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AN EXACTLY SOLVABLE MODEL FOR FERMIONIC
GENERATIONS AND POINCARE STRESSES

By W. KROLIKOWSK]
Institute of Theoretical Physics, Warsaw University*
{ Received March 21, 1983)

An exactly solvable quantum mechanical model is presented to illustrate the conjecture
that leptons and quarks of higher generations may arise as excited states of lepton and
quark internal charge distribution kept stable by Poincaré stresses. Excitations are then
*“quasiphonons” related to internal oscillations around the equilibrium provided by joint
action of these stresses and internal electromagnetic forces. The model leads to an expo-
nentially growing mass spectrum proposed previously on the phenomenological ground
(predicting toponium at about 40 GeV and the next charged lepton at 28.5 GeV). When
perturbed in a natural way, the model is able to describe Cabibbo-like mixing of genera-
tions, and, in particular, to predict the off-diagonal elements of Kobayashi-Maskawa matrix.

PACS numbers: 12.35.-i

1. Introduction

1n this paper we conjecture that the modern fundamental puzzle of fermionic genera-
tions is closely related to the classical puzzle of Poincaré stresses [1]. As is well known, the
latter are hypothetical non-electromagnetic forces, necessary in the structure of a charged
particle with finite extension to keep stable its internal charge distribution against Coulomb
repulsion. Our present argument may be outlined as follows. If it is true that leptons and
quarks have some finite extension, Poincaré stresses should appear in their structure to
provide its stability against internal electromagnetic forces. In the quantum theory, internal
oscillations around the resulting equilibrium should imply the existence of discrete fermionic
excited states which might be observed as leptons and quarks of higher generations. The
required finite extension of leptons and quarks may or may not be connected with the
existence of some subelementary point-like constituents usually called preons. So, Poincaré
stresses may or may not be provided by a non-electromagnetic attraction between preons.
At any rate, Poincaré stresses should describe in a more or less phenomenological way the
effect of internal non-electromagnetic forces, at least in the neighbourhood of the resulting
equilibrium.

* Address: Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, Hoza 69, 00-681 Warszawa,
Poland.
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2. The model

In order to give a quantum-mechanical illustration for our conjecture (rather than
to develop a quantum theory of Poincaré stresses) let us imagine a spherically symmetric
extended particle whose internal oscillations around its equilibrium can be fully described
by a radially oriented coordinate ¢ and a corresponding momentum p, where

lq.p] = ih. (M

Here, the internal angular momentum is always zero as it is connected with radial
oscillations. We define g in such a way that formally —o < g < +o0. For instance,
g = 5 (1 +ry/r) (r—ro) where 0 < r < oo denotes the radius of a spherical shell oscillating
radially around its equilibrium chatacterized by ry. Then in the case of small oscillations
we have practically r >~ ry and g ~ r—r,.

Let us assume that the mass operator of our particle fimes ¢? {equal to its hamiltonian
in its centre-of-mass frame) is of the form corresponding to quasiharmonic small oscillations:

, i, pw? ) 5 hw
Mc™ = —p"+ —[q+1f(q. )] — - 2
2 2 2
with p = —ild/cq, where ® > 0, [ is a constant of length dimension and f{g, p) denotes

a dimensionless real function of the operators ¢ and p. Here, the operator
2
, W hw
Vg, p) = = La+1f(a. W)= — 3)

describes the energy connected with quasiharmonic oscillatory forces representing (or
rather replacing) in our model the joint effect of Poincaré stresses and internal electro-
magnetic forces considered in the neighbourhood of the resulting equilibrium. The mass
operator (2) can be rewritten also as

Mc? = ol (@ a+aa® —1) = hofata+L ([a,aT]-1)], (4)
where
l { B L+ 1f (g, D]+ —— } (5)
a =4 == [a+f(q. ]+ —=p
V2N R Vuho

is a quasiannihilation operator.

A characteristic property of Poincaré stresses in the quantum theory should be the
proportionality (M) ~ aQ?, whete eQ denotes charge of the partticle and a = e?/4nhic.
Here, the Q-independent (suppressed) proportionality coefficient may be large and depen-
dent on internal quantum numbers other than Q as e.g. the colour'. In order to have in

! The property (M> ~ 2Q? should be true for the electromagnetic mode of internal oscillations,
connected with the equilibrium of internal electromagnetic forces and Poincaré stresses. One may
imagine that there is also a higher, colour mode of internal oscillations, related to the equilibrium of
internal colour forces and some novel non-colour Poincaré stresses being in this case an- analogue of the
former non-electromagnetic Poincaré stresses. If this hypothetical higher-frequency mode is not excited, it
does not contribute to the mass operator M which is then given as in Eq. (2) with (M) ~ Q2
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our model this property we will assume that

w~ aQ? (6)

with a physically adequate f(g, p) maintaining {a*a) and {aa*) independent of Q as they
are in the limit of / - 0 where our quasiharmonic oscillator becomes harmonic. Here,
Q # 0in order to have o # 0. The case of @ = 0 can be considered in the limit of @ — 0
since the value Q may be arbitrarily chosen in our model.

The function f{g, p), introducing a correction to the harmonic oscillatory forces in
the mass operator M, may a priori depend on the mass M itself. We will specifically assume
that the rate of change in g of f(q, p) is essentially equal to the excitation energy which
is identical with Mc¢? if no additional additive constant appears on the right hand side
of Eq. (2). Thus then

ixQ*(p, flg, p)] = Mc M
or

xQZ gf(f}’ p) - IYC
dq h

®)

where M is given in Eq. (2) (this assumption jointly with Eq. (6) will determine {a*a)
and <{aat) independent of Q).

We can see from Eq. (8) that f(g, p) satisfies a nonlinear differential equation. Fortuna-
tely, there is no need to try to solve Eq. (8) for f{g, p) because the assumption (7) leads to
the more convenient relation

fa,a™] g+l p T=1+1 Me 9)
1] = s P p] =1+ — .

d, ¢ i La+ (g, p) p haQ?
with M as given in Eq. (4) 2. Egs. (4) and (9) solved for M or [a, at] lead to

Mct = ho S+ DN (i0)
or

la,a”) = 14 (A2 = DN, (1
respectively, where

{
N=u'ua==-(ua’"=1) (12)

/.

2 The non-canonical commutation relation
lg, p] = ik(1 + 1H[]:c)

with H and / being the hamiltonian and a length scale, respectively, was introduced by Saavedra and Utreras
{2] as a possible bold generalization (in quark physics) of the usual canonical commutation relation (1).
With such a new commutation relation they solved the “*harmonic oscillator” described by the hamiltonian
H = p?[2u+ ne*g?2. So, in our case we can make use of their solution, taking the operator ¢ = g+ lf(q, p)
as their non-canonical coordinate gq.



692

is a quasioccupation number operator and

2 o Lrol2eg? (13)
1 —wl/2caQ

is independent of Q since w ~ xQ?. Note that 14?} > 1 or <1 if / > 0or < 0, respectively,
and A% > 0 if w!/ll/Q? < 2ca (we shall see later that 3.5 < 4 < 4 for charged leptons and
quarks).

Thus, the model we propose in this paper is based on three assumptions (2), (6) and
(7). Later on we will substitute in Egs. (2) and (7) M — M —m, with m, being a ground-
-state mass.

3. Exact solution
The cigenvalue cquation
Nind = Njnd, <nnd> =1 1m=0,1,2,..) (14)

and the commutation relation (11) imply that

Na*ln) = (AN, +Da*[nd, a*|nd = VAIN,+ L n+ 1D,
1 .
Naln) = F(;‘\-’,,—-l)ain), alny = /N ln—1. (15)

From Eq. (15) we obtain the recurrence formula

N, = AEN, +1 (16)
and, solving it, the spectrum
N A1 (17
BN

the latter when defining 0> through the condition al0) = 0 giving N, = 0. Obviously,
Eq. (17) leads to

f0 for n=0,

N, = o .
Ny ll+/:~2+ +/12n 2

i
for »n =1 (18)
If /- 0 then 22— 1 and we have N, — n.

From Egs. (10), (16) and (17) we get for the eigenvalues m, of the mass operator M in
the eigenstates |n) the recurrence formula

Myyy = AZm,+eQ? (19)

and the spectrum

g

m, = eQ? e

, (20)
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where

ho/c*Q? ho | | ah
f T wl2eQ? cZQZ%('"ZH) = #-D 2

is independent of Q because w ~ xQ?. The spectrum (20) follows from the recurrence
formula (19) if m, = O (the latter is a necessary consequence of N, = 0 and Eq. (10)).
We can see from Eq. (20) that m, ~ «Q? and from Eq. (21) that he = ec2Q?/% (1*+1)
and / = ah(i2—1)/ec 3.

If (more generally) m, # 0, it is natural to assume that in the formula (2) for Mc? the
constant myc? should be added to the right hand side. Then in all our subsequent equations
we should substitute M — M —m, and consequently m, - m,~m,. In particular, the
recurrence formula (19) and the spectrum (20) take now the form

My =g = A(m,—mo)+eQ> (22)
and

A1

A2 b
A0 —1

m,—mgy = £Q* (23

respectively. Here, the case of Q = 0 can be considered in the limit of 0 — 0, which gives
m, = m,. The spectrum (20) or (23) leads generally to the mass relation

Mpyyg—My4q
ST = const. = A2
My — 1,

(24)

which shows that 12 can be determined from three consecutive masses (e.g. m,, m, and

m,). On the other hand, for ¢ Eq. (23) gives Q% = m; —mqy = (m,—mg) (A2+1)7.
The recurrence formula (22) and the exponential spectrum (23) are identical (excitingly

enough!) to those introduced phenomenologically some years ago [3, 41* as “empirical”

3 The obtained exact solution for our quasiharmonic oscillator can be interpreted as clustering of »
“phonons” (n = 0, 1, 2, ...) of energies nkw (corresponding to the harmonic oscillator with / = 0) into
“quasiphonons’ of energies Nyec*Q? = Nnﬁw—;- (A2+1). Such a clustering is generated by the quasiharmonic
correction If(g, p) to the coordinate g, if the specific assumption (7) on f(g, p) is satisfied. Here, No = 0,
N, =1 and e.g. N, ~ 17, N3 =~ 273, ... (as for charged leptons for which we shall see that 1 ~ 4). This
specific quasiharmonic correction is an essential ingredient of our model, independent of the net idea of
Poincaré stresses. It is closely related to the non-canonical commutation relation of Saavedra and Utreras
[2], if the latter is boldly conjectured to hold inside leptons and quarks (rather than inside hadrons).

4 In the earlier paper cited as Ref. [4] the recurrence formula (19) (which in Ref. [3] and in the present
paper is valid only for my, = 0) is discussed in the general case of m, 5 0, leading to the spectrum

My = o+ Q312 — 1)) 2" 60?2~ 1)

with eQ? = m, —meA%. When Q +# 0, this spectrum is identical to the spectrum (23) but with eQ? = m; —myq
(and with the same mq, m,; and A in both cases). Thus, when Q +# 0, only &’s differ in Refs. [3] and [4] (by
mo(22—1)/Q?). However, in the case of Q == 0 one gets in these references my, = mo and my = moA*",
respectively, so that neutrino oscillations may appear only in the second instance (if mo #= 0 and A% # 1).



694

formulae for masses of four fermionic families f = v, e, u, d, containing several genera-
tions numerated by n =0, 1,2, ...:

V, = Ve, Vio Yoy oo (Q = 0),
e.=¢ 1 ,T ,... (@=—-1),
u, = u,c,(t), .. (Q = 2/3),
d,=d,s, b, .. Q@ = —1/3).

Thus, following the idea of Poincaré stresses and making use of the solution found by
Saavedra and Utreras [2] we did construct an exactly solvable quantum-mechanical model
(defined by the assumptions (2), (6) and (7)) which in the case of Q # 0 as well as in the
limit of @ — 0 1eproduces strictly these “empirical” formulae for lepton and quark masses.

4. A fit to experimental masses

For a more complete presentation let us quote from Ref. {3] the results of fitting the
formulae (22) and (23) to empirical masses. :

In the case of charged leptons (Q = —1) we determined the parameters A and ¢ using
the masses m,, = m,, m,, = m, and and m,, = m, = 1782*3 MeV/c?. Then we got

A=3993T0008 ~ 4, & =m,—m, (25)
and predicted the masses
m,, = 28.570:2 GeVjc?, m,, = 45523, GeV/c? (26)

for two next (hypothetical) charged leptons. From Egs. (21) and (25) we can calculate
he = (124 MeV)Q? and [ = 205x10*cm (and o/ = (3.86 x 10® cm/sec)Q?), where
0? = 1. Note that N, = 0,1,17,273, ... for n = 0,1,2,3, ... if 1 = 4. In the case of
neutrinos (Q = 0) Eq. (23) gives

m, = M, 27N

n

so that all m, = 0 if m,, = m, = 0. The mass degeneracy (27) implies the absence of
neutrino oscillations even if m, # 0 (cf., however, Ref. [4]).

In the case of up and down quarks (Q = 2/3 and Q = —1/3), putting m,, = m, ~ 0
and my, = my ~ 0 (in comparison with m, and m,) we obtain from Eq. (23)

»2n__1

4 o
m, ~4my ~ 3¢ PE

(n > 1). (28)

Hence, using the masses m, = m, ~ 1.5 GeV/c?® and my, = m, ~ 5 GeV/c? we got
g uy ¢ ! 2

A ~3.5 &=~34GeV/c? 29
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and predicted the masses
my, = my ~ 038 GeV/ic’, m,, = m, ~ 20 GeV/c? (30)
for s and t quarks® as well as the masses
my,, =~ 250 GeV/c?, m,, =~ 3100 GeV/c?,
mg, = 62 GeV/c?, my, =~ 770 GeV/c? 31)

for the next (hypothetical) quark doublets. So, toponium tt was predicted at about
40 GeV/c2. From Egs. (21) and (29) we can estimate hw =~ (0.51 GeV)Q? and [/ ~ 4.8
x 10-% cm (and w/ =~ (3.7 x 10® cm/sec)Q?).

5. Interpretation of the fit

Because of colour carried by quarks it is not surprising that A and ¢ (and conse-
quently w and /) result different for charged leptons and quarks. It is an extra bonus that
A values are not so different (they may become even closer if a bit higher values of m,
and/or m, turn out to be better). It means that 1 is independent not only of Q but, in some
approximation, also of colour (while £ as well as @ and / are evidently colour-dependent, in
contrast to w//Q? which is approximately colour-independent as can be seen from Eq. (13)).

The considerably larger value of ¢ for quarks than for charged leptons may be a con-
sequence of Coulombic colour interaction which in the case of quarks should intensify
Poincaré stresses working against Coulomb electric repulsion. To support this point
of view one may argue as follows. Since one can write & = ¢,+3 C(ey—ée;) where C is the
quadratic Casimir operator of colour SU(3) which is equal to O for leptons and 4/3 for
quarks, one obtains

&
o= (1+ & c) (32)

with a constant &, defined through the relation
5=t (fsl. -1). (33)
£

From Eq. (33) one can estimate &, =~ 0.17, so &, is of the magnitude of the colour coupling
constant a, = gZ2/4nhc as determined from quarkonia. Using Egs. (21) and (32) one gets

2e ¢2Q? &, 5 .
ML e — ~ 4
w fl(112+1)(1+ . c) *Q (34)

5 The prediction for ms may be questionable as the formula (28) may not work well for the consi-
derably light s quark where the ambiguity between the current and constituent mass is still acute. Note,
however, that 4 and ¢ are determined here from much heavier masses m. and n.
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and

~ -1
l=aiz(22+l)(l+%c) ' (35)

&c

Eq. (34) shows that in the approximation, where A can be considered as colour independent,
® is proportional to (a+&,C)Q? with &C being of the magnitude of the coupling constant
for Coulombic colour inierac'ion. It suggests that this interaction is responsible for
stronger Poincaié stresses in the case of quarks than in the case of charged leptonsS.

6. Consistency of the fit

Having fitted our model to lepton and quark experimental masses (and so determined
the constants w and /) we can check the consistency of this fit with the assumption of small
oscillations (explicit in Eq. (2)). To this end let us observe that the magnitude of our quasi-
harmonic oscillations can be estimated from the following formula for g = g+ If(g, p):

- fi h
{nlg? ) = E%(11|u+a+aa*|n> = }Z}% [(A2+ DN, +1] (36)

which is a consequence of Eq. (12) implying
aa*Fata = (LWPFHN+1. (37)

The assumption of small oscillations requires that <n[¢}25n> < rg, where r, is an experi-
mental radius of the ground state n = 0 (for charged leptons r, < 10~'¢cm is a radius
of the electron). Thus, from Eq. (36) we obtain the condition

L G ON,+1] < 2. (38)
He
Three length scales appearing in Eq. (38), #/ic, clo = [(A2+1) [22Q*(22— DT and r,, are
in our model uncorrelated and so independent. Of them, only the scale c/w related to the
oscillator frequency w is experimentally known as determined by masses: c/w = 1.59
x 1012 cm/Q? for charged leptons (Q? = 1) and c/w ~ 3.8x10~'*cm/Q?* for quarks.
Thus, in the present experimental situation, the scale i/uc connected with the oscillator
inertia u can be chosen as small as desired in order to satisfy the inequality (38) (with
fixed w, I and r,). Since N, = (2*"—1) (A2~ 1)-! grows rapidly with n = 0, 1,2, ..., the
condition (38) (with fixed u, w, [ and r,) gives also a limitation for the number of fermjonic
generations n which could be described by our model based on small oscillations.
At this point a comment is due on the radiation stability of the excited n-states (n => 1).

¢ Tt shouid be emphasized that the proportionality of @ to ®Q? means that n-states, both for leptons
and quarks, corresponds to the electromagnetic mode of internal oscillations. For neutrinos it is true in the
limit of @ — 0. The hypothetical colour mode with a higher frequency w, proportional to «,C is apparently
not excited for quarks, at least at present energies.
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As long as in our model of a spherically symmetric extended particle there are no internal
angular-momentum excitations, the internal n-states are always pure S states. It forbids
the real transitions n — n’ accompanied by the emission or absorption of a vector particle
e.g. a photon or gluon. This conclusion is independent of the length scale connected with
the radius r, of the ground state n = 0. Two-photon or two-gluon emission or absorption
is not forbidden but depends on the small radius r,.

7. Initial-stress perturbation

Hitherto, we did not discuss any initial conditions for f{(g, p) In>, though the initial
values f(0, p) |n),-¢ should be relevant from the physical point of view as determining the
initial stress at ¢ = 0 inside our particle (the 1elated potential energy when acting on |n)
gives V(0, p) nd,=0 = [F poPf%(0, p)—3 ha] Ind,- o).

One can see from the assumptions (2) and (7) that f{g, p) has the property of {—gq, —p)
= —f(g, p). Since for the ground state p|0},-, = 0 (or more explicitly (—ihd{g|0>/dq),-,
= 0), this property implies that

f(0,p) 1000 =0. (39)

Thus the initial stress vanishes for ground state n = 0. Note that [éf(q, p)/og] 0> = 0
from Eq. (8) (with M — M —my). So, f{g, p) 10> = O for any g in consequence of Eq. (39).

Now, the quantum fields (say, the electromagnetic and colour), when dressing our
so far bare particle, modify its equilibrium (for an analogy recall the dressing of a hydrogen
atom by the electromagnetic field). So, in our model, they should introduce a ground-state
initial stress into the mass operator (by changing in the simplest case the particle radius ry:
ro = ro+dry then g — q—dr,, where one can write dr, = —If,). Thus, in the simplest
case, the resulting dressed mass operator may have the form as given in Eq. (12) but with

(g.p) - fa,p)+/o (and M - M—my,),
fiw

5 (0)

2 | pw? ~2
(M —mg)c? = 2P + 7[q+lf(q, )+l -

where f, is a dimensionless constant determining the ground-state initial stress, whereas
f(g, p) remains unchanged satisfying Eq. (7) (with M .o = M, -o—my):
iocQz[p,f(q, Pl = (M- o—mp)e. (41)

Hence, one gets for M the formula

(M —=mgy)c? = ho[L (A2 +1)N+gla+a™)+g%] (42)
with
i2—1 \/2uc2 nQ?
= 2 o= i2—1 43
g fO“Q 12+1 flw an(A ) 8(124"1) ( )



698

playing the role of a “quasiphonon” coupling constant whose unknown magnitude depends
on f,. For a and a* one has still the commutation relations (11).

In the representation defined by n-states of the bare particle one obtains from Eq. (42)
the non-diagonal mass matrix M = ({#'|M|r)) with the elements

<n'iM}n> = (’nn+ gz":)én’n+ gk(\/ﬁ; (Sn'n— 1 +\,"!Nn+ 1 5n'n+ 1) (44)
(cf. Egs. (15) and (16)), where m, and N, are given in Egs. (23) and (17), respectively, and

ho . 2:60*  2(m,—my)
KN = ———2— =~ 3 - 3
¢ A"+1 Ac+1

(45)

(cf. Eq. (21)). For charged leptons x = (12.4 MeV/c?)Q?+ O(g?) with Q? = | and for
quarks x =~ (0.51 GeV/c?)Q?+ 0(g?). Note that

22 2
) A7 —1 )
gk = (fon ii‘:{) 2. (46)

If only three generations n = 0, 1,2 are relevant, Eq. (44) gives the nondiagonal
mass matrix of the form

my+glk, gk , 0
M =gk , my+gik, ., g JA2+1], (47)
0 , grJAZH1, my+gik

where m, = my+£Q? and m, = my+eQ% A%+ 1). For the matrix (47) one finds the follow-
ing eigenvalues:

2 K
Mg=mo+grll— ——
My g
K My +my—2mg) 4
M, = m, +g% [1+% (1— 27 °)]* +0(g"): (48)
my —myg m,—my
K " my+my—2m
M, = m+g°k [1-{-% (1+ 2 o)]
m; —my m,—my

a

where k(m;~my) ™ = 2(A2+1)"' and (m,+m;—2mg) (my—m,)' = (A2+2)A2. If
in the mass matrix M only two generations n = 0, 1 were relevant, one would obtain

me+gx|1— -
m; —nig

K

M,

]

+0(g%). 49)
M,

ml+g2K<1+ P
1~ Mo

Egs. (48) and (49) display an evident difference for M, already in the second order in g.
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One can see from Eq. (44) that m, = M,+ O(g?), where M, are eigenstates of M.
Since M, = m,.,, one gets consequently A = A, +O0(g?) and k = K+ O(g?), where
Aexp and K., are equal to 4 and x as they were determined for leptons and quarks before
(when g was zero):

-1
(m.—m) (m,—m,)

e or , (50)

(dmy—my) (me—~my) "

2m,—m,) (Ahp+ 1)
28epr2

Kep = =3
Jeexp T 1

exp

or
2

Z(Wlb - ’nd) (A'exp + l)_ 2

(in the latter expression (m,—my) (AL, + 1) = m—my defines m, ~ 0.38 GeV/c? if

m, > my). Thus, one can conclude from Eq. (48) that

g? = Mo—mo___
2
"w(l‘ —+1)
exp
1 ;Lgx + ~ .4 ] 51
m, =1\/11—g2xexp|:1+ — 1(1_ APZ L>:|>+O(g) (51)
exp Aexp
2 1 Aopt2
My = M)—gKe, | 1+ . 1+ T
exp exp

From Egs. (50) and (51) one may calculate g2, m,, m, as well as 4 and « (all up to O(g?))
in terms of the experimental values of M,, M, and M,, if m, is known. Henceforth we will
assume m, = 0 in accordance with the original formulation of our model, where Egs. (2)
and (7) hold (without the substitution M, .o = M -q— ).

In the case of charged leptons (where My, = m,, M, = m, and M, = m,), one gets
for A, and &, the values (25) (giving i.,, = (12.4 MeV/c?)Q* with 0* = 1), and for the
“quasiphonon” coupling constant g the reasonably small value

1
g? = 0.0467 = i (52)

In the case of quarks (where Mo, = m, or my, M, = m, ~ 1.5 GeV/c*> or myand M, = m,
or my =~ 5GeV/c?), one obtains for A and &, the values (29) (implying

exp

Kexp = (0.51 GeV/c2)Q?) and for g the values

g? ~ 0021 = ¢ (53)
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or

g 2014 = — (54)

for up or down quarks, respectively. Here we used the popular curtent masses
m, ~ 4 MeV/c? and my ~ 7 MeV/c2.

The n-states of the dressed particle, |n)°, when expanded into the n-states of the bare
particle, |n), define the transformation coefficients {(n'|n>> = {(n’|Un>. They are matrix
elements of the unitary transformation operator U which mixes the bare n'-states in order
to produce the dressed n-states:

% =¥ in"> n'|UIny = Uln), (55)
where
Mind? = M nd® (n=10,1,2,..) (56)
or
Y ' Min""y "' [UIny = M, (n'{Uin) &)

is the eigenvalue equation for the mass operator M.

In the case of only three relevant generations n = 0, 1, 2, whete the mass matrix M has
the form (47) implying the eigenvalues (48), one finds the following orthogonal transfor-
mation operator:

(g gx g 2
1-3 » s 33 e
m, m, mia® /A2 +1
2.2 2 17 1 1 :
gK L 8K AT+ gi /A2 +1 ;

U= |- 14 1+ 55, BT +0(g%), (58
", 2 om? ( i m, A2 &) (5%
gk’ gK AT+ 1 [ g?w* (A2 +1)

mt A2 +1 ’ m, 2 ’ 2 o mit

where m, = (24 1)m;, was used. Here, the columns describe three -eigenvectors
P = (n'|UInd) (n = 0,1,2) of M in the basis of |n'> (W =0, 1, 2).

Since all terms in Eq. (58) (except for 1’s) are of the order of g or g2, one can here
replace my - M,, i — 4, and x - K,,,, not changing the result up to the second order
in g. Denoting s = gx,,,/M, and putting in the case of quarks A, ~ 3.5 as determined
from m, ~ 1.5 MeV/c? and m,, =~ 5 GeV/c? (cf Eq. (29)), one obtains the estimation. valid
up to the second order in g:

(1-152 , 0.0025
11,
—s ., 1= ——s% 0.30s .
U~ 2 . (59)
0.088
027s* , —0.30s , 1-— s?

2
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Here, M, = m. ~ 1.5GeV/c* or m, ~ 038 GeV/c? and n., ~ (0.5]1 GeV/c?)Q? with
Q = 2/3 or —1/3. Thus, if taking the previously estimated g ~ 0.02] or 0.14, one gets
s~ +0.022 or +0.057 for up or down quarks, respectively.

Howevei, Eq. (48) may be expected to fail in giving the “true mass” of s quark which
is the lightes: excited quark (n = [ state in d family). In order to repair the value of s for
down quarks we will introduce an unknown parameter ¢ (a “parameter of ignorance”)
such that s = Egre,,/M, ~ +0.057 ¢ for d family (where M, = m, ~ 0.38 GeV/c?), whilst
still s = gwe,p/m; ~ +£0.022 for u family (where the lowest excited mass M, = m_ ~ 1.5
GeV/e? is considerably heavier and so approaches the “true mass”™). Then M /¢ = m, /&
may be interpreted as a “‘corrected mass’ of s quark.

8. Cabibbo-like mixing

Four fermionic families f = v,e,u,d (each containing several generations
n=0,1,2,..) can be labelled by charge and colour: f = (Q, C) with /= (0, 0), (=1, 0),
(2/3, 4/3), (— 1/3, 4/3), respectively. In our model, the quantum number # is defined by the
eigenvalue equation Nn)> = N,'n) for the operator N = a“a, where a and a* satisfy the
commutation relation (11). The latter involves the Q-independent parameter 2 which in
an appreximation is also C-independent: A = A(C) is a gentle function. Thus we get the
gentle fonctions of C:1n) = |n)¢ and N, = N,¢, the latter given in Eq. (17). The unper-
turbed mass operator (M. o—mo)c? = he 3 (A2+1)N, besides on 4, depends also on the
parameter « depending in turn both on Q and C: w = «(@, €). So we have

Mo =0lnQCY = m,pclnQC5, (60)
where

[nQCH = npclQ5 1CD (61)

are simultaneous eigenstates of N, charge and colour (the larter described by the quadratic
Casimit operator of colour SU(3)), and

honQ, C) a2 i
N, = filge = Hlgget 5 3 [A(C)+1]N,¢. (62)
c

In conclusion we can see that the cigenstates n) = n)c of N can be considered as identical
for both lepton families v and e (C = 0) and for both quark families u and d (C = 4/3).
In an approximation (which may be of a fundamental physical importance), they are identi-
cal also for lepton and quark families.

When the bare mass operator M, _, is perturbed by the initial stress determined by
the parameter f,, passing into the dressed mass operator M 7, we obtain

MinQC»® = M,pcinQC>®, (63)

7 Other possible effects of dressing our bare particle on its mass operator and its wave function are
not discussed in this paper.
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where
[nQCY® = |ndgclQd 1C> (64)

and M, = M,y is given, in the case of three generations, in Eq. (48). The functions
[P = 1n>gc may be gentle with respect to both indices Q and C because the function
In> = nd¢ is gentle and ) = |n)+ O(g) where g = g(fo, @, C) may be small enough.

The wave functior (or the quantum field) of our bare extended particle can be written
down as

'PQC(Xa q) = 2 <‘11n>c1Pch(x)- (65)

Similarly, for the dressed particle

woclX, q) = Y qIndge¥nac(x)- (66)

n

Since |n)ge = Ugclndc, the wave functions (or the quantum fields) y,oc(x) and Yoac(X)
are connected through the unitary transformation

Yuge(X) = Z c<”iUQci”'>cWBoc(x)- (67)
Thus, the charge-changing current for interfamily transitions e = v or u — d (where
QF1 - Q with (Q,C) = (0,0) = v o1 (—1/3,4/3) = d, respectively) is given by the
formula

+ o

Jux) = _fw dq"pgc(x, DI o z1x, q)
= Zn @ch()‘)I—;‘%Q;xc(Jﬂ
= ,,Z? —UGEQC(X) C(”'5K5c1§">c rﬁf’»?g;xc(x)
= Z Pnoc T Wrg 31¢(%), (68)
where
Koc = Ugz1cUqc (69)

is the generalized Cabibbo-Kobayashi-Maskawa (CKM) unitary operator which becomes
the usual CKM unitary operator [5] when (Q, C) = (—1/3, 4/3) = d (corresponding to
interfamily transitions u — d) and if three generations n = 0, 1, 2 are assumed. In Eq. (68)
the unitary operator (69) mixes the dressed n'-states in the family v or d, leading to the
CKM-like rotated wave function (or quantum field)

V’fgc(x) = z C<’liKQC|’l(>CV"BQC (70)
with (Q, C) = (0,0) = v or (—1/3,4/3) = d, respectively. As is well known, this mixing
is invisible for leptons if all neutrino masses M, = m,,, are zero or, more generally,
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are degenerated {6}, since then the mass matrix M, of v family commutes (trivially) with the
CKM-like matrix K, for leptons and hence $,M,p, = (5, M, )95 = Po(puaM, )pl.
Note that in our model the operator My as well as the operators Uyc and K¢ are inde-
pendent of the Dirac ys matrix. In the representation given by n-states of the bare particle
all three are real matrices (cf. Eq.(44)) and, therefore, the two latter are orthogonal (as being
unitary).

As to the derivation of Eq. (68) we should like to emphasize that the Q-independence
of In) = |n)¢ plays there a crucial role because otherwise we would get the bilinear form
in the generations n =0, 1,2, ...:

Jp(x) = X az’gc(v\') QC<”IIR>Q;; 1611‘%Q; 1cdX)s (7n

where in general 5c{n'|nYg. c # 0 for n’ # n. The reason is that in this case [n)oc and
InYg1c would be eigenstates of two different operators Noc and Ng_ ;. Fortunately,
in our model the operator N is independent of Q: N = N, (and approximately of
C: N = N is a gentle function of C). This remark reveals, however, a possible
additional mechanism (beside that given by the non-diagonal mass matrix) of spoiling
the separate conservation laws for sequential leptonic and quarkonic numbers for
the generations n = 0, 1,2, ... (and for C = 0 and C = 4/3). Such a mechanism might
be provided in our model by introducing a slight Q-dependence of the operator N = Ny
related to a gentle function 4 = Ai(Q, C).

In the case of quarks the CKM unitary operator can be estimated in our model from
Eq. (59) applied to u and d families. Then using its definition K4 = U, 'U, we calculate
up to the second order in g, and gy:

(1-4 (s4—5,)° ., Sa—Sy , 0.02252—0.30s45,+0.275% )
(sa=5.) = L s 03065 —5)
— (54— , 1= —— (54=s5,)% 0.30(s4 =5,
Ky~ | 47 2 T ¢ . (72)
. : 0.088 ,
0.2755 —0.30545,+0.022s;, —-0.30(s4—s,), , 11— - (Sa—5y)°
~ -

where s, = g.Kopo/m. and sy = £gyk.,, o/m,. Taking the experimental value of Cabibbo
angle as an input, sq4— s, = sin ¢ = 0.219, and putting m, ~ 1.5 GeV/c?, m, ~ 0.38 GeV/c?
and ., ~ (0.51 GeV/c*)Q? we can evaluate

024, f42

= 73
0207 ° 7 |35 73

s, = +0.022, 5= {

if 5,54 > 0 or < 0, respectively. Then the ““corrected mass” of s quark is m,/¢ = 90 MeV/c?
or 110 MeV/c?. Here, we used the previous estimate s, ~ +0.022 and s4 > +0.057¢,
corresponding to m, =~ 4 MeV/c? and my =~ 7 MeV/c? but containing the extra parameter ¢.
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Then from Eq. (72) we obtain

, —0.00018)
0.9% , 022, { 0.0023
Ky~ =022 , 097, 0.066 . (74)
0.014
{0.012}’ —0.060, 1.00

Comparing the matrix (74) with its standard form [5] (for real matrix elements)
¢, ., 5,C3 . 553
Kyqy=| —s5,05, €,C3€345555, €,€383~5,C31, (75)
—$(83, €(853€3=C353, C€15;53+€,C;
where s; = sin0; and ¢; = cos 0; (i = 1,2,3 and s,c; = sin i), we can conclude that

up to the second order in g, and g4

—-0.065 —0.00082
S1022 5y > {—0.054’ 3 { 0.011 (76)
As a check, it is worthwhile to observe that the orthogonality condition is satisfied

quite well for the matrix (74), though it was calculated perturbatively. In fact,

¢ 0.015] )
— 2
0.98 . =022, {o.mz}
K;j'~| 022 . 097, {:g‘ggg} (717)
0.00056
L{o.oozs } 0.067, 1.00 ]

(and Det K, ~ 1.0005 in both cases), so that Kg' ~ K{.
An algebraic relationship of s; (i = 1, 2, 3) with s, and s4 follows from the comparison
of the matrix (72) valid up to the second order in g, and g, with the standard form (75):

Sy & Sg—Sy  Sp—s83 = —0.30(sg—s,),  Sa+s3 > —0.25(s4+5,) (78)

From the definition of s, and sy and from Egs. (50) and (51) for «.,, and g* we can write

5, = Ex m 5d—q:x\/——— \/J’f“ (79)
me ’ns(g'x)

7 Kex ) ;ex o ” 2
X = \/——cﬁfL = \/—»-’:« i ~ \/_2 ~ 0.42. (80)
M~ Kexpu Mg — RKexpg Aexp ™ 1

Here, éx ~ 1.8 or 1.5 and another “corrected mass” of s quark my(éx) 2 ~ 120 MeV/c?
or 180 MeV/c? may be considered.

where
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9. Conclusion

The model described in this paper suggests that the puzzling phenomenon of fermionic
generations may, in fact, be caused by ‘“‘quasiacoustic” excitations of fermionic internal
charge distribution kept in equilibrium by joint action of internal electromagnetic forces
and Poincaré stresses (the latter representing the effect of other internal forces). However,
the way in which these ‘‘quasiacoustic” excitations may be generated is another essential
ingredient of the model, where the mass operator (or hamiltonian) is defined only impli-
citly through a closed logical loop: mass depends on mass which depends on mass which ... .
Nevertheless, the specific, quasiharmonic-oscillator model proposed in the paper is exactly
solvable, giving explicitly the exponential mass spectrum m, —my = ¢Q*N,(n = 0, 1,2, ...),
where N, = (A>"—1) (A2—1)'. The fitted 4 is ca. 4 and 3.5 and the fitted ¢ ca. 105 MeV/c?
and 3.4 GeV/c? for charged leptons and quarks, respectively. The excitations having
energies ec2Q* N, are here “‘quasiphonons”. Since m,—nig ~ Q2 all of them are excitations
of an electromagnetic mode of internal oscillations (which is largely modified in the case
of quarks by internal colour forces).

When an initial stress appears in the quasitharmonic oscillator, the model is perturbed
and gives a mixing of the previous unperturbed n-states that may be consequently interpreted
as Cabibbo-like mixing of fermionic generations n = 0,1, 2, ... .
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