Vol. B15 (1984) ACTA PHYSICA POLONICA No 1
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An electromagnetic wave propagating in the toroidal waveguide is considered as an
electromagnetic gravitational antenna. An interferometric method is applied to measure
the disturbances of phase of the electromagnetic field caused by the incident gravitational
wave. The calculations presented take into account the dispersive and dissipative phenomena
occurring during the interaction between electromagnetic and gravitational fields. The active
cross-section of the antenna interacting with coherent and pulsed gravitational radiation
is estimated. Experimental possibilities presently available are discussed. Limiting fluxes
in the astrophysical range of frequencies measured by the interferometric electromagnetic
antenna are a factor of ten or so smaller than in the case of a classic mechanical antenna.
Moreover the antenna could be used for carrying out a gravitational Hertz experiment.

PACS numbeis: 04.30.+x

1. Introduction

Among different gravitational antennae the mechanical antennae are still intensively
investigated and used in experiments. It is due to the historical development of the pioneer
ideas of Weber.

The mechanical antennae are very promising in their further development, because
there are many experimental possibilities of their refinement through Quantum Nonde-
molition Measurements, the progiess in material technology, and cryogenics.

From the beginning of sixties the idea of gravitational antennae with constant or
varying electromagnetic fields (EM) have been introduced and developed. The EM field,
assumed as the main component of the antenna, interact directly with a gravitational
field, whereas in the mechanical antennae the EM field plays only an auxiliary role.

The idea of application of EM field to the detection of gravitational waves requires
an estimation of such a field configuration which yields strong interaction of the field
with the gravitational wave, and a development of the electromagnetic detection technique
of the disturbances of EM field caused by the interaction.
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There are many solutions of these two problems. For example it is possible to construct
electromagnetic systems in which a strong resonant interaction of both fields takes place.
The principal EM ficld parameters, the phase shifts and the energy, might be experimentally
measured with an accuracy comparable to the quantum uncertainty limit.

In the case of mechanical antennae the technique of vibration measurements has been
developed in the last twenty years, and their basic principles of construc¢tion have remained
unchanged. Contrarily, there are many possible constructions of the electromagnetic
antennae, but till now no optimal construction was developed. Thus, there were no attempts
to construct such antennae.

In this work a theoretically optimal solution of a EM field antenna construction
is proposed, that seems to be experimentally optimal as well.

2. The graviton-photon resonance

The most interesting suggestion of the EM field gravitational antenna in the form
of a toroidal waveguide with induced propagating coherent electromagnetic wave was
given in 1971 [1, 2]. ,

The resonance exchange of the momentum between the gravitational and EM fields
occurs, when the torus lies in a plane perpendicular to the direction of propagation of the
gravitational wave and EM field circulation period approaches twice the value of the gravi-
tational period. Four spatially distributed areas of EM field wave packets are formed
in the torus, due to EM and gravitational wave interaction, with momenta alternatively
larger and smaller than the primary undisturbed momentum.

A measurement of the amplitude of an EM field distutbance gives the possibility of
determination of the disturbing gravitational radiation intensity. Changes of frequency,
amplitude and phase shift follow the momentum disturbances, that allow us to measure
one of those quantities only.

In this work the toroidal electromagnetic antenna, in which the phase shift changes
are measured by use of an interferometer is further considered. Its simple model has been
discussed earlier [3, 4]. In the present model the influence of the EM field dispersion on
the graviton-photon resonance is taken into account, because the antennas with a disper-
sional waveguide may have better properties than the antennae with a nondispersional
waveguide.

2.1. Equation of frequency deviation

Let us consider two wave packets of photons which propagate inside the toroidal
waveguide along two geodesics lying very closely to each other. To describe a photon
propagation we ought to introduce two parameters: an affinical parameter A which varies
along the photon trajectory and a parameter n corresponding to separate geodesics. The
vector n”, defined by

a B
= X dn = n*dn 2.1
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is an infinitesimal vector joining points with the same value of 1 on neighboring geodesics
with values of n differing by dn. The 5" vector is invariable in the flat space because of the
equidistance of parallel geodesics. In the curved space the n* vector fulfills the equation
of geodesics deviation
" ox* , 0x
iz ﬂﬂv'gz"? 2’ 2.2)

where symbol T means the covariant derivation with respect to A. That equation is easily

adapted to description of photon propagation. The wave vector of photon may be defined as

ax*
b=, 2.3
k oA @3

ox* .
The covariant derivative of o with respect to A can be written in the form
n

8 (ox*\ & (ox*\ ok*
si\on) on\or/ én

hence, using (2.1) we have

on* _ oK*
84 én
The above expression introduced into (2.2), with (2.1) taken into account, gives
S2kH
= —R* . k*nfL". 2.4
33m <ol @4

The equation (2.4) describes the space-time deviation of the wave vector of pliotons prop-
agating in the gravitational field. In the waveguide the photons undergo the four-dimen-
sional “acceleration” caused by the interaction of the EM field with the waveguide walls.

The waveguide influences the changes of the direction of the wave vector in space-time
270

not affecting the photon energy w, = k°. Thus the component of the deviating

a

Adn
“acceleration” of photons vanishes. The mutual change of k° in space-time, which will
be of interest for us further, may be connected with an interaction of the EM field with
the gravitational field only.
Let the locally plane, weak gravitational wave be expressed as

ha(x’, 1) = Re {hyefy’ +he}, 2.5

where e{*® are the unit tensors corresponding to two states of wave polarisation. That

wave fulfills the orthogonality 4;;; = h;;k; = 0 and no trace hy, = 0 conditions.
Let us assume, that the local frames connected with any points lying on the waveguide
circumference are Lorentzian, and that the EM wave field frequencies, which are registered
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by in the same frame, equals @, = k%. Then, according to (2.3) ST w2 L where ¢
¢z 0
. o o 7
is the local time of these observers. Similarly S where x denotes the space coor-
n x

dinate measured along the waveguide circumference.
Taking into account that »* = (0, n'), the wave vector can be written in the form

k* = (k° k'), wheie k' = —% n’. The phase velocity of the EM field in the waveguide
UP
and group velocity denoted as v, and v, respectively, fulfil the condition v,v, = c.

The presented above considerations allow us to express equation (2.4) for the k°
component in the form

o%k°
ox0ot

= - ngoRiOkOnink' (2.6)

Equation (2.6) gives the relative changes of the photon frequency in the gravitational
field as well.

The only non-vanishing components of the Riemann tensor for the plane gravitational
wave are R, components. The location of the detector waveguide at the null point of
frame does not affect the universality of the considerations. Then, for the wave described
by equation (2.5) we have

1 . .
Rioro = — 20 (el H, +efPH,}, Q2.7

where
H,(t) = Re {A,(1,0)} and H,(t) = Re {h,(t, 0)}.

H,(t) and H,(2) are the time dependent amplitudes of the gravitational wave field in the
first and the second polarisation state, respectively. These quantities have spectral proper-
ties similar to the amplitudes of the electric and magnetic fields of the electromagnetic
waves. If the gravitational wave propagates along the axis x', and the EM wave field moves
in the anti-clockwise direction along the citcle with a radius r, lying in the plane x?, x3,
we have: Riy30 = —R3030 and R,030 = R3g20 and all these components are the non
zero ones, corresponding to the two states of polarisation. After performing appropriate
calculations, to within of an unimportant phase factor, we obtain

, 1 . .
Rippon'n® = — 70 {H, cos k,x+H, sin k,x}, (2.8)
¢

2
where k, = —. Substituting (2.8) into (2.6) we have the deviation frequency equation in
r

the final form

2
Fo, v

ox0t ¢?

® {H, cos k,x+H, sin k,x}. 2.9
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Its solutions are w (1, X) = w,+ w41, x), with boundary conditions for 7 = 0; @, = w.
Because the wave amplitudes always are |H| < 1, thus o, < Weo. In the above analysis
the principles of geometrical optics were used. It demands that the space regions of distur-
bances of the EM field extended over 1ougly to 1/4 of the waveguide circumference are

c
much larger than the EM field wavelength, which means that r » 1, ~ — . Such systems
we

are considered in this work.

2.2. The phase deviation equation

The wave packets propagating in the dispersive detector waveguide will be considered.
Their frequency is continuously perturbed by the gravitational field in the way described
by equation (2.9). A solution of a linear dispersive problem might be reduced to calculation
of the Fourier Integral

1 .
(tx) = 9o f iw)e " dow, (2.10a)

where
w(t, x) = ol(t, x)t—Klo(t, x)]x (2.10b)

is the phase of the wave. The K[w] tunction is a dispersive relation of the waveguide me-

dium. The spectral function y(iw) corresponds to an initial profile of a wave packet. To

obtain a phase deviation equation means in fact to deduce a relation between equation

(2.9) and (2.10b). From the experimental point of view, considering small relative values

of frequency deviations, we will be interested in an amplitude and a wave phase after
1

the perturbation evolution which satisfies the condition ¢ > —. That allows us to use
w

asymptotic methods to obtain a solution of (2.10). The solution is sought with the follow-

ing boundary conditions:

1 4 20 =
X = ,? . Gt > ’? - ’)’1
. oy
for t=0 2. 90,7 =1 5. =4 = w, (2.11)
0t |i=0
. oy
3. y(iw) = F[(t, )] 6. o= —keo = —K[w,].
X =0

Using a stationary phase approximation or the method of steepest descent [8, 9] we obtain
non-zero values of (2.10) for w = w,, for which the equation

1
= — t+ 2.12
X = gthn (2.12)
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is fulfilled, with K’ = N . Somewhere in space-time volume described by (2.12)

WD [o=0,
the “energy center” of the wave-packet is located, and hence the maximal density of the
energy dispersed in the medium.
It is very convenient to analyse the phase deviations in the antenna within the frame
moving with a mean velocity of the EM field, in which the coordinate is

$ime = X—0g0 * 1, (2.13)

1
where v,y = ' is the group velocity of the undisturbed field. In the volume
0= 0De0

corresponding to the stationary points (2.12) the wave phase equation (2.10b) may be
expressed in new coordinates as

K[o(z, 9]

¥, &) = w(r, 81— Ko 0]

v~ K[a(z, O]n. 2.14)

Differentiation of (2.14) with respect to t and & leads to equation

Py K'K( &w N 0 [ Pw )} Km0 (azw +ou) 2.158)
= — - — . .15a
otort  (K')* | oton Tﬁr o0éor ”ar oot (
N . ’K e
In the nondispersive medium K" = P =0 and the phase deviation is
O lo=w,

described by the second term of (2.15a). Its physical meaning might be more clear when
noticed, that in the nondispersive medium the condition (2.12) is identical with the trans-
formation (2.13) and the phase equation (2.14) is then reduced to (7, &) = — K&, After
differentiation with respect to ¢ and t the phase equation for nondispersive medium is
obtained

3y (. 0w 0 [fdw 5
552-5[ = —K {2 aEon +€5§<0§5‘t)} +O0(h%). (2.15b)

. o ’w
The partial derivatives
o&o

from equations (2.15a) and (2.15b) are directly related

T
to the frequency deviation equation (2.9). Equation (2.9) is identified as a standard type
equation Fo _ o ith conditi OH _ 0
q awor ~ C o € With condition = =0.
0 0

i) 0 . .
Assuming Pl il S and a3 = this equation might be expressed in

the coordinates in the form

o oH
2l _c,

0&at ot

iwpt

et (2.16)



The frequency o, described as

2
w, = kv, = ;—v,o = 2wy, 217

where w, is the angular frequency of photon circulation in the waveguide, represents
the resonant frequency of the antenna. The resonance of both fields takes place, if the
condition w, = o, is satisfied. Finally, after taking into account (2.16), the equation (2.9)
expressed in £ and t coordinates becomes

2
0°w  UyWe0

dtot 2¢2

{H, cos (k, +w,7)+H, sin (k,& +,1)}. (2.18)

After substitution of (2.18) into equations (2.15a) and (2.15b) they represent the phase
deviation equations which were sought. The structure of the above equations exhibits
the resonant character of the EM field interaction with the gravitational field. For ¢ = const
and o, approaching to o, we have H sin w,7 ~ sin o, * sin 7, which is a slow oscillating

function of time. The equations (2.15) become of the type ‘Z:f
increase monotonically in time. The substantial difference of the graviton-photon resonance
in dispersive and nondispersive media is obvious on the basis of equations (2.15). Equation
(2.15a) contains the second derivative with respect to time and (2.15b) has the first deriv-
ative of time. This allows us to obtain the solution  ~ 72 in the first case and p~ 7
in the second case.

During the derivation of formulae (2.15) the dispersive and nondispersive effects
were separated. In the dispersive waveguide both dispersive and nondispersive effects of
phase deviation take place and the general solution is a superposition of solutions of (2.15a)

= const. Their solutions

and (2.15b). In the case of sufficiently large TIZ’SZ_ value and > "
persive effect is dominant, which allows us to neglect the contribution of nondispersive
effects. '

Integrating the equation over & it is necessaly to take into account the periodical

the dis-~

v,

2
boundary conditions of the EM field in the toroidal waveguide. If 4, = represents.

[
the EM wave length in the waveguide, the boundary condition is
N, = 2nr, (2.19)

where N is a natwial number. As it follows from (2.17) and (2.19) the ratio of the EM
field frequency w, and the detector resonant frequency w, is

W= 20 (2.20)

The number 4" appears to be one of the most important parameters of the antenna.
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The simplifications made before derivation of the formulae (2.15) ought to be remem-
bered. Precise calculations need an initial profile of the wave packet y(iw) and the exact
solution of equations (2.10), with a given dispersion relation, consistent with the frequeny
deviation equations (2.6) and the dissipation taken into account. These calculations lead

1 ,
to additional terms of order - and in the solutions of (2.15), which describe unsteady

w,T
state in the antenna. Further on these terms are neglected, and equilibrium processes in the
antenna, based on the solutions of (2.15), will be considered.

2.3. Solutions of the phase deviation equation

A general solution of equations (2.15), with boundary conditions (2.11), has a form
W, &) = ~kyo - E+ys(t, £). When neglecting nondispetsive term, we have for (2.15a)

KK" ik
po(7, O) = K po(v)e (2.21a)
and for equation (2.15b)
Pz, &) = —K'yy(v)Ee™, (2.21b)

The variable ¢ may have values from the 0 < & <{ 2nr interval, where r is the radius of
antenna waveguide. The interferent process of the phase deviations measurement in which
a spatial phase difference plays a fundamental role y,(4¢, 1) = y,(1, &2)—wslz, &) for

A
A = Ax = E,— ¢ = —21 = % waveguide circumfeience will be analysed in Section 3.

After integration of (2.15) over & between ¢, = ¢; and &, = &,4+4¢ with the above cun-
dition, the phase deviation equation depending on time only is obtained

d . .
d;’;“ = B2 A D{H, sin (w1 — ) — H, cos (w7 — )} (2.222)
Wa _ gy lop H,si 2.22b
I B JV;{ 1 €08 (0, 7+ ;) + H, sin (0,7 + )}, (2.22b)
where y; = k.&; is the initial phase, D = ) and f = %’-.
0= Wep

The electromagnetic resonant gravitational antenna described by equation (2.22)
represents the dynamic linear system with two inputs H,(z) and H,(t) and an output
w4(t). The p,(t) function is a slowly increasing function of time, describing a phase shift
between two regions of field at the distance of 1/4 of the waveguide circumference. A general
solution (2.22) may be found with the help of the following conditions

1. H (1) and ﬁz(t) are the real stationary processes in a broader sense (5),
2. the following conditions are satisfied (I:I () = (A 2(t)) =0,

1
3. time of interaction ¢ > . (2.23)
W,
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Equations (2.22) might be understood as stochastic differential equations then, an the
conditions 2 and 3 make the integration easier. Conditions 1, 2 and 3 are fulfilled for the
antenna interacting with the radiation having a thermal spectrum and a high time coherency.
as well. Equations (2.22) might be solved using the substitution method, for example

wa(t) = p(t) {cos w;(sin w,t—cos w,t)—sin p,(sin o, +cos w,1)}. (2.249)

For the boundary conditions H,(t) = 8(t), H.(z) = 0 and H,(t) = 0, H,(t) = 6(¢) we
have two solutions of equation (2.22a)

() = 1 BP#'DU(1) - t{cos p,cos w,t—sin w,t)—sin p,(cos ! +sin w,t)}
P2(t) = 5 BPADU(L) - t{ —sin py(cos w,t —sin w,f)—cos p;(cos w,t+sin w,t)}, (2.25)

Lt =0
0,r<90
for both states of gravitational wave polarisation. The solution zﬁ(t) for any function H(¢)
fulfilling conditions (2.23) is a convolution of H(#) function with the pulse responses (2.25).
After the substitution to (2.24) we obtain the expected solution.

v4(t) = BA D{[H (HU(2) sin (0,8 — ;)
— H,(HU(2) cos (w,t— ;)] * tU(D)}. (2.26)

The multiplying functions U(?) in equation (2.26) describe switching of the interaction of
a group of photons, which at the moment ¢ = 0 is introduced to the waveguide and begins
to interact with the gravitational field of the wave, while the element » tU(r) describes the
time development of interaction of a photon group. Calculating the integral of the con-
volution, solution (2.26) may be expressed in an equivalent form

where U(?) = { is a unitary jump representing the pulse responses of the antenna

pat) = BN Dg {H,(1) sin (o7~ ))

— H,(z) cos (w,7—;)} (1—1)d. 2.27)

If H,(¢t) and H,(t) belong to the family of normal processes, then the 1}3 4 IS a nonstationary
Wiener-Levy process [5]. For ¢ > 0 the mean value of that process {(y,> = 0, the variance
(93> ~ t, that means, that the antenna phase deviation accumulates in time. That equation
has a very important meaning in a case of gravitational radiation with thermal spectrum.
For the coherent radiation, when H,(¢) or H,(t) are harmonic functions of the H(t)
= w:hc cos w,t type and o, = w,, the solution y, ~ t?> are obtained. Continuing an
analogous procedure for the nondispersive antenna we obtain the solutions of the phase
deviation equation (2.22b) in the form

r .
Yalt) = B — ([H(OU() cos (@t +)

+H()U(8) sin (o, +9,)] * U()}. (2.28)
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The process y, gives {9,> = 0 and the variance {5y = 0, if H,(t) and H .(f)-are assumed
to be normal processes. When H,{(t) or H,(t) are harmonic functions with frequency w,,
we obtain g, ~ ¢. This type of antenna was considered earlier {4].

3. The electromagnetic gravitational antenna with the interference phase detection

The solution (2.21b) implies, that the maximal difference of phase deviation appears
for two points of the antenna at the distance of 1/4 of the waveguide circumference length.
The method of the gravitational wave detection analysed here is based on an interference
measurement of the phase deviations in the electromagnetic antenna.

Let us analyse at first a simple model of the antenna which consists of a lossless toroidal
waveguide and four ideal lossless switches of the EM field placed every 1/4-th of the antenna
circumference. Also, let us assume, that the switches introduce no disturbances of the
EM field till the moment when they are switched on to transmit the EM field from the
waveguide to the external waveguide connected with an interferometer. In the interfero-
meter an interference of the fields will take place in the time interval equal to 1/4-th of the
circulating period of the photon in the antenna waveguide.

According to (2.13) and (2.21) the equations of the EM field for the two points of
the waveguide with coordinates x; = x; and x, = x;+7 2nr may be expressed as

@1(t, x;) = @o exp [ —i(w ot — keoX)] exp {i(t) exp [ —i(w,t —k,x)1}

@2(t, x;) = @o exp [ — i(waot —Kk0%:)]

A Ak
X eXp [— ikeo 55] exp [i -—'2-5] exp [ —i(w,t —k,x)]}, 3.1

where @, is a field amplitude. If |9, < 1 and N is an even number, at the output of the
interferometer summing fields amplitudes we obtain the amplitude

Pa(t, x;) = 2i@oy(t) exp [ —i(w.ot —KeoX;)] €xp [—i(ot—kx)] 3.2)

Because an output amplitude of the antenna given by equation (3.2) is directly proportional
10 p,, i.e. to the gravitational wave amplitude H, according to (2.27) and (2.28), so we have

@4 ~ Hyexp [ —iw,t]g, exp [—io,t] 3.3)

which means that the detection signal of the interference antenna appears at the output
of the interferometer in the vicinity of two frequencies

wy = w, o, 3.4
The above peculiarity is characteristic for the heterodyne systems. The heterodyne charac-

teristics of the antenna make the system significally intensive to external disturbances
during the detection process.
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A measurement of the detected signal energy allows us to estimate the gravitational
radiation energy flux, which penetrates the antenna. If the energy of the EM field existing
in the antenna waveguide &, ~ |@,|?, then at an output of the interferometer after switching
on the field switches, we have the energy

€a = Sol'l’Alz- 3.5

This model of antenna does not take into account the influence of the EM field energy
losses in the antenna, which limit the interaction time of both fields. In fact, the construc-
tion of the waveguide with sufficiently long lifetime of photons is the most serious technical
problem. A construction of the EM field switches seems to be even a more difficult problem.

R
( . 1 (0 A= -
PHOTONS PHOTONS
heo, i, #wg) S < e
A I~ il s e F 10
(oF
nn n
TO GR
GRAVITONS

hug

Fig. 1. The diagram of interference electromagnetic detector of the gravitational waves, realizing continuous

interference process. A — interference detector antenna; Cyg — directional coupler with a small coupling

coefficient joining antenna waveguide and external photon source; Ca — directional couplers with small

coupling coefficients joining antenna waveguide and interferometer; I — antenna interferometer; Gao —

generator source of photons; R — Dicke system radiometer; T, — standard noise source; S — switch

of the receiver radiometer; K — high frequency amplifier; F — RC integrating filter; Gg — switching
generator

To eliminate the above mentioned difficulties let us analyse a model of an antenna,
in which a measurement of the phase shifts is continuous. Such a measurement may be
performed by continuous extraction of small field fluxes from two points at the distance
of 1/4 the waveguide circumference and performing the continuous interference detection.
Extraction of the field is possible, with minimal field disturbance in the waveguide of the
antenna, by use of directional couplers, which are well known in the waveguide technics
both for microwave and optical bands. A diagram of the antenna is presented in Fig. 1.
Detection power occurring at the output of the antenna interferometer is accordingly
smaller than that in the pulse antenna, but might be measured continuously. To preserve
in the antenna the stable EM field energy, which decreases due to dissipation introduced
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by the waveguide and the interference process, the external soutce of field energy may
be used. In the case of the antenna with continuous detection, losses and space dispersion
of energy, together with energy completing, lead to its dynamical equilibrium. That equilib-
rium may be described by use of the distribution function of photons in the antenna.

3.1. The photon distribution function

The waveguide of the antenna filled with the monochromatic EM field may be treated
as a harmonical oscillator in terms of quantum-mechanical description. Feeding of the
EM field into the waveguide and its flow out to interferometer is controlled by the couplers
with a very small coupling coefficient. Absorption of the EM field energy is a quantum
process, the probability of photon absorption in the waveguide walls may be regarded
as very small. In such conditions the quantum state of the field in the antenna and at the
coupler output is given by the Poisson distribution. The mean square deviations of the

— 1
photon number and the phase in the antenna are 4dn = Vi and Ay = ———, where #

7
is the mean number of the EM field energy quanta in the antenna. It follows from the
quantum-mechanical considerations that the probability of passage of the waveguide
segment of length x by a photon is #(x) = exp [—a,,x], where a,, is a quantity corre-~
sponding to the classical unitary damping factor of the waveguide. The damping factor
corresponding to a single circulation of the photon in the antenna equals «,, = 2nra,,.
A total damping factor corresponding to a single circulation equals

ae = ae0+a45 (3.6)

where o, is a factor describing decrease of photons lead out to the interferometer. I o, < 1,
then a4 and «, are the probabilities of photon absorption by the waveguide and of a hit
of the directional couplers by photon respectively, ie. # =~ a,, and & =~ a,. That
means, that n{l —exp (—a,)] ~ #e, photons get out of the antenna during one turn,
and source in order to maintain the equilibrium. The photons fed into the waveguide
bear no information about the phase deviations caused by interaction with gravitational
field, because there was no such interaction in the source. These photons may contribute
to the interference only after some time of their circulation in the antenna waveguide.

The dynamical equilibrium of the EM field interacting with gravitational field must
take into account not only the number of photons, but also their weighted contribution
to the resulting interference product. The probability of a photon occurrence at the antenna
interferometer output for small phase deviations is directly proportional to phase shift
deviations # ~ |y,|?. For ¢, = 0, which means a photon not interacting with the gravita-
tional field, that photon may occur at the interferometer output with the probability

1
P ~ |4y)? = VL producing a quantum noise.
n

Absorption and creation of photons in the antenna has a random character, thus
a number of photons in the antenna may be described by use of stochastic process n(t),
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with 7 = {n(t)). To describe a statistical weight of photon groups in an interference prod-
uct, le us introduce an additional parameter r, describing the number of turns executed
by a photon group in the antenna waveguide. In such a way a random vector is construc-
ted {n(1,t),n(2, ), ... n(r, t), ...}. The mean value of each component a(r) = (n(r, 1)
describes the mean number of photons in the group after r turns. The #(r) function will
be called the photon distribution function in the antenna. It fulfills an obvious condition

r;) a(r) = n. 3.7

In the distribution function 7A(r) an influence of energy dispersion on the graviton-photon
resonance in the dispersive antenna may also be taken into account. This function permits
us to determine an important parameter of the detector in the dynamical equilibrium state,

3.2. An influence of energy dispersion on graviton-photon resonance

In the resonance of the gravitational field with the EM field in the antenna waveguide,
the four space regions of the field may be distinguished, in which the red-shift and blue-
-shift of photons alternate. These regions move with the group velocity of the EM field,
which determines the detector resonance frequency (Eq. (2.17)). Any small perturbation
of the exact synchronism of the interacting fields, for example through small perturbation
of the group velocity, leads to a displacement of blue-shift photons to red-shift region
and vice versa, and as a result the amplitude of the graviton-photon resonance decreases.
The fulfilling of the condition of an exact resonance is not possible in the linear disper-
sive medium. The EM field, existing in each of four analysed regions, evolves as a spatially
finite wave packet. The wave packet spectrum spreads over the frequency range around
the carrier frequency of the field. Each of the spectral components of the wave packet
propagates in the dispersive waveguide with a different group velocity, which means,
that the energy will be leaking from the discussed regions, gradually filling up the whole
antenna waveguide volume.

Intensity of dispersion process depends on the ratio of the packet spectrum width
Aw, to the carrier frequency w,. Because the field regions situated in quadrants of a wave-

2¢ . ]
guide circumference are discussed, and dw, ~ — ~ 2w,, the intensity of energy

r

dispersion is characterized by the ratio

Adv, o,

T e T (-8)

w

where A" is described by Eq. (2.20). The spatial instability of the EM field is caused by the
gravitational frequency deviation, this is negligibly small in relation to the above discussed
process. However the gravitational frequency deviation is obviously important for the
formation of the phase deviations in the dispersive antenna.

The equation describing a wave packet with the spectrum y(iw) propagating in a dis-
persive medium with a dispersion relation K{w] is given with use of the integral (2.10).
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An exact solution of integral (2.10) is difficult to obtain for both the spectrum and the
dispersion 1elation arbitrary chosen. To estimate quantitatively an influence of the dis-
persion on the graviton-photon resonance, a gaussian envelope of the wave packet is con-
2
exp[—n(w_w’> ] Assuming 4o, € o,, i.e. 4 > 1, we may
e Awe
apply the envelope of K[w] around w,,

K[U)] = ke+Kllw=w.(w_we)+% K”!m=w.(w—we)2+0{(w_we)3}'

. 2n
sidered: y(iv) = y

Taking into account three first terms we have an approximate solution

-7 t._ ——
v,
q)(t, X) = eXp [i(w,t-}—kex)] €eXp L
VK |gmw A02x 4n’
47 Ao}

3.9

+K" x

Q=g

The wave packet center propagates with the group velocity v, = —-

7

in the disper-
O= e
sive medium, and the packet broadens during propagation. The space density of the packet
energy may be defined as &(t, x) = |g(t, x)|2. Using standard dispersive relations it may
be proved, that &(z, x) fulfills the equation of energy propagation

de(t, x) og(t, x)
o +v,(w) o = 0,

where v,(w) is a group velocity of each of discussed spectral components of the packet.
In the case of one dimensional propagation the energy dispersion is symmetrical in relation
to the propagation direction. The energy contained in the element of length 4&, which
propagates with the resonant group velocity v,, with its center exactly coinciding with

the center of the packet, is expressed by
4
2

&(r, 48 = | e(x, &)de. (3.10)
The relative energy changes in the element 4¢ as depending on time are described by the
characteristic function
_ &z, 48)
T &0, 48

which for t = 0 is 5,(0) = 1 and for © > 0 is &, < 1. Substituting (3.9) into (3.10) and
(3.11) and integrating within the limits 4¢ = } 2zr for the gaussian packet with a spectral
width Aew, we obtain

04(7) (3.11)

d1) > 1 : . (3.12)

1+ 5 K" v, 4wt

n W=,
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The energy contained in the element A¢ decreases to half of its value after the time

7[2

Ta ™ g
K 'w=wevgwr

(3.13)
That quantity may be defined as a characteristic time constant of the packet energy dis-
persion. The quantity t,, similarly as the finite life-time of photons ., limits the time of
a resonant interaction of fields in a dispersive antenna. The distribution function n(r)
depends on those two quantities. A single circulation energy dispersion coefficient may be
introduced similarly as for a dissipation process
4n 4
oy = = —K Uy, (3.14)

T4, /1 O=we

3.3. The photon distribution function #i(r)

The dissipation of the EM field energy - appears to be the only factor limiting the
interaction time in a nondispersive antenna. The charactetistic function describing energy
losses after r circulations is

0.(r) = [exp (-« )] = exp (—ra,) = 5. (3.15)
The function describing the remaining energy is
7(r) = 1—exp (—ra,) = 1-0,(r) = y,, (3.16)

and &+7, = 1. Let us assume, that there is a dynamical energy equilibtium in the antenna
at the moment when the interaction with the gravitational EM field begins. The initial
number of photons 71 decreases after one circulation to n6.. These photons are not absorbed.
The remaining number of photons Ay is absorbed, therefore this number of photons
must be introduced from an external source. The newly introduced photons begin their
first circulation now.

After two citculations we have four groups of photons: i) 762 group interacting with
the gravitational field during two circulations, i) 7d,y, group interacting during one cir-
culation (no absorbed part of 7y° photons introduced after first circulation), i) #iy? and
iv) fid,y, not interacting yet, which were introduced to compensate appropriate losses of
the above mentioned groups. Generally, after k circulations we have 2* groups of photons
after k, k—1, ..., k—i, ..., 1 circulations, during which they interacted with the gravita-
tional field, and also 2* groups of photons introduced after k-th circulation to compensate
total losses. v

The group after k—i circulations interacted k—i times with the gravitational field
and contains

Ak—i) = ﬁ{(l:)l) Shmipkmty (izl)a’;‘zyﬂ o F (::i) 5’;'iyi}(k-—i)

photons. After performing the summation we have
k=1 ki
A(k—i) = fy{6, " +ye Y.
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For r = k—1i representing the number of interactions with the gravitational field, the
number of photons i(r) for k — o is
k-t _r_
fi(r) = lim Ay {007 49,0, T 1T = g exp (=) (3.17)
k-
A decay of the interaction of the EM field and the gravitational field in the dispersive
antenna is described by two characteristic functions, one of them described by Eq. (3.15)
and the characteristic energy dispersion function (3.12) which we express now as

1
3(r) = ——. 3.18
O = (3.18)
The distribution function for the dispersive antenna may be found above. Assuming
a2, <1 and a; € 1 we have

Aa(r) =n (H_——%d)—z {(a.+a,) exp (—ra,)+oa,r exp (—ra,)}. (3.19)
The above function also fulfills the condition (3.7).

The broadening of wave packets causes no energy losses but the information concer-
ning gravitational interactions is lost in that case. In the state of dynamical equilibrium
we have na, photons absorbed, na, photons are lead out to interferometer and 7ia, are
spatially delocalised due to dispersion effects, and #i{l — (x,+,)} photons are introduced
by the external source in every circulation.

4. The basic parameters of the antenna in dynamical equilibrium

Description of the antenna operating at the continuous detection regime must be
based on the equation of output power of the antenna. The power of the interference
product yielded by a group of photons after the r-th circulation may be described, using
(3.5), as follows

P4(r) = Poly,(NI*A(r)ay. “1
1

P, = e hww, is the power transmitted by one photon during one circulation, y,(r)
7

2nr
is a solution of the phase deviation equation in which t =

. The total power yielded

Wg

by all the photon groups is
Py =o0,Pq Z’o l‘/’A(r)lzﬁ(")- 4.2)

Because |y,]2 ~ H? ~ S, this equation determines the antenna active cross-section when
the spectral characteristics of the gravitational radiation which interacts with the antenna
are known.
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The mean weighted number of circulations when both fields are interacting serves as
the next important antenna parameter

o

1
(rd = My{A(n} = " Z ra(r). (4.3)

r=0

The frequency bandwidth B, around the resonant frequency , of the fields interacting
and the width of the antenna resonance curve is directly connected with the above quantity
through a simple relation

1 w

1

&y 4n Gy

r

(4.4)

B,

1 o
For a nondispersive antenna: {r) ~ — and B, = ——. In the case of a dispersive

e 48 T

o«

1 o .
antenna: for a, » a, we have (r) = —E, (_e) exp (ﬁ’_) with E,(x) = J W);
a u

oy X4 e

- 1
whereas for a, > o, it is {r) >~ —.
7]

4.1. The active cross-section for coherent radiation

The solution of the phase deviation equation together with the assumption
about coherent gravitational radiation having polarization described by H,(t) = h,(t)
= —h.w}sin w,t can be given as follows

() = L PN Dhw?t*[(Aw), 4.5)
where

L, do -t
sin?

2
Awt\?
2
In a dynamic equilibrium state i.e. when ¢ > 7, and ¢ » 1, the output power of
antenna (4.2) is

I(4dw) =

s Ao = w,—o,

P, = a,PowiM i, (4.6)
where y, = 8228°4"Dh,.

o

M, = % 2 réa(r) 4.7)

r=0
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is the fourth moment of the distribution function (3.19). Assuming, that a; < «, we obtain

My~ . (4.82)

If o, $ o4, the fourth moment of the distribution function may be well approximated by

the expression
M 8 4 + o, —3a, a, E o, 4.8b
o — exp|— — . .
Tl el a; P ag) P \ay (4.80)

The equation of the antenna output may be expressed in the form
Py = Po’l’gﬁQA- (4.9)

The quantity Q, = M,a,, which depends only on a,, &, and «,, plays a role of a resonant
coefficient of the antenna interacting with the coherent gravitational radiation.

The ratio of the antenna output power to the coherent radiation power density flux,
that is to say the active cross section of the dispersive antenna for the coherent radiation,
we find after substituting (3.5) and (4.5) to (4.9)

5127%Gh , L
o, = ——5— B*N’D’nQ,. (4.10)
[4

The coefficient Q, reaches the maximum for an optimally chosen value of the coupling
coefficient a,, of the antenna waveguide with the interferometer. Using the condition
0 1
Q, = 0 for 2y < a, we find oy =+, and Q, >~ 1.9——, for a, € oz, @y = 00
5&1‘ O‘eo
1
aaafo .
An expression describing the output power of the nondispersive antenna interacting
with the coherent radiation is identical as (4.9), where o = 2xf>A#h,, Q4 = M,2,, and
M, is the second moment of the distribution function (3.17), which for «, < 1 is

and Q4 ~ 1.2

M, ~ —. (@4.11)

Analogously, optimizing the coefficient Q, we obtain a, = ¢, and Q, = . The

%eo
active cross-section of nondispersive antenna interacting with the coherent radiation equals

327%Gh
o, = 13 BN Q. (4.12)
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4.2. The active cross-section for the pulse radiation

Most of the astrophysical sources of the gravitational radiation emits gravitational
waves in a form of short pulses with a broad spectrum. From the point of view of the
analysed above antenna the pulse of the gravitational radiation may be treated as short,
if H ) = 0 ,6(1). Then we may analyse a stimulation of the antenna, for example, in
the form: The energy flux of such a field

3

c
S = h2. 4.13
P3G P (4.13)

For the nondispersive antenna we obtain the solution of the phase deviation equation
D) = A —

wl‘
field pulse through the nondispersive antenna is shifted with jump having certain value
and later on remains unchangeable. The solution of the phase deviation equation for the
dispersive antenna leads to an expression

h,U(t). The phase difference resulting from crossing it the gravitational

v(t) = B> A Dh,o,tU(t) = y,r, (4.14)

where y, = 4nf* 4" D. The above phase deviation is increasing also after the crossing of
the pulse of gravitational field through the antenna. It results from the space focussing
of the wave packets propagating in the dispersive waveguide with different group velocities.
In the antenna interacting with the field pulse the dynamical equilibrium is not achieved,
and the processes in the antenna have an unsteady character.

According to discussion in Section 4, the output energy of the antenna interferometer
after transition of the gravitational field pulse may be expressed as

EAp = oc41“"01p(2)M2pﬁa (415)

where &g = hw,. M,, is the second moment of the distribution function 7 (r), representing
the number of photons, which interacted with the gravitational field at ¢ = r = 0. 7,(r)
continuously decreases in time due to dissipation effects. Taking into account the charac-
teristic functions (3.15) and (3.18) we have

A (r) = AB.3(r) = n?‘%—fj:i 4.16)

Assuming o, > o, we obtain

(4.17a)

and, if oz > o,

1 1 1 o, o, 1
M,, ~ 5 — > +?CXP(“>E1 <~—>.~. . (4.17b)
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The output energy ¢4, is proportional to the coefficient P, = «,M,,, which depends on
a,, oz and a,. Similarly as for coherent radiation, the optimalization of the coupling coeffi-
cient of the antenna waveguide with the interferometer o, may be carried out. From the

condition P, = 0 we have ay = Lo, for a, > oy and o, = o, for a; > «,. The

Ay

values of P, are then P,= ——— and P, =
e 4 4 7‘130 4 4o, 9%y

and (4.15) to (4.13) allows us to determine the active cross-section short pulse of the
gravitational field

respectively. Substitution (4.14)

5127n3Gh
0= —5— BN 3 D*w,iiP,. (4.18)

4.3. The detection of the gravitational radiation with nonspecified spec-
tral properties

1t is difficult to formulate a universal expresssion describing an antenna cross section
interacting with radiation having nonspecified spectral properties. Such an expression
would be a superposition of solutions with stationary and nonstationary character. The
averaging processes in the antenna make impossible, in principle, a firm conclusion about
the spectral character of the input signal of an amplitude of the gravitational field wave
on the basis of the features of the output signal. Anyhow this problem, to some extent,
is characteristic for all types of antennae.

With respect to the polarisational properties, the discussed antenna has the character-
istics typical for the axial symmetric antennae. The cross-section might be given then in
the form

6 = gola;l, (4.19)

where {a;]] = is a column matrix of the reduced Stokes parameters characterizing

0
-1
the antenna [10, 11]. The output power of the antenna interacting with the gravitational
radiation flux S[s;}, where [s;] is a matrix of reduced Stokes parameters of the incident
radiation, is

P, = “o[ai]TS[Si]- (4.20)

The toroidal electromagnetic antenna detects one of the circular polarisation states. A direc-
tion of the EM field circulation in the waveguide determines the antenna torsion, and the
antenna with the right hand EM field circulation detects radiation with the same kind of
circular polarisation.

From both practical and theoretical point of view it is interesting to detect the micro-
wave radiation with a thermal spectrum using elf:ctromagnetic antennae, Then, the ampli-
tudes of the gravitational field wave H,(f) and H,(f) are the gaussian stationary processes
and a solution of the phase deviation equation (2.26) in the dispersive antenna takes a form
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of nonstationary process with the mean value increasing in time. In the antenna with
a continuous detection the dynamical equilibrium exists, which causes that the output
power is a stationary gaussian process. The discussion of detection possibilities of the
gravitational microwave cosmological background radiation, being a good example of
radiation with a thermal spectrum, is presented in [6].

5. Technical problems of detection
From the technical point of view the dispersion equation

Klo] = 2 S -y, g =2, 5.1

' ¢ ¢ w
has an essential meaning. Here «, is the critical frequency which is characteristic both
for the microwave metallic waveguides and the dielectric waveguides applied in optics.
The critical frequency w, is connected with choosing of the EM field wave mode and the
transverse dimensions of the waveguide. For example, for the metallic waveguide with

L

. . . n
the rectangular cross section, operating in the simplest mode TE,;, we have o, = —=,

where b is the longest side in the transverse cross section.

Le us discuss the possibilities of construction of the antenna with such a waveguide.
All the basic elements of the antenna may be constructed from the same type of the wave-
guide. The directional couplers between the EM field source, the interferometer arms
and the antenna waveguide, might be made conventionally, boring appropriate holes with
small diameters. The output power measurement may be accomplished using a standard
microwave radioastronomical radiometer operating on one of the frequencies described
by the relation wg = w,+w,. The gravitational antenna constructed from the circular
waveguide and an interferometer is equivalent to the classical radioastronomical antenna,
from the experimental point of view. The threshold power quantity detectable by the
radiometer, expressed in Kelvins, equals

op 1

M T ™ ¢
where Ty is the equivalent temperature of the radiometer receiver noises, 1z is a time
-constant of the integrating filter at the detector output and Bg.is a bandwidth of the receiver.
‘The coefficient oy is of order of unity and depends on the work-diagram of the radiometer.
In the case of the gravitational antenna, when choosing the receiver bandwidth By, it is
convenient to use the “informative” matching criterion B, = By, where a typical value
of B, = 10-* Hz is much smaller than those occurring in the radioastronomical systems.
That gives, assuming a Dicke type system of work, where o = 7 /2, the minimal detected
power

AP = kTyng, (5.3)
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B \''* 1
where g = —Z— (—R) . In the following calculations we assume g = B which gives
TR 4
2 B,

g = \/2

In the case of the detection of gravitational radiation pulses, the radiometer serves
to measure the power produced in time period ¢ & 7, at the output of the interferometer.
Thus we may assume, that the minimal detectable energy 4¢ = AP - T, which gives from (5.3)

4e = kTgNer 54)

1/2

T {7 . . . .

where 7pg = ~2—<—e) is a dimensionless constant of order of unit.
TR /

5.1. The loss coefficient of the waveguide

The active cross-sections of the antenna are strongly dependent on a,, parameter,
which should be relatively small. It is possible to reduce «,, values very effectively in the
waveguide with superconductive elements. For the dispersion equation (5.1), the group
and phase velocities in the waveguide v, and v, respectively, are

[

v, = 6(1—65)1/2 and v, = mm

(5.5)

N
which give, on the basis of (2.20), /" = 3 ~l——§7 and the waveguide length at the resonance

4nc . . L
2nr = r (1 —£2%)'"%, The one-way circulation loss coefficient is «,, = a,, * 277 and from
that
4ne
%eo = "~ (- a,,. (5.6)

r

The coefficient «,, of the microwave waveguide with the rectangular cross section

oy ~ [0 07" ;.7

depends on the specific resistivity o, of the material used for the waveguide walls. The
wave propagation inside the waveguide made of a superconducting material is connected
with energy losses typical for the mechanism of the alternating current superconductivity

4
= Awlexp| — — » .
On w, € p( kT)+Q (5.8)

where 4 is the energy gap in the superconductor and 4 is a constant depending on material
used. This relation is experimentally confirmed for the T < 0.5 T, temperature range [12).

o, is the specific resistivity of the residual surface. From (5.6) and ¢5.8) it comes out, that

5/2
Fox (Ue/

Qeg ~ —— "~

we - . -
and because A4 ~ —— it may be finally written that in the antenna
wr wl‘

r
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the one-way circulation field energy losses coefficient equals

%o = CH 232, (5.9)
Due to the actual state of technology it may be assumed that C = 6x10~27 [s*/3]
[6, 13, 14].
5.2. The energy dispersion coefficient

For the waveguide with the dispersion equation (5.1)

1 2
Koo, = — 2 (5.10)

e, (1=83)7

Hence, using (3.18) we have

2 &1
ad=_
T

1_&‘* v (5.11)
5.3. An estimation of 7

For the microwave rectangular waveguide, with the EM field amplitude E, the mean
value of photons equals
2n*c? E; (1-&)'?
i = L G (5.12)

noh N3w? &z

The parameter 5, is a wave resistivity of the medium filling the waveguide, and for the
vacuum 11, = 377(Q]. The maximal 7 value in the antenna depends on the electric field ampli-
tude E, which can be applied in the experiment, The transmission of the EM field inside

E,
the waveguide is accompanied by the magnetic field H, = —, which must fulfill the con-
Mo

dition Hy < H.ac < H,, Hozc is a critical value of the field for the AC superconductor.
Nowadays technology enables us to reach E,,, < 10'° V/m, and for the waveguides
made of nobium E, ~ 107 V/m ought be taken.

5.4. An influence of other factors on the detection process

The most important factors which may disturb the detection process are
1) sources which cause appearance of noncoherent component of EM field inside the wave-
guide,
2) reflected waves in the antenna waveguide, produced by the waveguide curvature and
technological irregularities of the waveguide cross section,
3) a giroscopic effect caused by a rotation of the antenna around its avis of symmetry.
In fact, the EM field source, always having some frequency instability and phase
noise, appears to be a source of noncoherent component also. The superconducting wave-
guide of an antenna becomes a stable frequency standard because of a very long time of
the EM energy is maintained in it. An external source of the field supplying energy to the
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antenna ought to have such a small phase noises that, after averaging by the antenna
waveguide, there would not be a measurable signal at the antenna interferometer output.
From a technical point of view it may be easily fulfilled for any antenna type [15]. In the
microwave frequency range a source may be constructed, for example, by an activity
stabilised and, necessarily, a passively stabilised clystron (by use of an additional super-
conducting cavity in the latter case).

The gravitational wave is one of the sources of mechanical influences on the antenna
system. However these influences do not lead to measurable phase fluctuations of the EM
field in the electromagnetic resonators near the frequency wy. The problem of pertur-
bations of boundary conditions of the EM field in the electromagnetic resonators, caused
by mechanical vibrations, has been analysed in [16]. Owing to the large number of 7, the
influence on the detection process of the thermal photons, emitted by the antenna, may
be neglected.

The summary influence of the factors leading to appearance of noncoherent component
of the EM field in the antenna wavegfiide may be expressed in the form of an equivalent
temperature of the antenna. This quantity makes simple an estimate of the degree of the
interference caused by random phase disturbances in the vicinity of one of wg frequencies,
also make possible a comparison of different antennae. In the case of an ideal antenna

h
of an ideal EM field source and a total lack of other disturbing factors, itequals 7, = ™ W,

which is the consequence of quantum field noncoherency. An experimental T, value
will be always larger than the above given value. An influence of the most important
phase disturbing factor, i.e. an instability of frequency of the EM field source, on the
value T, is discussed as an example in the Appendix.

The local effects of the loss of superconductivity on technological roughness of the
waveguide walls and the free charges generated, for example, by the high-energy cosmic
rays, may be important factors significantly increasing the equivalent temperature of the
antenna in the 1ange of used high intensities of the E, field amplitudes. Both above mention-
ed factors lead to thermalisation of the EM field in the antenna. Lack of experimental
data does not allow for estimation of T, in the range of fields larger than E, ~ 107 V/m.

The construction of the electromagnetic toroidal antenna resembles the electromagnetic
giroscope in many aspects. The giroscopic effects appear at the antenna interferometer
output, whereas inside the antenna there exists a standing wave. The spectral maximum
of those effects is at the frequency o,, whereas the antenna radiometer is equipped with
the narrow-band receiver operating at frequency w,. After appropriate radiometer tunning,
the gravitational antenna may be a sensitive giroscopic system.

5.5. Tunning of the antenna

The operating frequency of the antenna is calculated by the resonance (2.17), and
may be changed either by variation of the antenna waveguide circumference length or by

2
changes of the EM field group velocity o, = w,off, where w,q = —c. The EM field group
r



27

velocity in the dispersive waveguide may be easily changed by variation of the EM field
frequency w,. The waveguide systems, which were mechanically precise enough are able
to work correctly in the range 0.01 < 8 < 0.7 and in such a range the antenna may be
tunned. Due to the EM field boundary conditions (2.19), it is impossible to tune the antenna
in the continuous manner, because the number N must be an integer. For N> 1 the

. . . w . .
successive tunning frequencies are separated by 4w, ~ —, which is so small a value,

that the problem of discontinuities is loosing its importance.

6. An analysis of the possible detection system
Numerical calculations were performed for the antennae made of three types of the
microwave rectangular waveguide having critical frequencies 4, = —23— = 6.5x 10 Hz,
n

6.5x 10° Hz and 6.5x10'° Hz, which corresponds to the standards WR 770, WR 90
and WR 8. It was assumed that the waveguides operate in a superconducting state, the
technological coefficient has the value C = 6-10727 [s¥?], and the amplitude of the
EM field in the waveguide is E, = 107 V/m. Three groups of antennae with the lengths
! = 2zr = 10, 100 and 1000 m were considered, with the corresponding maximal resonant
frequencies —%{0— = 211 = 6x 107, 6x10° and 6x 10° Hz respectively. For all above

considered antenna systems the criterion o; > o, was satisfied. The temperature of the

TABLE 1

1 [m] 10 10? 103 Remarks
e 1 i | ‘
v, [Hz) 6-10° 6-10° 6-10* | pg=o0.1
oo [—] s.10° | 5108 5-107 |
-~ I
n—] 2-10%* 2-10%8 2-10%
Pg [W] 510 5-103 5-10°2 The power of source of photons
QLHe [W] 0.25 2.5 25 The power of parasity flow of heat
sz W] 2 20 ! 200 i The power of parasity flow of heat
P [kW] 2.5 5 | 20 The total power of refrigerating system

W !
Se| —5 t2-107s 2-10°%° 2:107% 1 =01

J

Sp T 1.5 - 1012 1.5 - 1013 1.5-10"18 B=01

Hz
e 10-¢ 3-10-8 10-° Ty = 18]




28

1 — %=6510H:
Se[ ]
e 2 — %x2865 104
o® 3 — =65 0°H2
3

q e~ 1=0" m

15 b ~ 1310° m

C o= ‘1'10m

v o v o v ® el

Fig. 2. The expected possibilities of the registration of the coherent gravitational radiation limiting fluxes
using interference detectors based on superconductivity microwave waveguides. The curves are parametrized
by the length ! and critical frequency v, of the waveguides
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Fig. 3. The expected possibilities of the registration of the gravitational radiation having form of short
impulses with a broad spectrum. The parametrization of curves is the same as in Fig. 2
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internal noises of the radiometer receiver was taken as Ty = 10 K, which can be done
easily. An exemplary set of parameters for antennas equipped with the waveguide having
the critical frequency v, = 6.5 - 10° Hz for E, = 107 V/m s given in Table I. A construction
of cryogenic systems with lengths of order of hundreds of meters, and with small cross
section of order 5 cm? represents no serious problem, because it has been solved in connec-
tion with construction of superconducting power transmission lines. Some parameters of
the cryogenic instalation calculated on the basis of application of known technical solutions
[17) are given in Table I. The values of limiting fluxes for several antennas are shown
in Fig. 2 and Fig. 3. These dependences show the possibility of the tunning of the antenna
by the change of the EM field group velocity § within the limit from 0.7 to 0.01.

It comes out from Fig. 3, that for antennae with lengths / = 1000 m and small group
velocities § = 0.01, an operation in the astrophysical frequency range is possible. Moreover,
the fluxes of ten orders of magnitude weaker than those detected by classical mechanical
antennae are detectable.

7. Conclusions

The idea of the electromagnetic gravitational antenna presented above leads to possibil-
ities of gravitational radiation flux detection of intensities several orders of magnitude
lower than in the other classical methods.

The proposed antenna exhibits strong resonant properties and, due to its heterodyne
properties, is not sensitive to the, foreseen or not, disturbing factors. Such detection method
seems to be fully experimentally realizable, and moreover, shows some simplicity in con-
struction.

A circular beam of photons playing a role of gravitational radiation detecto1 is in
many aspects similar to a circular beam of monoenergetical electrons making an electro-
magneti¢ radiation detector [3]. As a result of the interaction of an electron beam with
an alternating EM field the modulation of the velocity takes place and, due to that, after
some time the space grouping of the charge will appear in the beam and makes detection
of small fields possible. In the electrodynamics it is possible to obtain a coherent charged
beam in the superconducting state, however there is not known a mechanism making the
modulation of the beam momentum possible in that state. It appeared to be possible,
in the framework of the gravitational field theory, to create a coherent beam of mono-
energetic particles interacting with the gravitational field, and to propose a method of
precise interference measurement of flux perturbations. The photons play a role of these
particles, with success.

) i
The quantum uncertainty of the phase Ay = 5-—,: , which results from the interference
vh

phase mecasurement, seems not to be the definite limit of the beam phase perturbation
measurement possibilities. And, is it possible to construct such a quantum state of the
EM field inside the waveguide, and such a method of that field detection, which would

. e . 1
allow us to 1ealize a measurement of a phase shift with an uncertainty 4y = > or even
fi
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better 4y = 07 Such a question was raised by R. Serber and C. H. Townes [8] for the
first time about twenty years ago, and it found no satisfactory answer up today. An ideal
phase detector, which realizes quantum nondemolition phase measurement Ay =0,
if applied in the electromagnetic gravitational antenna, could provide a possibility of
a measurement of infinitely small fluxes of the gravitational radiation, at least theoreti-
cally. The quantum nature of the gravitational wave would play a dominant role in an
operation of such a detector. That detector would allow to register single quanta of gravi-
tational radiation. Theoretically it would mean equal possibilities of the gravitational
and the electromagnetic radiations detection, by use of antennae with similar dimensions.
Further, more that would mean a possibility of construction of gravitational antennae
with relatively small linear dimensions and large active cross-section.
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linguistic errors. The author expresses his gratitude to the Referee for calling his attention
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interest and encouragement of prof. L. Maksymowicz to whom many grateful thanks are due.

APPENDIX

The equivalent temperature of the interferent antennae

A broad class of random fluctuations of EM field phase of nongravitational origin
in the antenna may be described using a stationary process %(t). Generally, appearance
of a maximum near the frequency w, is a characteristic feature of the power spectrum
of such a process. A radiometer cooperating with antenna registers phase fluctuations
with frequencies about wy = w,t w,. When the spectral density of the power spectrum of
the process is known for one of these frequencies, a variance of phase fluctuations af,
of the EM field may be estimated. With it a noise interference power product registered
by radiometer is connected

PA = aAPOﬁO';. (1)
1
In the ideal antennap.f, = of,qua,,mm = |4y} = yry and the radiometer registers only

1 .
quantum phase noise. In the real antenna 67 > ——— . Let us define the equivalent

Hguantum

temperature 7, of the antenna
kT,B, = Py, ?

where B, is given by (4.4). So defined quantity may be expressed in the form

T, = %we{1+F}, 3
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~ 2
where F = 160 echnica- A term S

ht; describing increase of antenna temperature, caused
by its interaction with gravitational eﬁeld, may be also added to expression (3). For the
antenna with an ideally coherent EM field F = 0 and Ty = Tyyanum = " w,. In practice,
according to (5.3) most useful is a construction of such antenna, which fulfills a condition
T, < Tgrng, which with the help of (3) gives

kTy
how

1+F < HR- : @

e
In the opposite case, the boundary flux will be yielded by the equivalent temperature
T, instead of the radiometer temperature Ty.

Later on the equivalent temperature of the antenna will be evaluated taking into
account one of the main reasons of phase fluctuations of a technical origin, i.e. instability
of the frequency of the EM field source. The frequency of a field source may be treated
as a stationary process having the mean value

(BL()) = weo. (5)

The frequency and phase fluctuations are described by the process A(f) = DD —w,,
for which (4(f)> = 0. Let us consider a process with a lorentzian spectrum of power
W () with the autocorrelation function

2 2

Wy@) = ——— = Ry(1) = — ™7 6
A T (o, T A= T, ) O

w? is a spectral density and 7, is a time constant of fluctuations. For a real source, for
example a laser or an atomic clock, the fluctuation process may be described by a sum

w2
Wy(w) = Z T Q)

i

with w; and 7,; known from experiment and tabulated. To describe the spectral purity
of a source a following parameter is used in practice

g
y =2 -2, ®)

e

@®
2

1 w
where o2 = o J W (w)dw = — R,(0). In the interference process a summation of
¥ T

w
-

R n T,
processes with frequencies A(t) and 4 (t+ —41) takes place, where T, is a EM field
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circulation period in a waveguide. A phase difference is described by
vo(0) = | é(at, 9
A T() A . . .
where 6(t) = 4 (t+ T) —A(t), and 7* denotes a time constant connected with taking
. . . T,
a mean of the field in the waveguide. In the case of slow fluctuations 7, > Dralade and

W,

5 = a A(D)] To hich gi
== [ W which gives

W) = T L Ry = BTE g (10)
w) = —5— ——— T) = g e ™
A= O, trny T T

The maximum of spectral density of power spectrum () is at the frequency o = w,.
Estimation of spectral density of 3(z) process around the frequency wyg = w,+w, will

. 1
be carried out taking into account conditions wy > — and By = B, € w,. A power

TW
spectrum curve of the radiometer receiver may be approximated using the expression
Lw) o wn
W) = ————5 ¢,
1+(w—wg)zB§

where n — number of receiver resonance circuits. Further n = 1, as a most disadvanta-
geous case is assumed. So, the power spectrum of frequency fluctuations within the wide-
band of the radiometer is expressed by

Wi(w) = Wo(w)L(w). a12)
Using (10), (11) and (12) we have

Wy() o5 i 1
w) =
- wfty 1+(wgt,)” 1+[(@—wr)Be]®
i)
2 2
1
Ri(7) = r 6‘; cos o, - e *BR, (13)

077y 1+(wgBg)®

The W (w) function describes finally the #(f) process, with which the phase fluctuations
p,(¢) at the input of the antenna interferometer, having spectral components lying near
wg, is connected

*

v,(t) = ('! p(r)de. (14)

Using (13) the variance of the process (14) may be approximated. Using appropriate inte-

gration theorems for stochastic processes we have
2
2 _ T 04 V(x)

- AL 15
77 ot V) (1
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T* o, 1 1
where x = —, y = 17,— and V(x) = {1 -t — e"‘}, V(y) = yI[1 +(2ny)?]. Assum-
TR 2n x X
ing ©* ~ 1, & tg and using relations (3) and (8) we obtain
T h Ly N 16
4= P v drea,y’|” (16)

In the above presented analysis dispersive phenomena were not taken into account. Condi-
tions of source spectral purity which follow from inequality (4) for model antennae are
presented in Table L
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