is a locally Kahler-Einstein gravitational instanton.

Proposition 4.2.

Let M be a locally Hermit-Einstein gravitational instanton such that for each point p of M
there exists a neighbourhood U of p such that

C® =const #0 or C® = const # 0
on U for some spinor frame such that
Fijyi =Tii2i =0 or Iy ;i =113 =0 respectively,

then M is a locally Kahler-Einstein gravitational instanton and
. R R
c?® = < #0 or C¥= =7 0  respectively.

Proof:
Let p be any point of M and let U be some neighbourhood of p such that the formuia
(2.38) holds for some spinor frame on U (M is a locally Hermitian manifold!) and more-
over

C® =const £ 0 on U. (4.11)
Now as C,pep = 0, then with (2.38), (4.11), using the theorem 2.4 (i) one finds that
Ciiii = Ciij3 =0 on U (4.12)

The Bianchi identities
DCP 156Cap) = O (4.13)

(for the definitions of D, ¢, see the theorem 2.4) for A=2B= j, C = i, with (2.38),
(4.11), (4.12) imply

i3 =14i3 =V on U. (4.14)

Egs. (2.38) and (4.14) can be written compactly in the form, I'j; = 0 on U. Hence, M is
. R

a locally Kahler-Einstein gravitational instanton and, by proposition 4.1 (i), C® = P #£ 0.

If I'yyyi =Ty{;3 =0, the proof is analogous. I
Maybe, the simplest, locally Kéhler-Einstein gravitational instanton with A # 0
is P,(C) [1].
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5. Locally Kihler gravitational instantons with a Maxwell field

Consider a locally Kahler gravitational instanton M for the general case. Assume that
U is an open, connected subset of M such that (2.80) and (3.14) hold on U. Hence, by
(3.21), one finds that for an arbitrary point p € U the only non-zero components of C,gtp
are, maybe, C;13, Ci,13, C2213. Now, the eigenvalue problem

C4,659%0 = c1gac (5.1)
gives
C' = £2 (€121~ Ci113Caai (52)
(in the null tetrad language
C' = £V(C,*+C3:Car). (5.3)

Consequently, for any point p € U the traceless Ricci tensor is one of the types, ((1,1),
(1, 1)) or ((1, 1, 1, 1)) (see [35]). Hence

Proposition 5.1.
For each point of a locally Kéhler gravitational instanton the traceless Ricci tensor is one
of the types ((1, 1), (1, 1)) or ((1,1,1,1)). A

Then, with (3.21), it follows that we can write

C st = —8Fuanfeps (5.4

where fA B fc'-i) are symmetric, extended spinor fields

f~AB =J;(AB)’ fA’é =f:(1u'z) (5.5)

such that for each point pe U
fit = fis =0, (5.6)
fiz # 0. (5.7)

Let us define the 2-form (compare [29, 35])

F = fpS* 415845 (5.8)
One has
L(F= % F) = fi3895, L(F+ % F) = f,,8*". (5.9)
With (2.84), (5.6) and (3.14)
d(f;554%) = 0 < f;3 = const. (5.10)

Hence, suppose that f:ii = const # 0. The question is, if d(fABsAB) = 0.
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From (2.27), (2.28), (3.17), (3.19), (3.20) and (5.4) it foliows that
= Rosis_47.7 can
dry; = — r S —4fi5 14887, (5.11)
Performing the exterior differentiation in (5.11) and using (2.84), (3.14) as well as the
assumption f;; = const # 0, we find that
d(f1551%) = 0« R = const. (5.12)

Therefore, with (5.6), (5.7), one can assert that dF = 0 = d * F i.e., F is a (complex) source-
-free Maxwell field iff

fi; =const. #0 and R = const. (5.13)

Now the problem arises if there exists J;ié = const # 0 such that (5.4) holds and F is a real,
source-free Maxwell field. We have

I = fusS*+ 18" = [usS** 411587

1 ~ - . s
= = [—% CnsS*+ (/i8] (5.14)

12

Using (5.11) and (3.17) one finds

Fol (In g) ;a2 A dZ% + 8(’f~)2~£ iz (5.15)
il 7 e |
Finally, using (2.84) we obtain
Fo ot a + | 8(fi3)? R }d * A dZf (5.16)
= 13)°— — z* A dZ". .
8f12 n g) 28 12 4 grxﬂ
Then it follows that F = F iff
! L [(1 R 12 A dzf +(fiy+fipggdz® A d2P = 0. (5.17)
— x 5 1dz5 A dz 542" A dzl = 0. .
8fi2 8f12 ng).5— 4 &ap i2 1285

Applying Hodge’s star to (5.17) one finds (compare (5.11))

O N I
3 ng, — g5 1 dz" A dz
8fis | s Py

~(fi3+fi1)gpdz* A d2® = 0. (5.18)
Comparing (5.17) with (5.18) we obtain the result
F=F iff Refis=0. (5.19)
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Therefore, substituting
fis = ir (5.20)
where, r, is an arbitrary real number (# 0) and
R = —44 = const., (5.21)

we find the real, source-free Maxwell field in the form

1
F = o [(In g) .5+ (A —8r%)g]d* A dP. (5.22)
ir

With the use of components
F = 3 fue" A e, fu = flab] (5.23)

one easily finds that the traceless Ricci tensor field on U is of the form (see (2.29) and also
[29, 35])

Cab = —2(fcaf;b_% gabedfcd) (5.24)
and the Einstein equations with A
Rab—% Rgab—Agab = ""87Z'Tab, (525)
where
1
Top 1= in (fuSeo—% Gav Sa) (5.26)

is the “energy-momentum” tensor field of a Maxwell field. With the use of our complex
coordinates {z*}

1
fi = . [(In g) 5 +(A~8")g5] = —fom (5.27)
fp=Ffig =0, (5.28)
Cop = =20/ "uSyp—% 82/ "f3) = Cpas (5.29)
Cop = Ca5 = 0, (5.30)
Ly = 3;: (-f'zjvif"i" gaﬁzfmfv??) = Thas (3.31)

Concluding, any locally Kihler gravitational instanton admits locally the real, source-
-free Maxwell field F defined by (5.22) iff R = const. = —4A.

Now, one can easily show that if for each point of U, C ¢ is non-zero, (U is a con-
nected set!), then the general form of our “induced’ real, source-free Maxwell field is defined
by the formula (5.22). This is also true in the more general case, i.e., if there does not



659

exist any open subset V' of U such that C ¢ vanishes identically on V and the set U~P,
where P 1= {pe U: C pep(p) = 0}, possesses a finite number of connected components,
then the general form of the “induced” real source-free Maxwell field is (5.22).

(The fact that our real, source-free Maxwell field (5.22) depends on an arbitrary real
constant, r, is not accidental. Indeed, one has a general result which is analogous to the
“already unified field theory” of Rainich-Misner-Wheeler in General Relativity [36-38].
It will be published elsewhere). Now, if M is a Kdihler gravitational instanton with
R = —4A4 = const. on M, then the real, source-free Maxwell field (5.22) is defined glo-
bally. Moreover, we can find that if

(i) the set P := {pe M: C pep(p) = 0} (5.33)

does not contain any open subset of M, (ii) the set M —P possesses a finite number of
connected components, then every global, real, source-free Maxwell field is of the form
(5.22) (recall that M 1s connected).

In the case of a locally Kahler gravitational instanton one can speak only about
a local, real, source-frec Maxwell field. The (local) Einstein-Maxwell equations are reduced
to one differential equation, see (3.20),

(In g) 58" = —24, (5.34)

where, according to (3.15), g5 = K 4.
Now, if M is a Kahler gravitational instanton and R = 0 on M then M is seif-dual in the
natural orientation (see [21], vol. II, p. 121).

Hence, every Kihler gravitational instanton with R = 0 is self-dual in the natural
orientation, admits the (global) reai, source-free Maxwell field (5.22) and is defined (locally)
by the differential equation

(In g) 8" = 0 (5.35)

with g5 = K,; (compare with [9], p. 428).
For complex space-times similar results have been given by Boyer, Finley, and Ple-
banski [34].

6. Conclusions

We list some pioblems which are closely related to our considerations:

1) Study the conditions under which a locally Hermitian (Kahlerian) manifold proves
to be Hermitian (Kihlerian, respectively).

2) We would like to reduce the vacuum Euclidean Einstzin equations for a locally
Hermit gravitational instanton to a single differential equation, analogously as in the
case of a locally Kéahler gravitational instanton.

3) Does there exist any analog of Plebanski’s “second key function™ [15, 16] for the
locally Hermit gravitational instantons?
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4) Find interesting unknown solutions of the equations, (4.7) or (5.34).
5) Does there exist any general method of generating physical space-times from
gravitational instantons?
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