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It is shown, by a different method than used originally, that the gauge theory proposed
by Ferraris and Kijowski is an interacting gravitational and electromagnetic fields tﬁeory;
Using a new method, the affine Lagrangians of the linear Maxwell-Einstein and of the Born-
-Infeld-Einstein electrodynamics are derived. Two theorems relating the affine and the matter
Lagrangians for the electromagnetic field are proved.

PACS numbers: 04.50.4+h

1. Introduction

It was shown by Ferraris and Kijowski [3] that the Einstein-Maxwell theory may
be formulated as a gauge theory, with an invariant Lagrangian depending on a GL(4, R)
connection, obtaining thus a unified description of the gravitational and electromagnetic
interactions. The spirit of the proof presented by Ferraris and Kijowski [3] may seem
to be somewhat inconsistent with the unification idea, since it requires the splitting of the
connection into different parts, which acquire “an autonomous existence” in the derivation
of the équivalence of the unified theory with the standard one. A derivation which avoids
such a splitting is presented in Section 2.

The Lagrangian of the unified theory was derived by Ferraris and Kijowski ([1, 2]).
They used an ingeneous method which makes appeal to coordinates adapted both to the
gravitational and to the electromagnetic field. It seemed interesting to find a method of
deriving the affine Lagrangian (the Lagrangian from which the metric has been eliminated
by performing a Legendre transformation, see Kijowski [4]) which avoids the use of such
coordinates, with the hope that such a method could be applied to other field theories,
such as the Yang-Mills theory, for example. Although this last hope revealed too optimistic,
a systematic method of calculating the affine Lagrangian for any non-linear Einstein-
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-Maxwell theory has been obtained. It is presented in its application for the linear and
for the Born-Infeld electrodynamics in Sections 4 and 5.

The comparison of the results of Section 5 with the results of Ferraris and Kijowski
[2] suggested the existence of very simple relations between the affine and the matter
Lagrangians. These relations are proved in Section 6, in the case of the electromagnetic
field. 1t is also shown, that the theorems proved in Section 6 do not generalize neither
to the scalar field, no1 to the Yang-Mills fields cases.

2. The unified theory of electromagnetism and gravitation

The most general coordinate-invariant first order Lagrangian for a GL(4, R) connec-
tion field theory must be of the form

L(T Tvd) = L(Qu Ribver Qi)
where
Qi = =T (1)
is the torsion of the connection,
Rg,s = T'gsy—Tgrs+ Tl gs—T 55l g, 2

is the curvature tensor of the connection F,f,, and L is a density of weight 1 (greek indices
run from 1 to 4, a coma or a d denotes a partial derivative, a semi-colon or a nabla
(V) denotes covariant differentiation with respect to the connection I’ ﬁv 1 XH, = X" + T XY,
If we restrict the Lagrangian to depend only upon the curvature tensor, we can define the
canonical momentum conjugated to I'j, as

— 8L(R;y6) =2 aL(ngé)

i
y Ani
o, OR*

3

From the definition of =%’ and the invariance of the Lagrangian, it follows that
75" is a tensor density of weight 1, antisymmetric in the last two indices. The Euler-
-Lagrange equations for such a theory

oL oL
tore , —ork

may be written in a tensor form
Vi = Q:ﬁnf{vﬂ‘*‘% Q!gnﬁ”“- 4)

For the description of the electromagnetic field we need a two-covariant antisymmetric

tensor F,,, which fulfills the “first pair” of Maxwell-equations:

F[nv,e} = 0. 5
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The following contraction
F av = R:uv (6)

of the curvature tensor has the required property (5), since, from Bianchi’s identity

] —_ . R% 4
Rﬁ[uv;e] - Rﬂd[uQva]’

one can verify that equation (5) is fulfilled identically.
One needs a symmetric tensor to describe the gravitational field. As proposed by Ferra-
ris and Kijowski in [3], the following quantity!:

R oL 7
0K, (
where
Kuv = %(R:av +R:uu) (8)

is the symmetric part of the Ricci tensor, will be interpreted as the contravariant metric
density

7 = —\/ —det g,5 8" )]

(the units 872G = ¢ = h = 1 are used).
To obtain a theory without other fields than the electromagnetic and the gravitational
fields, it will be assumed that the Lagrangian depends only upon K, and F,,

L = L(K,, F,y). (10)

The electromagnetic induction density field F** is defined as usually by?

[ (11)
oF,,

It follows from (10), that the momentum 7%’* has the following form?
% = 288 4 frash, 12)

From (4) and (12) one obtains the equations of motion of the theory
2V, 705 4V, E75E = 202m 68 + Qn + Q5,5 + Q1 FP54 2. (13)

Contracting g with A in (13) yields

V" = QL+ 1 0l B, (14)

! In this paper, the convention that 8L/2K,, is one half of the usual derivative of L with respect to
the set of independent variables {K,y, # < v} (K,v is symmetric by its definition) is used (as in (1] and [2]),
therefore dL = n“"dK,,v+nAd¢A and not n*'dK,,,/2 (note the change of convention between [1], (2] and
[4]). This remark applies also to differentiation with respect to Fyuy, gav, etc.
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Taking into account that F* is a tensor density, one obtains
8, = 0. (15)

Equations (11), (15) and (5) show that the fields F,; and F*® fulfill the full set of Maxwell
equations, for a possibly nonlinear electrodynamics. If one takes into account Eq. (14),
equation (13) becomes

V70—V, n*’ = Q:pn””é‘,{—Q:Aﬂ‘”+Q;An““. (16)
Since every connection may be written in the form
T = {u}+Cons (17

where {1} is the Christoffel symbol built from g,, and its derivatives, equations (16)
are algebraic-constraints equations, which fix the form of C.,. The electiomagnetic field
is determined by“the trace of the connection A4, =I;,:F,, = R, = 8,I%,—d,l%,
= 0,4,—0,4,.

Equations (16) must detetmine C,, uniquely through the metric connection and 4,
without imposing any constraints on them (constraints on 4, would imply a theory poorer
than electrodynamics, non-uniqueness of Cﬁv would imply the undesired existence of
supplementary fields). Let us show that this is indeed the case. A contraction of vy with 4 in
(16) gives

V' = 2Q%m"[3.

Therefore
V't = QL+ Qun™ — Qgpn?6) 3. (18)
1t will be assumed, that z"’ is non-degenerate. If we denote by
Y, =Cq Z;=Cg,
and use n*’, and its inverse, 7,,, to upper and lower indices, (17) inserted into (18) gives
Cloi = —C "+ Z,08+(Y*—ZM7,,/3.
A contraction over u and v gives
Y, = 4Z,.
Therefore
ConitCopy = (1, Y, +7,,Y,)/4. 19

Taking three cyclic permutations of (19), subtracting the last of equations so obtained
from the sum of the first and the second gives

G = &Y,/4,
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which shows that I’ ﬁ, is of the form

= {nv}+6l v/4 = {uv}+6 (A {lv})/4 (20)

with 4, — an arbitrary field.
To obtain a theory equivalent to the Einstein-Maxwell linear electrodynamics (hnear

in the sense that F** = / —det 8.5 8°8"°F,,) one has to find a suitable Lagrangian. Since
I‘:, is built from the Christoffel symbols of the metric and the potential A4,, and since

K

uy = K;nu

(where I.(‘,v is the (symmetric) Ricci tensor of the curvature of {,’;,}), this theory may be
looked upon as the theory of two interacting fields — the metric connection {,‘}v} and a gauge
field A,. As was shown by Kijowski in [4], the affine formulation of such a theory may
be obtained from the standard version by performing a Legendie transfoimation, which
exchanges g,, with K,,, equation (7) being the solution of the Einstein equations,

va’_(gaﬂKap)gnvlz = Tuv(gaﬁ9 Faﬂ) (21)
consideled as algebraic equations, with respect to g,,
guv = gﬂv(Faﬂs an)'

The next three sections will be devoted to solving Eq. (21) with respect to g,,. The
formulas presented in Section 3 are used in Sections 4 and 5 to derive the affine Maxwell-
-Einstein and Born-Infeld-Einstein Lagrangians,

3. Invariant polynomials
Let ¥V be an n-dimensional vector space. To every linear transformation
A V-V,
we can assign the following » invariants fi(4):
det (A+4D) = Zf(A)X, 22)

where A is the matrix of 4 in some basis, and 7 is the identity matrix. In what follows,
we will write fi(A4) instead of fi(4), in order to make the life easier to the printer.
From (22) one obtains

f(A) =1 f,.(4) =Tr A = trace of A,
So(A) = det A. (23)
From the identity
A '+ A = A7V I +24)
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one obtains immediately

(A7) = f,-(A)/det A. (29
We will be chiefly concerned with 4 x 4 matrices which can be written in the following way
A", = Buocav
or, shortly
A = BC, (25)

where C is an antisymmetric covariant tensor and B a symmetric contravariant one. From
the symmetry properties of B and C it follows that

TrA=0.
If B and C aie invertible, then

A7, = CcT" BT,

Since C-! is antisymmetric, and B-! is symmetric, it follows that

Tr41=0
and (24) shows that
fi(4) = 0 (26)
therefore
det (A+Al) = A*+£,(A)A* +-det A = det (4—AI). X))
From

det (A>+AI) = det {(A+i/AI) (A—iJAD)}

= det (A+i JAI)? = (A2—fH(4)A+det A)* (28)
it follows that
f(4) = =Tr (4%))2,

fo(A) = fH(A)+2 det 4,

fi(A?) = Tr (4%) det A. (29)
From (24) and (29) one obtains
Tr (A72) = f,(A™?) = Tr(4%)/det A. 30)
To invert Finstein equations, the Hamilton-Cayley theorem
YHDA(-1) =0 €2))
will be applied. When A4 is of the form (25), formula (31) reads
A*—Tr (4 A%24+det A- T = 0. (32)

When det A # 0, (32) may be used to express 4~ as a polynomial in 4:
A™Y = (= AP+ Tr (A1)4/2)/det A. (33)
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4. The unified linear Maxwell-Einstein theory

The metric-affine Lagrangian for the Einstein-Maxwell theory is
= - \/ ~det 8up (guvKav + gaugﬁvFapFuv/4)' (34)

The affine Lagrangian is obtained from the Lagrangian (34) by solving Einstein
equations for g,,

2K,y = Fug”Fp— (88" FopFop)g /4. (35

In order to find the affine Lagrangian, we will assume that F,, is invertible (since
the Lagrangian is the generating function of the dynamics in the sense of Kijowski and
Tulczyjew [5], its singularity at a zero measure set is irrelevant). Multiplying (35) by F~1e*
from the left, one obtains the matrix equation

B=A-S4, (36)
where
A=g 'F (4" = g¥F,),

B=2F"'K (B*, =2F'"K,),
4S = g*g?°F ,F,, = Tr(4?). (37
We will also adopt the following notation:
Ry = ldetBl, R =+/[detd] (R®= —det4),
S, = Tr(BY)/4 (38)

(since 4 = gf‘ F, detg < 0, and det F > 0, because F is antisymmetric, it follows that
det 4 < 0). From (36) and (28) one obtains

det B = det {A™'(42—SD)} = —(R*+S5%?/R?, (39)
which shows that det B < 0. Equation (39) gives
R, = R+S?R. (40)
From (36) one casily obtains
B? = A>—-2SI+8%472 (41)
From (41) and (30) one obtains
So = Tr (B*)/4 = —S—S3|R> (42)
Introducing
Xo = So/Rg, x=S8/R, y=25y/S 43)

=8 = So/y, R = Sy/xy (44)
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one obtains the following set of equations
xy = (1 +x%)x,,
y = —(1+x?). (45)
The elimination of y gives
(x+x5) (x2+1) = 0. (46)
The only real solution of this equation is

= —Xp.
Which gives
S/R = —So/Ry,
S = —SoR3/(RE+52), CY))
R = R3/(R3+Sp)-

The Lagrangian of the affine theory may be obtained from formula (34), by taking
into account that

g"K,, = 0.
From (34) and (47) one obtains
L =+/—detgTr(4%)/4 = —det g S = —4+/|det K| So/R3 (48)
and we have used the relation
g =2KB 47! (49)

to eliminate det g.
The formula obtained by Ferraris and Kijowski may be derived from (48), if one no-
tices, using (30), that

So = Tr B*/4 = —Tr (B~ *)R3/4,

which gives-finally, in matrix notation

L = /|det K| Tr (K~ 'FK~'F)/4 (50)

or, in index notation,
L = —detK,, K™ 'F,, K ""F,, 4 (51)

(det X is negative in virtue of (49)).

Since we have the Lagrangian of the affine theory, it could be possible to make appeal
to the formalism presented by Kijowski in [4] to deduce that this theory is equivalent to the
standard FEinstein-Maxwell theory. One can avoid this by showing explicitly, that the
metric density obtained from (51) by variation of L with respect to K,, is a solution of
Einstein equations with respect to g,,, and that the electromagnetic induction field ) Jad
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is just the electromagnetic field tensor F,, with indices raised with the help of g*, and
multiplied by the square root of the determinant of g:

. oL
F¥'= -2
1)

uv

= —det g, g"g"F . (52)

First it will be shown, that the equations

— oL _— )
2wt = 2V —det g,y g =2 T v =det K,y {K~"F, K~ 1¢F, K~
v
+(K 'K F ,F, JK~1# 4} (53)

are just Einstein equations (21) written another way round. Equation (53), multiplied by
F,, from the right, in matrix notation gives

A = RRy(B™*+5,B™/R}), (54)

where det g and det K have been eliminated with the help of equation (49). From (54)
one can calculate det A4 and Tr 42, obtaining equations (47) (one uses the Cayley-Hamilton
theorem to express B—° and B—* through B2 and the identity matrix). These equations
may be solved for R, and S, to give equations (40) and (42). Therefore R, and S, in (54)
are known functions of R and S.
From the Cayley-Hamilton theorem, one can express B~—> through B and B-!, which
gives
A = RB[R,+SB™ . (55)
From (55) one can obtain
A® = RR,B™2. (56)

From (55) and (56) one can calculate A3, which allows us to evaluate A~ with the
help of (33)

A™! = B"'—SBJR,R. (57)

Eliminating B-! from (55) and (57) gives Einstein equations in their matrix form (36).
This shows that the metric defined through equation (53) is a solution of Einstein equations.
It may also be shown (using the above procedure in the reverse order, and expressing R and
S through R, and S, with the use of (40) and (42)), that every solution of Einstein equations
is of the form (54), showing that equations (54) are equivalent to Einstein equations (as
has been shown by Kijowski in {4] from general considerations).

All it remains to show is, that the tensor density

oL

o= -2 - - \/mﬂ K_I"aFapK—wv

uv

is the usual electromagnetic induction field:

P = det g5 8"F 2" (58
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From (56) one obtains
K 'FK™' = 4B™%F~! = 4g"'Fg~!/R,R. (59
From (49) and (59), one easily obtains equation (58).

5. Born-Infeld-Einstein electrodynamics

The most general, gauge and coordinate invariant, first order Lagrangian describing
the electromagnetic field can be written in the form

L, = ¥ —det g, f(R, 5), (60)
where f is any suitably differentiable scalar function of the two invariants
S =Tr(g 'Fg"'F)4,
R = —det (g 'F)

(the 1/4 factor is chosen for later convenience). Since (in matrix notation)*

s _ Fg 'F|2
og! =1 ’
éR
pra Rg/2, (61)

the gravitational field equations resulting from the Lagrangian

= —v—det 8. 8K+ L,

K = {—aj: Fg7'F+ (f—z-—afs— gR) g}/2. (62)

are

oS oS oR

The affine Lagrangian of such a theory can be obtained from

—_— e i) i)
L= —/—det 8.5 (8"'K,,—f) = —/—det gl f—2 -—'CR—2 ——Ji S, (63)
R oS
where det g,5, R and S have to be expressed through the invariants of K and F. The Born-
-Infeld theory is obtained if one takes the electromagnetic field Lagrangian to be of the
following form?:

L, = {V'—det g;; —v/ —det (g, bF5)}/b. (64)

% The original reference is M. Born, L. Infeld, Proc. Roy. Soc. A144, 425 (1934). Reprints of papers
of Born and Infeld may be found in Leopold Infeld, his life and scientific work, ed. E. Infeld, PWN 1978,
Warsaw.
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In the limit 5 — 0, one obtains the usual electrodynamics. Since g,, is dimensionless,
and b (which therefore has dimensions length?/charge) plays the role of a fundamental
constant, b could be taken as A2yw/e = Gh/c3e ~ 2/15 in our units, where Apy is the Planck-
~-Wheeler length.

Introducing

A" =bg"'F, B =2bF 'K,

S =Tr(4'%/4, R?*= —detd’, S;="Tr(BY/4,

Ry = —det B, (65)
the function f takes the form
f=hb:, h=1—e e=(1-28-R?HY? (66)
and Einstein equations read
B = (A'—hA' " Ye. (67)

Calulating the determinant of B’ one obtains
Ry/2 = (h—S")/R'e (68)
(h—S’ is non-negative, for R’ and S’ such that e is real). Calculating Tr B’? gives
So = 2(S'—h)(1+5'/R"?®)/e
Making use of (68), one obtains
So/Ry = —(R’>4+5')/Re. (69)
These equations are complicated to solve directly for R’ and S’ (nevertheless it can
be done analytically), however one does not need to solve them if one wants just to obtain
the affine Lagrangian. The Lagrangian can be calculated from (63)
L = 4b* v —det K, (h+R'>)/R}Re.
Subtracting (69) from (68), one obtains
(h+R'*)[R’e = Ro[2—So/Rq,
which gives, using (30)
L = v/ =det K, {2b>+Tr (K~ 'FK™'F)/4}. (70)
It is remarkable that the Lagrangian (70) is just the sum of the linear electrodynamics
Lagrangian, and a Lagrangian corresponding to a vacuum Einstein theory with a cosmolo-

gical constant.
From (70) one can obtain the relation between g,, and K,

J—detgg ' = V—det K {K"'FK~'FK™]2—(b>+Tr (KT'FKT'F)[$)K™1}.  (T1)

A detailed examination of these equations reveals that they are more general than
Einstein-Born-Infeld equations (67) (sce Appendix). The affine Lagrangian (70) corresponds
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to the standard Born-Infeld Lagrangian (64), for R, and S, fulfilling the condition

4(R3+S2)—R§ > 0. (72)
The matter Lagrangian for
4RZ+SH—RS <0 (73)
is
L, = v —det g (—1—e)/b>. (14)

This Lagrangian leads to the same relation between F** and F,, as in the standaid
Born-Infeld theory, but Einstein equations derived from the Lagrangian (74) differ from
Einstein equations for the standard Born-Infeld theory by a cosmological constant A = 2/b2,

6. Two theorems on the affine Lagrangians for a general electromagnetism theory

It is worthwhile to compare the Lagrangians considered in the previous section, with
the matter and affine Lagrangians for a linear Einstein-Maxwell electrodynamics with
a cosmological constant. The affine Lagrangian for this theory has been derived in [2].
The standard Lagrangian is

L = —vZdet g5 {g"K o+ 88" FogF /4 — A} (75)

and its affine equivalent is (for (E24+ BH)2— 12 > 0)
L = 2 —det K,y {1—(1— S, —A*R3/4)"/2}/A. (76)

" This is the “Born-Infeld Lagrangian with g,, replaced by K, and b? replaced by 4/2”.
For a zero cosmological constant, the electromagnetic field Lagrangian is

= -\/ —det g,4 g 8" F,Fg,/4 (77

and its affine equivalent is
= —V—det K, K"'"!K™'"'F,F, J4, (78)

which is “the linear Maxwell Lagrangian with g,, replaced by K,,,”. Since the affine formu-
lation and the metric affine formulation of the theory are symmetric in some sense (the
metric is obtained by varying the affine Lagrangian with respect to the symmetric part
of the Ricci tensor, while the symmetric part of the Ricci tensor is obtained by varying
the matter Lagrangian with respect to the metric), comparison of equations (77) and
(78) suggests, that the affine Lagrangian of the theory, for a theory for which g“BKaﬂ =0
identically, can be obtained by replacing g,, by K,, in the matter Lagrangian. Similarly,
the comparison of equations (75) and (76) (with 4 replaced by 26%) with equations (64),
(66) and (70) suggests, that the knowledge of the metric affine matter Lagrangian L,(g,,, ¢*)
(¢* — some matter fields) and its affine equivalent L(K,,, ¢*) allows us to find the affine
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Lagrangian for a metric affine theory described by the matter Lagrangian L,(g,,, %),
as being L,(K,,,, @*). Let us show, that the second of these hypotheses is true in the case
of the electromagnetic field.

Theorem 1
Let the matter Lagrangian be
Ls = ¥ —det g, f(R, S), (79)
where R and S are given by (37) and (38), and let the corresponding affine Lagrangian be
L = vV =det K, f(R, $), (80)
where R
Cl‘v = K“luaFay; R2 = —det C,
S = Tr (C*)/4. (81)
Then the affine Lagrangian for the theory described by the matter Lagrangian
Ly =V —det g5 f(R, 5) (82)
is
L =V —det K, f(R, $). (83)

Proof:
Formula (62) can be rewritten in the following form

B =xA+yA™! (84)
where B and A are given by (37), and
x = ¢fj0S, y = f—280f/3S— Rof{oR. (85)

Using the formulas of Section 3, one obtains the ielations between the invariants
of 4 and C:
4R = R|y*+2xyS—R%x?|,

45/R?* = y*S/R? —2xy—x’S. (86)
The affine Lagrangian is obtained by solving (86) with respect to R and S, and inserting

these solutions in (63). It will be shown, that the theory described by the affine Lagrangian
(83) leads to the following relations between the invariants of 4 and C:

4R = R|y*+2xyS—R*x?,
4SjR* = y2S/R*—2xy—x*§, (87
where
x=xR,5), y=yR,S)
It will also be shown, that the matter Lagrangian corresponding to the affine Lagran-
gian (83) is given by the formuia

Loy = — —det K., (f— 2RofJaR —256f/5). (88)
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The proof of the theorem follows in a straightforward manner from (87) and (88).
Since Egs. (87) are the same as Eqgs. (86) (modulo tildes), the solutions of (86) will be the
same functions of their arguments as solutions of (87). Since, moreover, the affine Lagran-
gian corresponding to the matter Lagrangian (79), obtained from formula (63), and the
matter Lagrangian corresponding to the affine Lagrangian (83), obtained from formula
(88), are obtained by exactly the same formulas (modulo tildes in the arguments), the
insertion of the solutions of (86) and (97) into (63) and (83) respectively, will lead to the
same function of the appropriate arguments, which is f.

Let us derive now the formulas (87) and (88). The field equations derived from the
Lagrangian (83) are

2n = v —det K, {(f/— RofjoR)K ™' —3fjoSK 'FK~'FK™'}. (89)
Using the formulas of Section 3, Eqs. (89) can be written in the following form:
2RA = R{XR*C™'-3C}. (90)

From (90) one can calculate det 4 and tr 4%, obtaining equations (87).
To derive Eq. (88), it must be noted that the matter Lagrangian corresponding to the
affine Lagrangian (83) is given by the equation

L= L+\/ —det g,5 8°'K,,,.

Multiplying (89) by K and calculating the trace gives the formula (88).

As an application of theorem 1, one can obtain without any calculations, using the
results of Ferraris and Kijowski [2], the affine Lagrangian corresponding to the matter
Lagrangians

Ly = & v —det g, (R*—8b%S —16b%)1/2, (o1)

where b is an arbitrary constant, and ¢ = 1. In {2] it was shown, that the matter
Lagrangian

Lpy = — —det (g,,+bF,)/b?, 92)

which is the Born-Infeld Lagrangian shifted by a cosmological constant 1/, leads to two
different atfine Lagrangians

L = sV —det K5 (R?—8b25—16b*)"/2, (93)

From (91), (92), (93) and theorem 1 one finds the affine Lagrangian corresponding
to the Lagrangian (91) to be

L = — —det(K,,+bF,,)/b. (94)

The formulas derived in the proof of theorem 1 allow to prove the first hypothesis,
in the case of the electromagnetic field.
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Theorem 2 R
Let f and f be as in theorem 1. Let the matter Lagrangian be such, that
g‘wTuv =0 = gMVK“v, (95)
or, equivalently,
f(R, S) = R3f|oR+S0f]oS. %6)

Then f (R, §) is the same function of its arguments as f(R, S).
Proof:
From (96) it follows, that
y = —xS.
In this case equations (86) read
4R = Rx*(S?+R?)
4S/R? = x2S(S%+ R%)/R>. o7
From (97) one obtains
S/R = S/R. 98)
Formula (63) can be written in the following form
Rf(S, B) = Rf(S, R). (99)
Let us introduce
a(a = S/R, R) = f(S, R).
The homogeneity condition (96) implies
« = ROx/oR = f = P(a)R,
where f is some function of one variable. The condition (95) implies, that f is also homog-
eneous of degree one, therefore
f=B@R, a=S§R
From (99) one obtains
B(a) = p(a)
and (98) implies
B =8
Therefore
f=BESIRR, [ = BE/RR,

which proves theorem 2.

7. Discussion

A systematical method of deriving the affine Lagrangian for a unified non-linear
theory of interacting gravitational and electromagnetic fields has been presented. It should
be noted, that the “adapted coordinates method” presented by Ferraris and Kijowski
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({1, 2]) is much simpler in practice, because the equations relating the invariants of K~ '#°F_
and g*F,, may be complicated to solve. Moreover, the method presented in this paper
cannot be generalized to the case of many electromagnetic fields (Yang-Mills theories),
because one has much more invariants than 2 to deal with.

It is easy to check, that the hypotheses emitted in Section 6 are not true for general
matter fields. For a scalat field, with a Lagrangian of the form

Los = vV —det g5 (3, @),
where

y=g"p.0.

the condition for the vanishing of the trace of the energy-momentum tensor implies
I=ay?, a=oafp).
The corresponding affine Lagiangian may calculated to be

L =vV=detK,3 /3 a2 (100)
whete
Yo = K_]"v(p,utp‘v.

Formula (100) is in contradiction with both the first and the second hypothesis. This
contradiction suggests, that the first hypothesis should be slightly weakened, to read:
the affine Lagrangian, for a theory with a vanishing trace of the energy-momentum tensor,
is proportional to the “matter Lagrangian with g,, replaced by K,,”. Computer calcula-
tions, with randomly generated values of the fields, for the Yang-Mills theory with different
dimensions of the symmetry group, have shown that even this weakened hypothesis is not
true in general. More precisely, it has been shown, using the above method, that the
straightforward affine generalization of the electiomagnetic Lagrangian to the non-abelian
symmetry group case, namely

L = a/ —det K,y k;;K™ " F K~ IF

where k;; is the invariant metric on the group, and « is a constant, depending possibly
upon the dimension of the group, does not describe the same dynamics as the Yang-Mills
Lagrangian:

Lmat = \/'-det ga[} kijgﬂ-’l I‘Fzﬁgﬂ)' jF."‘/4.

It remains to find out, whether or not theorems one and two hold for the
electromagnetic field only, and, if so, what is the reason for this.

The author is very grateful to prof. J. Kijowski for introducing him to the affine
formulation of theories describing matter fields interacting with gravitation, and to the
unified theory of gravitation and electromagnetism. The author would like to thank prof.
I. Bialynicki-Birula and A. Smoiski for their critical remarks on a previous version of this
paper.
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APPENDIX

Using the same techniques as in Sections 4 and 5, equations (71) can be written in the
following form (for notational convenience, primes on 4, B, S, R, S, and R, will be omitted.
All relevant quantities appearing in the formulas derived in the appendix should carry
a prime):

A = RBJR,—(RS,/Ro+RRy/2)B™ 1. (Al)

From (Al) one can obtain

SIR?* = —8o/R5—So(So/R3+1/2)*—1,
R = 4R5/IR5—4(RG +S5)l,

e = {4(R3+S5+SoR3)+R3}/IR —4(R3 +S3), (A2)

where | | stands for absolute value. From (68) and (69) one obtains, that
4(R3+S3)—R§ > 0 (A3)
for all S and R such that e is real. One can check, that if (A3) is not satisfied, then (68)
is not satisfied ((68) is a necessary condition for the Born-Infeld-Einstein equations to hold).
Therefore, the Lagrangian (70) describes the Born-Infeld-Einstein theory only for R,
and S, which satisfy condition (A3). It may be checked, that equations (68) and (69)

describe the solutions of equations (A2)-~(A3) with respect to R, and S,.
It may be checked, that the matter Lagrangian

Lo = ¥ —det g (—1—e)/b* = v/ —det g hVb? (A4)
describes the same dynamics as the affine Lagrangian (70), for
4R+ SH—R} <. (A5)
From (A4) one obtains the following relations between the invariants of 4 and B:
RRy = —2(h'V+S)/e,
So = —RRy(1+5/R?)/e. (A6)

From (A6) one can calculate the affine Lagrangian to be (70). One can check that
condition (AS5) is satisfied, for all S and R such that e is real, when Einstein equations hold.
A straightforward calculation shows, that equations (A6) desctibe solutions of equations
(A2) with respect to R, and S,, under the condition (AS).
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