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The influence of viscosity is investigated on the monopole density of the Universe.
The result is that if the bulk viscosity coefficient in the GUT continuum after symmetry
breaking exceeds a critical value, then viscosity can drive an exponential expansion diluting
monopoles below the observational limit. This critical value of the viscosity coefficient
means a lower bound for the energy scale patameter of the GUT, somewhere above 10'° GeV.
Nevertheless, since the behaviour of the GUT continuum near the phase transition is not
yet reliably known, the exact value of this lower bound cannot be precisely calculated.

PACS numbers: 98.80.Bp

1. Introduction

Although GUT-type theories are very promising from several viewpoints as e.g.
unification of interactions or explanations for the baryon-antibaryon asymmetry of the
present Universe, they do make a prediction which definitely cannot be correct: the esti-
mated monopole density in the present Universe tends to be too high. While astronomical
observations seem to indicate the existence of some non-luminous matter with density
up to 30 times that of the observed matter (Faber and Gallagher, 1979), this mass ratio
cannot be as high as 10'°, predicted by decsnt and conservative monopole calculations
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(Kibble, 1982). In spite of the fact that there are some ways to diminish the predicted
mass ratio by scveral orders of magnitude, generally there remains a serious discrepancy.

Guth has mentioned a mechanism to decrease the present monopole density (and
to solve both the flatness and the horizon problems at the same time) (Guth, 1981). He
argues that if the expassion of the Universe were nopadiabatic, then the present
monopole/entropy ratio would be lower than in the standard models, because some part
of the entropy would emerge after monopole creation. Since in this case the expansion
rate would be higher, the flatness and horizon problems might also be simultaneously
solved.

To carry out this idea, Guth has constructed the so-called inflationary, scenario. There.
first the initial phase transition ends in a “false vacuum” (a local but not global minimum
of the Higgs potential). Then the Universe cools down adiabatically for a long time, and
finally there is a non-equilibrium phase transition into the true vacuum, producing a great
amount of entropy. He estimates that the temperature should decrease by a factor 1022
(i.e. until some 0.1 K) in the false vacuum to explain both the flatness and the horizon
problems, but, obviously, such a tremendous supercooling is not necessary to solve
the monopole problem itself; probably during the second, violent nonequilibrium phase
transition the domain (and thus the monopole) structure is disarranged, and a new one
emerges. Thus if the temperature after reheating is sufficiently low (there are some estima-
tions that T, < 10'! GeV would be sufficient), then the new monopole density will be low
enough. On the other hand, there are some arguments suggesting that supercooling prob-
ably cannot continue below 101! GeV (Kibble, 1982; Hawking and Moss, 1982). Since
reheating may produce a temperature 7, comparable to the phase transition temperature
T,, ~ 10'*—10'° GeV, the situation is not clear, because supercooling helps in solving
the monopole problem only if T, < T,, (Kibble, 1982).

In the so-called new inflationary scenario the transition is more continuous, so not
the whole expansion is adiabatic (Linde, 1982; Albrecht and Steinhardt, 1982). Thus the
necessary temperature decrease during supercooling is less prominent, nevertheless it
remains quite substantial.

Independently of the mechanism producing the extra entropy, Guth’s original idea
was that after monopole creation the expansion should be nonadiabatic. Thus various
irreversible processes may lead to extra expansion and dilution of monopoles. Viscosity
is a phenomenological description of some irreversible processes. In the presence of visco-
sity the expansion is nonzdiabatic from the beginning and the local stable thermodynamic
equilibrium can be maintained. So it is worthwhile to find out if viscosity can help to solve
the monopole problem, as it can remove the initial singularity for the suitable values of the
bulk viscosity coefficient (Heller et al., 1973; Murphy, 1973; Heller and Suszycki, 1974;
Lukdcs, 1976; Lukdcs, 1981), or can substitute the C-field of the steady-state cosmology
(Hoyle, 1958) without nonvanishing divergences of the energy-momentum tensor (Heller
et al., 1973).

The inclusion of viscosity is a more or less natural idea in the study of this problem,
because the sources of the bulk viscosity are expected to be present in the continuum just
after the phase transition, when the leptoquarks acquire masses approximately equal to
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T,., which is ideal for the bulk viscosity of point particles. Because there is only one energy
scale in the theory, nothing is obviously negligible at 7,,. However, the question is twofold.
What is the necessary viscosiiy for diluting monopoles below the observational limit?
Can the GUT coatinuum just below T, produce this viscosity?

In principle both questions can be answered and the result is a limit for the energy
scale parameter of the specific GUT, since these theories contain only one arbitrary parame-
ter (which is bound from below because the proton is stable in observations). Nevertheless,
the fact that all the predictions of a specific GUT are functions of a single parameter does
not mean that in the. present state of understanding the theory one can in fact evaluate
these predictions. So, while accepting a near-cquilibrium (or linear) transport formalism
we can answer the first question, for the necessaiy scale parameter we can give only an estima-
tion, which seems to be an overestimation.

2. The hydrodynamic description

We are interested in Universe soluiions, so here the Robertson-Walker metrics of six
parameter spatial symmetry

ds® = dt* — R} (1) (dx*+f(x)dQ%)
k= +1 0 -1
f(x) =sinx x shx 2.1

are used. (The six symmetries corresponid to the observed isoiropy + homogeneity.)
Since for early stages of evolution the k ierms are generally negligible, in this paper we
restrict ourselves to the subcase k = 0.

If a timelike unit vector field «' is defined. then the energy-momentum tensor Ty, of the
matter can be decomposed as

Ty = ouy+ Gty + gty — P(gi— ut ) + 1y,
qu, =1, =1, =0. (2.2)

For an observer of velocity #, g is the energy density, g, is the energy flux, while the remain-
ing terms represent the stresses. If a timelike unit vector field is uniquely defined by the
motion of the matter elements, this can be chosen as u'.

Requiring the same symmetries for the matter fields as for the metric, one gets

u'=(%0,0,0), ¢,=01,=0 (2.3)

and the nonvanishing terms depend only on ¢t.
Imposing the Einstein equation on the metric, two ordinary differential equations
are obtained:

" 4 . 8n 2
R=— (¢+3P)R, R" = gR*, 2.4)
3Im 3n

2
P

2
P

where mp = 1.22 - 10'° GeV is the Planck mass. (Throughout this paper # = ¢ = 1.)
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Even without specifying the behaviour of the matter it can be seen that an accelerating
expansion is possible only if

0+3P <0, 2.5)
while an exponential expansion is equivalent with
o+P =0. (2.6)

Such relations are unusual for familiar types of matter. Generally the energy density is not
negative, while the positivity of P can be proven for thin gases (Ehlér,s, 1971). Nevertheless,
there are cases when P < 0. If in this case P is purely the thermodynamic pressure, then
this state is hydrodynamically not stable against droplet formation, so it is regarded as
metastable (Landau and Lifshic, 1976; Danielewicz, 1979). The thermedynamic pressure
is negative for some overheated fluids (Landau and Lifshic, 1976), and there is a ter.dency
for negative pressure in the QCD continuum at low temperatures and densities, because
of the negative contribution of the “bag constant”. Similarly, the pressure is negative in
a cold nuclear matter below normal nuclear density. A discussion of the dynamics of such
states is given by Danielewicz (1979).

The GUT continuum at the symmetry breaking phase transition is a quite exotic
state of matter, and our present knowledge about this state is limited (to some extent).
At most, general physical principles can be imposed on the continuum, as e.g. the energy
positivity conditions. The weak energy condition requires that

T.v° >0, if oo =1, 2.7
while the dominant energy condition contains the additive restriction
T, T v, 2= 0. (2.8)

The physical meaning of these conditions is immediate: the first requires that the energy
density of the continuum be nonnegative for any possible observer, while the second
means that the energy density dominates the energy flux (Hawking and Ellis, 1973). The
so-called strong energy condition is not a direct energy condition but rather some restriction
for the Ricci tensor, and there are physical examples violating it (Bekenstein, 1975), so
we do not discuss this condition here. The dominant energy condition is something
summarizing our common sense knowledge about energy-momentum tensors, and there
is no reasonable counterexample to it. Consequently, we will require Conds. (2.7-8),
although they, as principles, cannot be generally proven.
For an energy-momentum tensor of form (2.2-3) Conds. (2.7-8) give

=0, 9+P=>0 (2.9)

(in fact, Cond. (2.8) is automatically fulfilled). So inflationary Universes do not trespass
the dominant energy condition. In different inflationary scenarios some mechanisms have
been shown leading approximately to Eq. (2.6). Thus one can conclude that ¢+P ~ 0
is not incompatible with the GUT continuum. In the present state of knowledge it is more
decent to stop here.
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For a given system g and P are functions of known form of some characteristic data
of the system. Here we want to use the transport approximation of irreversible thermo-
dynamics, and, specifically, to investigate the role of viscosity.

There are some calculated viscous model Universes in the literature (see e.g. Heller
et al., 1973; Murphy, 1973; Heller and Suszycki, 1974; Weinberg, 1972: Lukdcs, 1976).
The original motivation was mainly to avoid the initial singularity, or to prcduce the obser-
ved entropy/baryon ratio. In fact, for kK = 0 it has been possible to get solutions without
any singularity either for ¢ = const., or for £ ~ n'’3, or for ¢ ~ g, where ¢ stands for the
bulk viscosity coefficient. For ¢ = const. Heller et al., (1973) noted that the evolution
equations are identical with those of Hoyle’s steady-state cosmology, and it was possible
to obtain one true steady-state Universe (with constant local data and exponential expan-
sion, see Sol. BIII in their paper). This fact shows the close relationship of viscous models
with the inflationary scenario.

Viscosity is a phenomenological description of some irreversibie processes, thus the
viscosity coefficients should be calculated from these processes. If the deformation velocities
are not too great, one can stop at the linear terms in the stresses, and then there are two
viscosity coefficients (Maugin, 1973; Heller et al., 1973):

P=p-Cu,,
Ty = "(ur;s+us;r";2T grsu‘;r)hirhks’
hy, = gu—uu,. (2.10)

In this linear approximation o, p, £ and 5 depend on the local thermodynamical quantities,
p is the thermodynamic pressure, while 5 ard ¢ stand for the ccefficients of the shear and
bulk viscosities, respectively. Of course, it is difficult to decide if this linear approximation
is sufficient or not in the early Universe, in order to decide it a well established second order
approximation would be needed.

From the full spatial symmetry 1, = 0, so only the bulk viscosity works in Robertson-
-Walker Universes; clearly this is the case when the influence of irreversibilities is minimal.
The contracted Bianchi identity leads to an energy balance equation

Q,ru’+(g+p'—‘§u';r)us;s = 0. (211)

Since ¢, p and ¢ depend only on the local thermodynamical data, the Second Law of
Thermodynamics requires that

Qs U +su,) = ()% sgn o, = sgn &, (2.12)
otherwise the entropy production would not be positive semidefinite. With g, =7 >0,
£ > 0 is necessary.

Using Eq. (2.12), Eq. (2.11) can be recognized as the differential form of the First
Law (Heller et al., 1973)

dE = TdS—pdV. (2.13)

Thus there is a spontaneous (local) expansion if p > 0, i.e. the matter remains hydrodynami-
cally stable even for P <0 if p > 0.
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Egs. (2.10), (2.12) show that for expansion viscosity imitates a negative pressure,
so the expansion becomes more cxpressed. Thus viscosity may play both roles necessary
in explaining the scarcity of monopoles: the expansion becomes more pronounced, and
extra entropy is generated. Nevertheless, it has to be investigated if the irreversibility can
be sufficiently strong.

Consider now Egs. (2.4), governing the expansion of the Universe. With the energy-
-momentum tensor (2.2-3), (2.10) they get the form (Heller et al., 1973):

R=— ;;% (g+3p—9:;' g) R, R*= ;:—g R2. (2.14)
It is possible to eliminate the second derivative of R, obtaining a balance equation for
the entropy. In order to see it, assume first that there is no conserved particle number
in the system (as it is the case in a photan-Universe or in a radiation-dominated model).
Then the only independent intensive is the temperature, and the characteristic quantities
fulfil the relations

p=pT), e¢=Tpr—p, s=pr (2.15)
Combining Eqgs. (2.14) and (2.15) one then gets:

(sR¥) = 9 -;— R*R. (2.16)

There we have assumed that there is only one phase in the system. During a phase transi-
tion the situation is more complicated, and the result depends on the equilibrium nature
of the transition (Lukécs, 1983; Csernai and Lukdcs, 1983).

If there are some particles in the system obeying balance equations, then the thermo-
dynamical relations are:

p= Z n"f;lr(ni’ T) —f’ Q= f- TfTs s = —fTa (217)

r

where 1 is the free energy density. If there are no source terms for the particles, then
(nR%" =0 (2.18)

and then Eq. (2.16) again holds. With source terms there may be some extra entropy pro-
duction (Bird, Barz et al., 1983).

Having fixed the form of the proper thermodynamic potential p(T) or f(n;, T), and the
viscosity coefficient &, Egs. (2.14), (2.15) and (2.18) completely determine the thermal
history of the Universe.

3. The condition for exponential expansion

Assume that there is no conserved particle in the system, which seems plausible in the
early hot Universe. Then the only local thermodynamic characteristic quantity is 7. Now
the equations governing the system are the second of (2.14), and (2.15-17), together with
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p = p(T) and ¢ = &(T). R and R can be eliminated from the dynamical equations, when
an equation is obtained purely for the temperature:

. 24rn 1 p
prrT = —=(Tpr—-p) l:é“\/"’— mpT e — :I . G0
mpT i1

If the bracketed term vanishes, then T = 0, and we have arrived at a steady-state Universe
(Heller et al., 1973). This steady-state Universe is necessarily exponentially expanding
since both k and the cosmological constant is assumed to be 0 (cf. Eq. (2.4)). The condition
for exponential expansion is then, in more familiar terms

1 +
= \/7—— mp ¢ ,_p . (3.2)

Both sides are functions of T alone. If this equation has roots, then the Universe shows
steady-state behaviour.

Now let us assume that there exists a root. Then, if both sides are continuous, two
possibilities exist. If the left hand side dominates at lower temperatures, then the cooling
Universe reaches the steady state at some 7,, and remains there. This definitely is not
the situation in the present Universe. In the opposite case, when ¢ dominates for tempera-
tures higher than T, the Universe cannot cool. However, at a first order phase transition
neither the left nor the right hand sides are continuous. If the jumps are so arranged that
above T,, the right hand side dominates, while after the transition Eq. (3.2) approximately
holds, but the difference in the bracketed term of Eq. (3.1) is a small negative quantity,
then the Universe cools down until T,,. There the temperature remains almost constant for
a long time, with an almost exponential expansion, but finally the Universe escapes the
steady state. This case is not incompatible with any obvious fact. Of course, one should
see if the thermodynamical quantities have the necessary behaviour.

4. The investigated scenario

In GUTs the self-interactions of the Higgs fields lead to spontaneous symmetry break-
ing. Generally the symmetry is unbroken at high temperatures, and there only the Higgs
bosons are massive, while at some T,, ~ 10'*~10'> GeV the system undergoes a phase
transition, the Higgs fields acquire some nonvanishing expectation values {¢p) ~ T,
and some of the particles obtain masses of order T,. The numerical factors connecting
my, T, and m; to {(¢) are model-dependent and practically unknown.

Our task would be to evaluate both sides of the relation (3.2) at T,. Nevertheless,
it would be premature to seriously try this. The left hand side needs the analysis of mo-
mentum transfer processes in a nonlinear quantum system of many degrees of freedom
at the phase transition point. The right hand side seems to be simpler, containing only
equilibrium data. Nevertheless, even the correct value of the phase transition temperature
is not yet known. The calculations extrapolate the high temperature expansion of the
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equation of state, and obviously there must be a structural change at 7,,.. Now, the only
known example when both sides of a first order phase transition can be calculated by
means of the same approach is the phenomenological van der Waals equation of state.
Thus one simply cannot expect that the high temperature expansion is correct for calculat-
ing T.

But then p(T,,) and p(T,,) are even less known. Thus one can conclude that only
cautious order of magnitude estimates can be given at present for evaluating Eq. (3.2).

Now, for ¢, note that its value strongly depends both on the temperature and on the
internal degrees of freedom of the particles. There is an essential bulk viscosity (comparable
to the shear one) if other than translational degrees of freedom are excited (Kohler, 1948;
Waldmann, 1958). For point particles, the bulk viscosity vanishes both in the classical
and in the ultrarelativistic limit of a thin gas (Lifshic and Pitaevskii, 1979), and starts
quadratically with the number density when using the rigid sphere model (Reed and
Gubbins, 1973). Nevertheless, there is a bulk viscosity even for a thin gas of point particles
when m =~ T. Its value is model-dependent, some numerical factors are sensitive to the
dependence of the differential cross section on the angles and momenta. Neglecting these
factors, in the limiting cases the result is (Stewart, 1973):

é _ {T5/2m~3/20.—1 if T < m, (4’1)

T 'm*e! if T>m,

where o is the cross section. Continuing both curves until the crossing point, where the
maximum of & is expected, one gets

(=Tl if m=T 4.2)

Now consider the leptoquarks. Their rest masses are circa T, after the phase transition
(and 0 before), so they get the maximum viscosity at 7,,.. For the cross section one can
use the approXimation ¢ ~ «?/T? (Kibble, 1982), wnere o ~ 1/45, so

1 3
Clg(:rtr) = ;2’ Tlr ’ (43)

while decreasing as T2 for low temperatures. Since this bulk viscosity comes from simple
kinetic considerations, it seems to be a lower limit for &, Of course, Eq. (4.3) is only an
order of magnitude estimate for the bulk viscosity coefficient, because the numerical
factor between m,, and T, is not known.

For the right hand side of Eq. (3.2) the radiation-dominated limit yields a rough
estimate. Then (Guth, 1981)

n2
= —NT*, 44
P=5 (4.4)
where N is the number of particle degrees of freedom, about 160 in the simplest GUT.
Then the physical picture is similar to that considered by Heller and Suszycki (1974)
and by Lukcds (1981), but the viscosity coefficient is different. In this limit the right hand
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side of Eq. (3.2) is J Nn/405 mpT?. Using this value, and Eq. (4.3) for &, the result is that
Eq. (3.2) approximately holds if T,, ~ 6 - 10*° GeV.

This seems to be a rather high value for T,,. Nevertheless, first, this was only an order
of magnitude estimate Second, we estimated the bulk viscosity from the simplest momentum
transfer process; such a viscosity must exist (Stewart, 1973), but there may be other sources
of viscosity too. Third, it can be seen that the radiation-dominated approximation cannot
be valid at the phase transition, and it very probably yields an upper bound for the right
hand side of Eq. (3.2). Namely, if Eq. (4.4) were valid then there would not be any phase
transition. Generally in first order transitions ¢ jumps in such a way that it is greater for
the high temperature phase. Since the right hand side of Eq. (3.2) contains only /g in the
denominator, one can expect that the whole expression has such a jump that it is smaller
in the asymmetric phase. Combining this with the fact that even the high temperature
expansion tends to deviate from the radiation-dominated values in (p+ Q)/\/E to lower
values, because of the negative sign of the 77 term in p, it seems, indeed, that the right hand
side of Eq. (3.2) is smaller than the estimated N Nr[405 mpT?. However, today it is not
possible to calculate its correct value.

5. Conclusion

The conclusion is the Scottish verdict. Namely, the viscosity itself can generate an
exponential expansion, and so dilute the monopoles, if

a) matter can carry the sufficient negative spatial siresses; for this there are some
positive indications, because such stresses are not unfamiliar in GUT continua, but
the answer is model-dependent; and if

b) Eq. (3.2) is approximately valid at T,;, while the right hand side becomes dominating

at low temperatures.
Obviously Cond. b) is an equation for T,,, but the correct evaluation is not yet possible.
Using the simplest approximations T, ~ 6.10*% GeV would seem necessary, which is rather
high. However, this value becomes lower if ¢ is higher than estimated for point particles
via Eq. (4.3) or if (p+ g)/+/¢ is lower than in the radiation-dominated limit. While there
are good arguments that (p+ g)/\/¢ is indeed lower because of the phase transition, the
decrease cannot be calculated at present.

Similarly, one can imagine various mechanisms for increasing the bulk viscosity.
For example, ¢ can increase if there are objects of finite size and internal structure in the
system, provided that their cross section is not too great. Obviously, the continuum does
contain complex structures just below 7,,. Similarly, the bulk viscosity is higher if the lepto-
quark component is dense in the sense that nv ~ 1, where n is a characteristic particle
number density and v is a characteristic specific volume (Reed and Gubbins, 1973). Now,
this is definitely not the case for an ordinary Bose gas, because then, estimating v as 632,
nv is approximately N*a® < 1 (where N* stands for the leptoquark degrees of freedom).
Nevertheless, the leptoquarks could be densely packed if some condensation occurred.
Finally, for technical reasons we have completely ignored the roles of the Higgs sector
and the internal forces in the momentum transfer.
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Thus, while it has not been proven that the viscosity itself could realize the inflationary
scenario, and thus solve the monopole problem, counterevidence has not been found either,
and the question obviously would need some futher investigations by more advanced meth-
ods partially not yet existing.

In any case, one can see that a not too fine a tuning would be necessary between T,
and mp. Even if we cannot calculate the necessary value for 7,,, Eq. (3.2) has to hold with
a precision of 59 or better in order to maintain the almost isothermal expansion for a time
sufficient for 10° linear expansion, reducing the monopole density to an unobservable
level, while 19 wuning is necessary for the 1028 expansion solving the horizon and flatness
problems (Guth, 1981). Although such a tuning is not too fine, and cannot be excluded
even by probability considerations, in GUT type theories my and m; are unrelated quanti-
ties. In supergravity such a tuning may be a consequence, but today one cannot say
anything more about this.
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