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SOME REMARKS ON THE INTERNAL SYMMETRIES OF
RELATIVISTIC WAVE EQUATIONS
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The internal symmetries of relativistic wave equations in the free field case are treated.
It is shown that the additional invariance of wave equations is connected with the transfor-

mations of physical basis. The dyal symmetry is shown to be the transformation of Lorentz
basis.

PACS numbers: 11.30.-j, 11.30.Ly

1. Introduction

We deal in this paper with the internal symmetries of first order relativistic wave
equations

(pf'—K)¥ =0, (1)

where p, = id,, x > 0, and ¥ transforms according to some finite dimensional representa-
tion of the Lorentz group.

In some recent papers [1, 2] the additional invariance of equations (1) was analysed
anew. The general internal symmetries are always the general linear transformations and
give the groups GL(N, C) or direct products of such groups. It is shown that the additional
invariance is connected with the spin projection and degeneracy due to spin. In this paper
we demonstrate that the additional invariance can be easily interpreted if we use the physical
basis. The existence of this invariance means that this basis admits arbitrary linear trans-
formations.

There ate also some other types of symmetries. In the recent papeis [3-9] the new
internal symmetry — the dyal symmetry was dealt with. This type of symmetry is allowed
by a class of very special wave equations (1) where the f* matrices can be expressed with
the help of Dirac y-matrices in the following way:

Bt =y xI, 2
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(x means the direct product). The internal symmetry of equation (1) called the dyal
symmetry is now trivially obtained. The wave function ¥ is represented as the direct product
of two representations of the Lorentz group v, and v, : ¥ = y, x y,, where v, is the
Dirac bispinor. From (2) it is obvious that in the second representation space v, one
may perform arbitrary general linear transformations with operators Q = I, x U, and
the general dyal symmetry group is therefore GL(n, C). It has been established in [9]
that the dyal symmetry group gives us the example of internal symmetry group where
the transformations are given by tensorial parameters. It is true, but as we shall show
later this symmetry must be interpreted as the transformation of the Lorentz basis in the
w, space and the transformation of generators in this space.

In the following we use the concepts of physical states and physical basis. The physical
states are labelled by mass, spin and spin projection. The additional invariance is a con-
sequence of the fact that the relativistic wave equation (1) determines in general only the
mass of physical states. In order to determine the spin and the spin projection one must
introduce additional restrictions to the solutions of equation (1).

2. Physical states

As it is well known, the physical space-time symmetry group is the Poincaré group
(inhomogeneous Lorentz group), since the invariants of the Poincaré group have a direct
physical meaning [10]. The irreducible representations of the Poincaré group are labelled
by mass and spin. The physical states in the momentum space are the following

Ip. o5 (m, 5}y 3

This basis is constructed by using the little group technique as follows: spin and spin projec-
tion are defined in the rest system of states p,p* = m? where p* = (em, 0,0,0) and & = p%/|p°;

S21p, o5 (m, $)> = s(s+1) |p, o3 (m, 5)), (4)
S*|p, a5 (m, 5)> = alp, a1 (m, 5). )

The physical states at arbitrary momentum p are defined by the boost transformation:
ip, o;(m, 5)> = UL(p)):p, o; (m, 5)) where p = Lp.

Using the relativistic wave equations (1) we describe the representations of the Poincaté
group by the help of the finite dimensional representations of the Lorentz group. The
components of the wave function — y,, where « is the Lorentz index, have no direct
physical meaning, because « labels only the components of the Lorentz basis. In order
to obtain the physical states with the given mass, spin and spin projection one must introduce
the physical indices m, s and o. The relativistic wave equation (1) gives us only the mass
condition. In order to determine spin and spin projection one must also demand the relations
(4) and (5).

Without the loss of generality we may perform our analysis in the rest system where
" = (em, 0,0,0). Then the equation (1) has a form

(emp®—x)¥ = 0. )
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We can treat it as the eigenvalue problem of operator °

[
oY =¢ — ¥ o B°¥, = b¥,. @)

The nonzero eigenvalues of f°— 4-b; determined the masses described by the equation
(1) as follows: m; = x/b,. Therefore the equation (1) introduces only the mass index
Y, = ¥,

In addition to the determination of mass one must detetmine spin and spin projection.
B° commutes with the generators S¥ (k,/ = 1,2,3) of space rotations, therefore we
demand that ¥,, is also the eigenfunction of operators S2? = (S')?+(S?)2+(S%)? and S3,
where 28' = je*S¥,

Therefore tHe physical state is defined as the eigenfunction of three commuting
operators f°, $? and S°

BWmso = 0¥ ies 5o = s+ DWW S ¥y = 0¥ oo (8)

The physical states at arbitrary momentum p are obtained by the boost transformation
U(L(p)).

All the nonzero eigenfunctions of the system (8) ¥,,, form a basis which we call
the physical basis. If there are many states with the given mass and spin one must introduce
some additional commuting operators in order to determine the full physical basis. In Sect. 5
we demonstrate that in the case of the vector field of general type we add to §°, §? and S3
also the parity operator /1. As it is well known, the physical basis ¥, can be used in the
physical applications instead of the Lorentz basis ¥, In quantization, for example, the
field operators are expanded by the help of the plane wave solutions with a definite spin
and spin projection, i.e. by the help of the physical basis ¥,,,.

We have mentioned above that we may use the rest system without the loss of generality.
The same analysis may be also performed in a more general way, using the authomorphisms
gives in [11-13]

Bi(p) = "B, S"(p) = &, 8%

where °, = p,/em and " £,g"" = g"". Now the plane wave solutions of (1) at arbitrary
momentum p are the eigenfunctions of operator °(p). All the conditions (8) are the same,
but instead of §°, S and S we use 8°(p), S3(p) and S3(p).

3. Additional inrariance

The additional invariance of relativistic wave equation (1) can be easily understood by
using the physical basis generated by the relativistic wave equation (1) and spin operators —
Y.~ From (8) one can see that there always exists a degeneracy due to spin projection
and this means that for a given spin s all the linear combinations ¥, = Y @,¥,, are the

a

eigenvectors of B° with the same eigenvalue b = x/m. These transformations generate
the group of general linear transformations GL(2s+ 1, C). The physical meaning of this
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internal symmetry is therefore the transformation of sub-basis of physical states ¥,
with fixed m and s. If there are more spin states with the same mass, one can consider all
the linear transformations of states ¥, with fixed m and the additional symmetry group
is correspondingly larger (see also Sect. 5).

The Dirac equation has the additional symmetry group GL(2, C) x GL(2, C) which
is a result of the existence of two spin projections ¢ = +1/2fore = +1 and sofore = —1.

The vector field of general type has the additional symmetry GL(8, C)x GL(8, C),
since for e = +1 and ¢ = —1 we have two spin O and two spin 1 states with the same
mass m (see Sect. 5).

As we have seen, the equation (1) always admits additional symmetries since it does
not determine the physical basis. On the other hand, the meaning of additional symmetries
is quite obvious, it simply means the transformation of physical basis. In our opinion
one can not gain any deeper physical insight by using the additional symmetry of equation
(1). If we introduce the interaction, the corresponding internal symmetry may be dynamical;
in the free field case it is only kinematical. Also the physical basis ¥,,,1s more
casily obtained from the relations (8) than by using the transformations of corresponding
additional symmetry group.

4. Dyal symmetry

As we have mentioned in the introduction the dyal symmetry is obtained in the case
of special wave equations (1) where f* is represented as

B = y*xI, )
and ¥ as a direct product

¥ = pxo. (10)
In (10) v is a Dirac bispinor and ¢ transforms under some n-dimensional representation
of the Lorentz group.
The generators of Lorentz transformations S*° have a general form

S* = S 1,4 1,%x 55" (an

In our case S7" = [",y’]/4 and S5 are the generators of ¢ representation.

The equations, where f* is represented as y"x [, were recently treated in [14].

The internal symmetry, called in [3] the dyal symmetry, is quite trivially obtained
using (9). From (9) it is obvious that * commutes with operators Q = I, x U, since the
equation (1) imposes no restrictions to ¢. Therefore one may perform arbitrary transfor-
mations in the representation space ¢. Hence the most general dyal symmetry group is
GL(n, C).

In order to establish the physical meaning of the dyal symmetry one must introduce
the physical basis ¥,,,. Because of the fact that the eigenvalues of ° = y°x I, are +1
one may in (1) set k = m. It means that now all the states have the same mass m. In the
rest system it means that the physical states ¥, are the eigenvectors of °. Spin and spin
projection are determined as the eigenvalues of operators S2 and S3. From (11) we see
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that for physical states ¥,, = (¥ X $)nss is not arbitrary, but determined. The transfor-
mations of dyal symmetry act only on ¢. The latter allows the following interpretation
of dyal symmetry: in order to preserve the physical basis the dyal symmetry must be treated
as the change of basis and generators in the ¢ space. Indeed, if we introduce ¥’ = yx Ugp
and (S =8S{"x I,+1,x US5'U-" the physical basis remains the same.

5. The vector field of general type

We deal with the vector field of general type as an illustration of the considerations
of the previous sections. This special field is treated in most of the above cited papers
[1-9]. The vector field of general type is ¥ = wx p, i.e. where both factors are Dirac
bispinors. Now ¥ transforms according to [(1/2, 0)+(0, 1/2)* = (1, 0)+(0,1)+2(1/2, 1/2)
+2(0, 0) and describes two spins: 1 and 0. The generators S* are in form

S = s x I+ 1, x st (12)
where s{* = [y*, y'1/4.

At first we constiuct the physical basis. The physical basis is formed from the eigen-
functions of operators f°, S? and S3. In order to obtain the full physical basis one must
add one more operator, since there are two spin 1 and two spin 0 states. This is the parity
operator IT = y° x y°. Therefore the physical basis is determined by the following relations

BPwE = et

msoe mse?

SPV, = s(s+ DY,

msa>

S is = 0¥ o,
M = £ ¥ (13)
Operators S? and S? are
3
S*= —31+% Z sixs', 8= xI,+1,xs’

i=1

where 2s" = ie™'y*y!. Using the following eigenfuctions of matrices f° and s* = iy*y?/2,

which we denote as y.i, y-—, ¥ and y__ (the first index shows the corresponding eigen-
value of y° : +1, and the second one the eigenvalue of s* : ¢ = +1/2) we get the following
basis for ¢ = +1:

spin 0 Yoo = m (W XY — Yo X YPLy),
V2
_ 1
Voo = = (Wa s XY~y Xy_,),
V2
spin 1 Wit = War X Pty

1
W;w = ’/E(W++X"/’+—+1P+—X’/’++)’
Y
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Voot = Vuo XYy,

mit = Yar XYP_ 4,
_ 1
Yoto = *’/3(‘/)++X‘/’——+’/’+—XW~+),
V

i1 = P Xp__. (14

We obtain similar 8 states for ¢ = —1, in ¥+ the first indices being y_x y_ and in
Y- w_xyp,.

Now it is obvious that in the rest system all the linear combinations of 8 physical
states (14) are the solutions of equation (1). The additional group is therefore GL(8, C).
Since the e = —1 states give also GL(8, C) we have the general additional symmetry
GL(8, C)x GL(8, C).

The dyal symmetry is now generated by the operators Q% = I, xy*, where y*,
A=1,2,..,16, are the sixteen independent elements of the Dirac algebra. The trans-
formations Q = I, x U, U = exp (a,y*) with complex parameters a, generate the trans-
formations of dyal symmetry group GL(4, C). As we have mentioned above the dyal
symmetry is not very useful physically if we take into consideration the fact that in physical
applications one must use the physical basis ¥,,,. Since ¥, is also the eigenfunction of
operators 2 and $* which in spinor basis Y. = ¥, X g acts also on the second spinor
index f. This index is not arbitrary and does not admit arbitrary linear transformations
(dyal transformations). In order to preserve the meaning of physical basis the dyal transfor-
mations must be interpreted as the change of spinor basis and generators in the second
factor space in 1 x y: the dyal transformations give us the new Lorentz basis ¥’ = yx U¢
with generators S** = S{" x I, + I, x US{'U~!. It means that in the first factor basis we use
Dirac matrices y* as opposed to the second factor basis we use Dirac matrices
(#"*) = Uy*U~'. We have no physical interpretation why one must use different representa-
tions of Dirac matrices when operating with the direct product of two bispinors.

Concerning the basis (14), it has yet another advantage. If we define the Lorentz
invatiant scalar product by the help of matrix A

(¥, ¥) = (V) Aa¥ (15)

where ( )" means hermitian conjugate, we can now take A = IT = y°xy° From (14)
and (15) we obtain that for positive parity states ¥, ., the scalar product is positive and
that for negative parity states ¥, the scalar product is negative. The parity operator
IT in (13) takes off the degeneracy of two spin 1 and two spin O states. Because of the fact
that the scalar product is indefinite one must use the indefinite metitic in quantization.

It is possible to introduce the positive definite scalar product by using the physical
basis ¥,,,,. Following [15, 16], one defines the new scalar product in the rest system by the
relation

(¥, Vhoew = ()" Y. (16)
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At arbitrary momentum p

(P(D), ¥(Paew = (¥(p))" UL () ¥(P). a7

This procedure works well in the free field case, but in interactions we may have the instabil-
ity of Poincaré states [17].

To conclude this section we have some remarks concerning the vector field of general
type:

1) The wave equation of the vector field of general type has many equivalent formula-
tions. The tensorial formulation (see, for example [9]) uses antisymmetric tensors £,,, F v
vectors A,, B, and scalars ¢, ¢. This formulation is used to give the quaternionic form
of the wave equation for this type of field (see, for exampie [6]). It should be remarked
that the quaternionic form is a quite formal rewriting of the wave equation. It is not easy
to get the physical basis, since the spin and spin projection operators are not presented
in the quaternionic form. Also it is problematical whether the symmetry of quaternionic
equation is really the dyal symmetry.

In [9] the wave equation is written in the Gel’fand-Yaglom basis, but the
transformations of dyal symmetry are not formulated.

As we have shown the dyal symmetry is more easily seen in the direct product basis
(10) and it is a quite trivial symmetry of a corresponding wave equation.

2) As it is well known [18], the wave equations may have the acausality defects. The
wave equation of the vector field of general type is causal, since the f*-matrices are diagona-
lizable ()% = I) [19].

3) The equation of the vector field of general type is quite simple, it describes two
spin | and two spin O particles with the same mass m. In most papers it is interpreted as
an object with multispin 0-1.

In some way the equation of the vector field of general type is connected with the well
known Bargmann-Wigner equation for spin 1 [20]

(P xIa—m)¥ =0,
(Uaxpy"' —m)¥ =0, (18)

where ¥, = y,x 4, is symmetrical with respect to « and f.

From (18) we see that the vector field of general type is described by the first of the
equations (18), where no symmetry conditions on ¥,, are imposed.

The system (18) may be written in form [11, 12):

%(P;LV“X14+I4XPF?”)T = m‘[’, (19a)
(P xIy—1ax py)¥ = 0. (19b)

The matrices
B =3 (" x I+ 1 xy") (20)

generate the algebra of the SO(1, 4) group.
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It is easy to verify that the conditions (19b) are automatically satisfied and the equation
(19a) is equivalent to (18). The equation (19a) is the well known Kemmer-Duffin equation.
In the case of symmetric ¥,; we get the spin 1 Kemmer-Duffin equation and in the case
of antisymmetric ¥,; the spin 0 Kemmer-Duffin equation. So the Bargmann-Wigner
equation for spin | reduces to the Kemmer-Duffin spin 1 equation. Because of the fact
that p* generates the SO(1, 4) algebra, the Bargmann-Wigner equation belongs to the class
of SO(1, 4) type equations [11-13].

6. Conclusions

We have dealt in this paper with the additional invariance and the internal symmetry,
called the dyal symmetry of relativistic wave equations. The additional invariance is easily
interpreted by using the concept of physical states and physical basis: it reduces to general
linear transformations of the physical basis. The additional invariance of relativistic wave
equation is a consequence of the fact that the physical basis is not determined by the wave
equation only, and one must impose some additional conditions to determine spin and
spin projection.

The internal symmetry — the dyal symmetry is also a tiivial symmetry of a special
class of relativistic wave equations. The dyal symmetry must be interpreted as the partial
transformation of the Lorentz basis and Lorentz generators.
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