Vol. B15 (1984) ACTA PHYSICA POLONICA No 10
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The binding energy of a two nucleon system is calculated from the relativistic Weinberg
equation with spin, and from its nonrelativistic limit. We get that the interaction of nucleons
inside deuteron is laigely different from that of nonrelativistic particles, in spite of the fact
that the binding energy is very small. The relativistic interaction is much less attractive than
the nonrelativistic one. An inclusion of spin intioduces significant dynamical effects. The
light front dynamics, used in our calculations, has unique advantages over other existing
approaches. The practical virtues of this scheme, including the invariant spinor representa-
tion, are presented in full detail.

PACS numbers: 21.10.Dr, 11.80.-m, 27.10.+h, 13.75.Cs

1. Introduction

The nucleon-nucleon interaction is a central problem of nuclear physics. It is widely
believed that the low energy properties of nucleon-nucleon forces may be explained by
the mesonic theory. However, it is not a fundamental theory. For example, the nucleon-
-meson vertices still have not been adequately described and the renormalizable relativistic
theory including vector mesons has not been formulated. So, many approximations are
usuvally made in physical calculations which are beyond the theoretical control. One of
the most important of those approximations is the nonrelativistic description of low energy
phenomena. In this paper we investigate this approximation on the example of the deuteron.
The deuteron is a loosely bound state of two nucleons and its binding energy is usually
calculated from the nonrelativistic Schrodinger equation. When one tries to take into
account the structure of nucleons or the retardation of the binding forces one comes
across unsolved problems of contemporary physics. Nevertheless it is very interesting to
find the difference between the deuteron binding energy as predicted by the nonrelativistic
theory and as predicted by the most satisfactory relativistic one. In this paper we develop
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the relativistic description based on the light front quantum field theory. Our choice of the
light front quantization is motivated by the unique simplification of the structure of the
Poincaré generators. When a system evolves in a time # then at least four out of ten genera-
tors depend on the interaction [1]. E.g. in the usual old fashioned theory the Hamiltonian
and the three Lorentz boosts are interaction-dependent while three momenta and three
angular momenta are interaction-independent. Thus one may easily find eigenstates of
the angular momentum but nothing is known about the shape of the wave function for
the bound state in motion. On the contrary, in the light front dynamics, when a system
evolves in x™ = t+z, only three generators are interaction-dependent. This is the unique
property of the front form of dynamics that has as many as seven generators interaction-
independent while on other forms at most six of them are interaction-independent [1].
The additional seventh interaction-independent generator is the boost generator along the
direction of the front, Therefore, in the light front dynamics it is possible to find the wave
function of the moving bound system. This simplification plays the crucial role in the
recent success of the QCD calculations of the hadronic, including deuteron, electromagnetic
properties at high energies [2, 3]. The problem of the angular momentum of deuteron may
be partly solved using the nonrelativistic limit [4]. Another important reason to choose
the light front form of dynamics is that in the x*-ordered perturbation theory fewer dia-
grams correspond to a given Feynman diagram than in the t-ordered one. E.g.,in the scalar
theory, for the Feynman box from Fig. la there are 24 = 4! t-ordered old fashioned
diagrams and only 6 diagrams in the x*-ordered formulation (see Fig. 1b). All diagrams
containing creation of particles from vacuum or their annihilation into vacuum are absent
in the light front dynamics.

Among other important advantages of the front form we enumerate the cluster proper-
ty, and the resemblance to the nonrelativistic theoiy. The cluster property means that the
two body interaction is not unphysically influenced by the presence of a third body when
the third body is very far away. Only the light front dynamics, among the old fashioned
theories, and three dimensional reductions of the Bethe-Salpeter-like equations, simply
satisfies the cluster condition {5]. The two nucleon scattering amplitude is determined in
the light front dynamics by the Weinberg equaticn [6], the relativistic counterpart of the
Lippmann-Schwinger equation, or the equal x*-projection of the Bethe-Salpeter equation
[7]. When expressed in terms of the proper relative momenta of nucleons [8] from their
center of mass frame, the Weinberg equation becomes formally equivalent to the Schré-
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Fig. 1. The box diagram in the spinless theory: a — the Feynman covariant diagram, b — the corresponding
x* — ordered diagrams
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dinger equation with a nonlocal and energy dependent potential. Thus the whole relativ-
ity is contained in the Weinberg potential (kernel or driving term). The Weinberg equation
has the nonrealitivistic limit which is the Schrédinger equation and it is possible to compare
the predictions of the full relativistic equation and its nonrelativistic reduction. In the
case of a model spinless theory :¢?:¢, such a comparison has revealed [9] large differences,
about 50% in predictions for the binding energy of the lowest bound state. In this paper
we investigate a field theory mcdel of deuteron, including the spin of nucleons, with a coup-
ling of nucleons to pions via the interaciion term Piy>tye. There is an important difficulty
in the introduction of spin into the light front dynamics. The new singular terms, called
seagulls, are present in the intéraction Hamiltonian in the local field theory. On the other
hand, for compaosite nucleons we have to introduce form factors into nucleon-meson
vertices. There is no simple way to intreduce in to the theory the phenomenological form
factors from the very beginning. To answer what is going on with the seagull terms for
composite nucleons we use the connection of the light front dynamics with the old fashioned
perturbation theory in the infinite momentum frame. This connection is a very interesting
subject in itself (especially some kinematic results for spinors). It is also relevant to current
attempts to calculate the deep inelastic electron-hadron scattering in the bag-like mcdels.
In Section 2 we briefly describe that connection and give the argument for the neglect
of the seagull terms in the presence of form factors. Section 3 is the presentation of the
Weinberg equation and the discussion of the binding energy of two nucleon bound state
as predicted by the Wienberg equation and the Schrédinger equation.

2. The infinite momentum frame and the frame invariant light front dynamics

Briefly speaking, the light front dynamics in any frame of reference provides the
perturbation rules which are as simple as the old fashicned perturbation rules, in the infi-
nite momenium frame [10]. In other words the well known advantages of the infinite
momentum frame may be achieved in the laboratory, when the evolution of the system is
parametrized by x~ instead of time . The light front rules are invariant under three inde-
pendent Lorentz boosts and, in fact, may be used in any frame of reference within reach
of that family of boosts. For a more detailed analysis we refer the reader to the reference
[11]. The most useful formulae are given in the Appendix A. Here we quote only the facts
which are necessary for discussing the role of form factors in the light front dynamics.

When passing from the old fashioned periurbation rules in the infinite momentum
frame in the scalar theory [10] to the theory with fermions coupled to scalar bosons [12]
a new feature emerges. In the infinite momentcm frame the on mass shell momenta of
particles are labelled by their longitudinal components denoted by n and by their trans-
verse components. In the spinless case all intermediate particles have to have positive
n’s, i.e. they have to move forward along the infinite momentum of the total system of
interacting bodies. When the spin is included it is possible that some particles may have
n’s negative as well. This possibility arises from the fact that the spin factors are momen-
tum dependent and may compensate a large denominator in certain cases with backward
moving particles. Therefore, there are additional diagrams in the spinor theory as compared
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to the scalar one. The common feature of these additional diagrams is that the line of
a particle with n < 0 may be extended over only one intermediate state [13]. The detailed
analysis of the Ppiy>ye theory is given in reference [6]. ‘

The above mentioned additional diagrams have lines with # > 0, like in the scalar
theory, and the lines with n < 0 extended only over one intermediate state. It may be shown
that these singular intermediate states are equivalent to the additional two fermions —
two bosons singular vertices, coming from the contraction of the fermion lines withn < 0
to the points [6]. In fact, the information about other particles in the singular intermediate
states is lost in the infinite momentum limit. Thus the infinite momentum old fashioned
perturbation rules in the spinor theory may be obtained from the scalar rules by an addition
of new two fermion-two boson vertices, and spinor factors.

The phenomenological form factors may be introduced into the meson-nucleon vertices
in many ways. Usually a form factor depends on different invariants like s, ¢,  for the N-N
scattering. It turns out that for vertices joining lines with different signs of n always at
least one of the invariants goes to infinity like square of the infinite momentum [14, 6].
Therefore, the form factors provide additional damping of the diagrams with negative
n’s. This damping is not compensated in any way. Thus the form factors kill the new
singular vertices in the old fashioned perturbation theory in the infinite momentum frame.

We are going to use the light front dynamics which preserves the simplicity of the
infinite momentum rules and is much more universal than the infinite momentum scheme.
The basic reference for the light front quantization is a series of papers written by Yan
et al. [15]. Instead of the time ordered product the x*-ordered product is used in the quan-
tum theory and the creation and annihilation operators are expressed by fields on the
light front instead of the constant time hyperplane, as usual. In the scalar case the old
fashioned rules in the light front dynamics and in the infinite momentum coincide when
we substitute the longitudinal fraction n; of i’th particle momentum by the x; = p;’/P*,
the fraction of the plus component of the total momentum of the system. The n’s are
frame dependent while x’s are invariant under the three Lorentz boosts. That is the reason
for the utility of the light front rules in contrast to the very specific infinite momentum
rules. When passing to the spinor case it becomes apparent that the interaction Hamiltonian
is not simply related to the interaction Lagrangian, and it contains new singular terms
in the local field theory Piy>we. The point is that these additional terms give vertices
which we observed previously in the infinite momentum rules.

The last thing we have to notice is that the very special representation of the Dirac
spinors has to be used to see the identity of the singular vertices of the infinite momenium
frame with those in the light front rules [6]. In that particular representation both sets of
vertices are equivalent by substitution of #’s by x’s [6]. Moreover, in this representation
the three Lorentz boosts of the light front transform the spinors witohut the Wigner
rotation [6, 11] (see also Appendix A). This is another example of the simplicity of the
light front rules, as compared to other formulations. When we have established that the
light front seagulls come from the backward moving particles and that the form factors
damp the backward moving particles, we simply introduce form factors into the light
front rules and forget the seagulls.
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3. The Weinberg equation for a two nucleon system

The two nucleon scattering in the one meson exchange approximation in the light
front dynamics is represented by the infihite sum of diagrams from Fig. 2a. This sum may
be written as an integral equation depicted in Fig. 2b and symbolically written as follows

M = V+VGM. n

This equation is called the Weinberg equation [10] and the kernel ¥ shown in full
details in Fig. 3, is called the Weinberg potential.
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Fig. 2. a — The one meson exchange approximation for the nucleon-nucleon scattering amplitude M,
b — the graphical representation of the corresponding Weinberg equation
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Fig. 3. The Weinberg potential for one pion exchange

Instead of the energy denominators we have here P~ denominators. When we intro-
duce the relative and total four momenta of rucleons ¢ = 3 (p,—p,) and P = p,+p,,
respoctively, then the denominators may be combined to onc denominator which is equal to

(1 =g V+ut+1q* — g3 (P +P"~ = 2P~ —id). @

According to iiic light front rules we have (spin labels omitted) the following Weinberg
equation

M(q/+,ql.k; q+’ qJ.) = V(q”r, qr.L; q+’ ql)_%(zn)'n’aj’dlqui.dqn+9(qn++P+/2)
Xo(_q//++P+/2)V(q/+’ qll; q/r:—-’ qnl)
x[p Py (PP ~i8)]T'M(q" ", ¢ 5 a7, q). 3)
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Now we introduce a parametrization by the relative three momentum k(k = |k|)
of nucleons [8] in their vest frame of reference as given in the Appendix B. The Jacobian
of such a transformation is equal to

a(qu +, q'rl)

- knz sin 011.4 rrd_tr+ M"W, 4
oK. 0, @) Py py M 4

where M = 2(m*+k?)'/2 denotes the total energy of:two nucleons. The free propagator
G from equations (1) and (3) becomes

P'-—P-—id = 4(k">—k*—i5" )M ®)
and the denominator from Eq. (2) is equal [9] to A -+a, where
A= 2+ +k"2 2Kk (cos 8 cos 8 +sin ' sin 8" cos (¢’ — ¢')),
a =2k’ cos O'|M' — k' cos 6" |M""|(k'2+k'"?—2k?)
—k’ cos 8'k’" cos "'(M'— M"Y IM'M". 6)
The Weinberg equation then reads as follows
(k' cos 0'0sis5|M1k10s,s,> = (k' cos 8'0sys5|V|k10s,s,)
—2m~* Y [K'?dk"sin 0"'d0"dg' (k' cos 0'0sys3i VK" cos 8" 's\'sy>

x (K3 fm—Kk3m—id)" ' k"' cos 0" ¢"'s sy [M|k10s,s,), @)
where the potential V is given by
k! cos 0'p's sy ViK' cos 0 ¢''s\ sy
= fHRPF(t u) (M')™122mdsish WisY'sy ) (A+a—id) ™ '(M") ™12, ®)

. . . . : 2m
This potential corresponds to the interaction Lagrangian equal to — —f C PiySty t ¢,
n

with m denoting the nucleon mass, p is a pion mass, and the coupling constant f deter-
mines the value of the binding energy. I denotes the isospin factor equal to 1 or —3. The
form factor F(¢, u) is chosen in the form [16]

Fit,u) = (-0 (A=) Y, ®)
with
2t = (pi—pY) +(p2-p3)%
2u = (py—p5) +(pa—pY), (10.2)
or, equivalently,
—t=Kk?+k"2=2k'K"[E (M'[M" + M |M’) cos 8’ cos 0 +sin 0’ sin 8" cos (¢' — @)},
—u = K2k 2k KL (MM + M7 M) cos 6" cos 8"
+sin 8’ sin '’ cos (@'~ ¢"')]. (10.b)



The spin amplitudes <{s,s,|Wis,s,> can be written in the form
(sisaiWisy'syy = —Ugo(y k. =y 'K, Uba(y kY — 35 'K OU ., (1)

where we have denoted
ki: = (kJ.w im)*

and the relativistic factors y; are equal

v =(pFipi YA or oy, = {[142k cos 0'/M Jj[1£2k" cos 0 /M" 2. (12)

The Pauli spinors U, carry the invariant spin indices of the particular spinor representation
from Appendix A. Note that the relativistic Weinberg equation (7) is formally equivalent
to the Lippmann-Schwinger nonrelativistic equation. The “minimal relativity” factors
are included in the Weinberg potential. The free propagator (5) is quadratic, as in the
Schrodinger approach. In the nonrelativistic limit, when the nucleon masses become very
large and we neglect the terms of the order of k/m > 1, the Weinberg potential is equal
to the Yukawa potential

Vo= = F(ing, ung)o (k' — k) Ao, (k" — k'), (13)
where

k = (sin 0 cos ¢, sin 0 sin ¢, cos O)k,
-‘tNR — (k”—k,)Z.
—ung = (K"+Kk')?,  Ang = 1’ — 13 (14)

Now, it is possible to compare the predictions for the lowest bound state binding energy
given by the full Weinberg equation (7) and by its nonrelativisiic limit, i.e. the Schrédinger
equation with the Yukawa potential (13). We have used the method from Refs. [9], [17]
to find the coupling constant f?/4m, which corresponds to the assumed binding energy
e = 2m—s''? of the lowest bound state. The essence of this method is to find the eigen-
value of the integral operator from the Weinberg equation by the successive iterations
of that operator. The main numerical problem comes from the fact that the Weinberg
potential off energy shell does not conserve the orbital label / of spherical harmonics as
functions of the angles (0, ¢) introduced in Eq. (4) and Appendix B. Only the projection m
on the light front direction is conserved. The calculations may be dene as in the Ref. [9]
although there are, roughly speaking, 4 x4 times larger mairices due to the presence of
spin. The partial wave decomposition is briefly presented in the Appendix C. The lack of
the Wigner rotation in the invariant spinor representation, plays the essential role there.

The results of our calculations for the dependence of the model deuteron binding
energy & on the coupling constant f'2/4n are presented in Figs. 4-6 and in Table I. As a mea-
sure of the relativistic effect in the nonrelativistic system we take the ratio

fo—f
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Fig. 4. The binding energy ¢ in the triplet state 3S,, as a function of the coupling constant f%/4x, from
the relativistic Weinberg equation (R), from the Weinberg eq. with the “minimal relativity”” factors put

equal to 1 (MR = 1) and from the nonrelativistic Schrddinger equation (NR), for two cut-off masses 4
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Fig. 5. The binding energy ¢ in the singlet state 'S,, as a function of f%/4x

TABLE 1

The values of the coupling constant f?/4= giving the deuteron binding energy according to the relativistic,
and the nonrelativistic equations. For two values of the cut-off mass 2

< ,-% |
Equation T 1656 MeV . 690 MeV
N R - T R
! !
R i 0.019 ; 0.048
NR 0.013 I 0.045
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Fig. 6. The role of the nucleon-meson vertex form factor in the scalar Weinberg equation. The curve
labelled A = oo represents the results without cut-off, first obtained by Danielewicz and Namystowski,
Ref. [9]

where fy and fs denote the coupling constants predicted by the Weinberg and the Schrédin-
ger equations respectively, for the same binding energy. The function &(f2/4r) for the S,
bound state is plotted in Fig. 4 with the obvious labels. MR = 1 means that we replaced

the “minimal relativity” factors -- ~2m .-~ by 1 in the Weinberg equation.
(MIM/ /)1/2

For the deuteron binding energy ¢ = 2.225 MeV (channel 3S,) we obtain R = 50%
fur the cut-off mass A, = 1656 MeV and R = 7% for the cut-off mass 4, = 690 MeV.
For larger binding energy of the order of 100 MeV we have R = 759 for A;,and R =509,
for A,. These effects are slightly larger than in the scalar equation [9]. The “minimal rela-
tivity” factors have larger contribution to the relativistic effects in the spin case than in
the scalar casc because the relativistic spin mcdifications yko diminish the repulsive effects
of the term « in the Weinberg potential and the effects of the factor (M'/M"'+M"/M")
in the nucleon-meson vertices.

The relativistic corrections grow with the cut-off mass A. The coupling constants
giving the deuteron binding energy according to the relativistic Weinberg and the Schro-
dinger equations, are given in Table L

For completeness we present the similar curves for the singlet bound state (channel
1So) in Fig. 5. The relativistic effects are also about R = 509%. The role of “minimal
relativity” factors is smaller than in the triplet case.

Another measure of the relativistic effects is provided by the comparison between
the binding energy as predicted by the Schrédinger and the Weinberg equations for the
same coupling constant. The binding energy is much larger nonrealtivistically than relati-
vistically. The difference may be even of the order of magnitude as it is visible in Figs. 4
and 5. and is much larger than that observed in the scalar model [9]. Generally speaking,
the relativistic effects are considerably large and they lower down the attraction of nucleons.

The role of spin is also visible in comparison of Figs. 4 and 5, with Fig. 6, where
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we plotted e(g?/4n) for the scalar Weinberg equation with and without the meson-rnucleon
fogm factors in the pontential. The inclusion of spin causes that the sensitivity for the cut-off
mass 4 in adjusting the coupling constant to the binding energy grows about ien times.
Also taking into account the spin of nucleons gives about five times larger sensitivity of the
binding energy to the change in the coupling constant.

In conclusion we stress that the relativistic effects in the nonrelativistic systems like
the deuteron are large. The proper relaiivistic treatment has to include the spin of nucleons,
producing significant dynamical effects. Although the binding energy is small the motion
and interaction of nucleons inside deuteron is much different from that of nonrelativistic
particles.

We are grateful to Profcssor J.M. Namyslowski for his continuous guidance of our
study of the light front dynamics and for his stimulating rcmarks. We would also like to
thank Dr P. Danielewicz for many useful discussions and express our gratiiude to Dr J. Ta-
rasiuk for providing us with his compuier procedures.

APPENDIX A
Invariant spinor representation

The equal time dynamics and the equal x~ dynamics are perturbatively identical in
the infinite momentum frame when we identify [11]

(n = p3/Pihme = (p*/’P+ = X)iMF-

The direction of the light front is along the direction of the infinite mementum. Contrary
to the equal time dynamics, the equal x* dynamics is invariant under the Lorentz boosts
along the front or along the large total momentum. This additional invariance allows
us to go back to any frame of reference, with the finite total momentum in the light front
dynamics, and to preserve the crucial simplifications which appear in the infinite momentum
frame. The procedure of going back from the infinite momentum frame to a given frame of
reference, is not possible in the equal time dynamics.

In the fast moving frame we denote the components of tensors by the subscript @.
The fast moving frame approaches the infinite momentum frame when its velocity appro-
aches the velocity of light. This limit is symbolically denoted by c. The velocity v is measured
relatively to the frame of reference of the observer. We call this frame the laboratory frame
and denote there the components of tensors by the subscript /. The laboratory frame is con-
nected with the fast moving frame by the boost along the front, denoted by L(v). The
matrix L(v) of that boost acts in the following way on the components of vectors

e” 0 x,
+ —w +
x| _ 10 e 0 0fix, T n
N Rl toollx |’ x; = L(v)x,, (A.1)
x? 0 0 0 1ffx?

where th w = v/c.
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The rotation around the light front direction commutes with L(v), and has the same
form in both frames. The remaining two rotations do not commute with L(v). We denote
their generators by J2* and J3!. The infinitesimal spatial rotation in the fast moving frame is

R, (e “g") = exp (—2e7q,J** +2¢7q,J°")

and it corresponds to the following mixed Lorentz transformation R(g") in the laboratory
frame

R(g") = L(v) - Rfe™“q") L '(v).

In the limit v — ¢ we obtain

Xy L gi+43 290 2q;|[x
+ +
Xy 01 0 0 X, -

= s Xp = R( )x- A.Z
y} 0 q, i 0 x,l i g )% (A.2)
xi 0 g, 0 1 fixf

The P~ denominators in the x*-ordered perturbation theory are invariant under transfor-
mations (A.2) and under the rotations around the front direction as the old fashioned ener-
gy denominators are invariant under the three spatial rotations. The invariance under
the transformations (A.1) and (A.2) allows us to boost the bound state wave functions
[11, 14, 4] to the desired momentum, by the proper adjustment of v and q*.

If a fermion is described by the spinor

u(p,) = (p,+m)'"2 [1+(p; +m)™ 'ap,Ju(0) (A3)
in the fast moving frame, then in the laboratory frame it is described by the spinor

u(p) = S(LW)u(p,), b = L()p,,
where
had

S(L(v)) = ch %’- —ash -

is the spinor representation of the transformation L(v), Eq. (A.1). In the limit v — ¢ we
have [6]

up) = 2/p")'"? [mA_+(p +a p)A[u0) = B(p) - u,(0), (A4)

where A, = 1/2(1 +4a3), p> = m?, and s denotes the spin projection on the front direction.
The spinors (A.4) have the following invariance properties

S(L)Js(p) = l;s(Lp)9 S(L) = em/ZA_+e-m/2A+,

S(Ryuy(p) = u(Rp), S(R) = 1+a'q*A, (A.5)
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for any boost parameters v and g*. Thus, there is no Wigner rotation of the light front
spin index s. The transformations (A.1) and (A.2) satisfy the following relations

R(41) - R(43) = Rgi +42),
L(w,) " L(w;) = L(w;+w,),
R{g") - L(t) = L(v) Ry(q"fe")
and the boost matrix B(p,) from Eq. (A.4) is represented as follows
B(p)) = S(L) - S(Ry) = S(R;) - S(L),
w=m/p/. qi=p/m a =p/p.

Therefore, in the light front dynamics it is possible to describe the moving fermions by
spinors which do not undergo the Wigner rotations under three independent Lorentz
transformations. The light front perturbation theory is invariant under these three boosts.
The spinors (A.4) were independently-introduced in Ref. [2] but in an artificial nota-
tion having nothing to do with the origin of these spinors.
Finally we present the relation between the conventional spinors u(p) from Eq. (A.3)
and the light front spinors u(p) from Eq. (A4

u, = «f(pT+mu, +(p' +ipHu_]
uo = k[—(p' =ip"u, +(p" +mpu_]
b, = k[(p* +myv, —(p' —ip*w_]
o_ = k[ +ip)o, + (@ +mp ], k77 =2pT(p°+m).

APPENDIX B

The relative momentum k

Our description of the relative three momentum k is based on Ref. [8]. The initial
and the final four momenta of nucleons in the Eq. (3) define the frame of reference spanned
by the following tetrad

Ho__ pairp2\1/2
ep = PY(P7)"7,

v A
e = Exsyqup eles,

B H v Q. /4
€ = &8 qu.qu ’

¢4 = ¢"(—q")" "% (B.1)
where the constants ¢, and ¢, are such that e? = ¢3 = —1. In the light front perturbation
theory the vertices conserve the + = 0+3 and L = 1,2 components of momenta and
do not conserve their — = 0-3 components. Therefore, the center of mass frames of the

intermediate and the final nucleons are connected with the basic frame (B.1) by the Lorentz
boosts (A.1) along the light front direction e;. These boosts define the tetrads of the center
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of mass frames for the intermediate and the final nucleons. The corresponding parameters
o = th~'y/c are
=In M'/M and o' = In M"'|M, (B.2)

where M’ = 2(m?+k'?)!/? and M’ = 2(m?+k""*)"/2, with k' and k’’ denoting the lengths
of the relative three momenta of nucleons in their center of mass frames. Introducing the
spherical coordinates we have, respectively

(P), = (M,0,0,0), (g).=1(0,0,0,k) = (0,k),
P, =(M,0,0,0), (¢) =(0,k'sin8’,0,k cos') = (0, k'),
(P =(M",0,0,0),
(q")e = (0, k' sin ' cos ¢, k"' sin "' sin ¢"', k"' cos 6'") = (0, k'"). (B.3)

The four vectors P’,q’, and P"',q” in the basic frame of reference (B.1) have the
following components:

- M;z MIZ
=[5 (4 ) 00s (=)

M M’ i 0.k sin 0, 0, 1 M M’ i o
4. = —YVT sl cos sin T\ + — cos R

M
MNZ MHZ
(P”)ﬁ[%(m M)’O’O’%<M ) )]

12 1 A/] M” te ty re te re
@n.=|% YAl k'"cos 0", k' sin 8" cos ¢"’,

’r e 1 M M” r e
k'’ sin 6" sin ¢'’, M”+ﬁ k' cos @' |.

From these equations there follow Egs. (4), (5), (6), (10) and (12). In the nonrelativistic
limit the momentum k plays the role of the relative momentum of nucleons in the Schro-
dinger equation.

APPENDIX C
Partial wave decomposition

The results of Ref. [8] are extended here to include the spin. The partial wave decom-
position of the Weinberg potential appearing in Eq. (8) is defined as follows

V(sisyl'll; siysy "1y = | d cos 0'dg'd cos 0"'dg’’
X Y, A0, ¢V (s1530'9"; sVs50" 9" ) Yy (07, ¢). (C.1)

The spin labels 5, and s, refer to the spin projection on the light front direction, i.e. they
are the spin indices of spinors u, defined in Eq. (A.4). They are invariant under the relevant
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boosts (B.2). Therefore, the partial wave decomposition takes the simple form (C.1),
although the spherical angles (0’, ¢") and (8", ¢’’) are defined in different frames of refer-
ence, Eq. (B.3). The Weinberg potential conserves the sum m = L+s,+5, = [, +5,,
and the parity of /. For m = 0 the Weinberg equation (7) takes the following form

M (s's,k'; ss,k) = Vi (s'sik’, ss,k)

2N KK V('S 8 s k) G K k) - My(s”'s 'k ss,k). (C.2)
"85 0
where Gk, k''; k) = —Qn)*u(k’?/m—k*m—id). The integrals over the angles ¢’
and ¢’ in Eq. (C.1) were done analytically, and then the integrals over the angles 6" and ¢’
were done numerically, using the Gauss quadratures. The values of the momenta &’ and
k' were chosen by the following change of the variables

k' = k(1+x))(1-x), xel-1, I

and using the Gauss quadratures in the x space, up to 32 points. Then the iteration of the
kernel matrix in the specified channel was done for the chosen value of k? = £?/4—me
where ¢ is a binding energy. In practice, only a few lowest values of / couple, and the values
| = 0,2, 4 were sufficient to obtain a very good accuracy. The sufficient number of itera-
tions varied from 10 to 100 and the ratio ¢ of the successive iterations stabilized on six
decimal places. The coupling constant f? = ¢! gives us the pole in the scattering matrix
M, corresponding to a bound state, with the binding energy e.

REFERENCES

[11 P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949).

[21 G. P. Lepage, S. J. Brodsky, Phys. Rev. D22, 2157 (1980).

[3]1 S. J. Brodsky, Chueng-Ryong Ii, G. P. Lepage, Phys. Rev. Lertt. 51, 83 (1983).

[4] St. Glazek, Acta Phys. Pol. B14, 893 (1983).

[5] J. M. Namystowski, Clustering, the necessary and sufficient conditions, invited contribution to the
10th Internat. Conf. on the Few Body Problem, Eugene, Oregon, Proceedings, Volume I, Oregon
Press, Oregon 1980. p. 94.

[6] St. Glazek Diploma work, Warsaw University 1980, unpublished.

[71 P. M. Fishbane, J. M. Namyslowski, Phys. Rev. D21, 2406 (1980).

[8] J. M. Namysltowski, Phys. Rev. D18, 3676 (1978).

[9] P. Danielewicz, J. M. Namystowski, Phys. Lett. 81B, 110 (1979).

[10] S. Weinberg, Phys. Rev. 150, 1313 (1966).

[11] St. Glazek, The connection between the light front dynamics and the infinite momentum frame, Warsaw
University preprint IFT/15/82 and references therein.

[12] S. D. Drell, D. J. Levy, T. M. Yan, Phys. Rev. D1, 1035 (1970).

[13] S. J. Brodsky, R. Roskies, R. Suaya, Phys. Rev. D8, 4574 (1973).

[14] 1. F. Gunion, S. J. Brodsky, R. Blankenbecler, Phys. Rev. D8, 287 (1973).

[15] S.-I. Chang, R. Root, T.-M. Yan, Phys. Rev. D7, 1133 (1973); S.-1. Chang, T.-M., Yan, Phys. Rev.
D7, 1147 (1973); T.-M. Yan, Phys. Rev. D7, 1760 (1973); T.-M. Yan, Phys. Rev. D7, 1780 (1973).

[16] G. E.Brown, A. D. Jackson, The Nucleon-Nucleon Interaction, North Holland Publ. Comp., (1976);
K.Holinde, R. Machleidt, Nucl. Phys. A247, 495 (1975), Nucl. Phys. 256, 479 (1976); K. Erkelenz,
Phys. Rep. 13C, 5 (1974).

[17] J. Tjon, Nucl. Phys. A127, 161 (1969).



