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A reinvestigation is given for classical motion of colored test particles in the Prasad-
-Sommerfield monopole field, a problem that was tieated already by J. Schechter soon after
the discovery of the monopole. The equation used by us can be obtained from the Wong
equation if one regaids the Higgs field as a component of a five dimensional translation
invariant Yang-Mills potential and reinterpret the motion in the fifth direction appropriately.
Its nonrelativistic limit is treated for the static, SO(3) symmetrical monopole of unit charge
with SU(2) as gauge group. The total angular momentum is conserved, though the particle’s
mass is variable. For large distances the space motion is not simply that of an electric pole
in a Dirac monopole field, as Schechter has stated neglecting the coupling to the Higgs field.
The asymptotical solution at large distances proves that beyond unbounded scattering solu-
tions there exist bounded orbits too, caused by long range forces which arise from the zero
mass Higgs field. The bounded motion takes place on a closed, periodical trajectory between
two meridian circles of a cone, whose axis is the total angular momentum vector.

PACS pumbers: 11.10.-z, 03.50.-z, 12.10.-¢g

1. Introduction

-Soon after the discovery of the first monopole solution [1] of the SU(2) Yang-Mills-
-Higgs (Y-M-H) field theory J. Schechter has investigated [2] the motion of “colored”
(Y-M) test particles in the monopole field. He worked in the Prasad-Sommerfield limit,
where simple analytical formulas [3] are known. If 4, = 0 then the t’"Hooft electromagnetic
tensor is the same as for an Abelian magnetic monopole. Since the motion of the electric
poles is known [4], there are only unbounded (scattering) solutions. For description of
motion of the colored particles Schechter has used the Wong equation [5], in which their
color is coupled only to the Y-M field. The nonrelativistic real space motion at large dis-
tances was stated to be the same as for electric poles in a Dirac monopole field. This is
inconsistent with the physical expectation, that long range forces arise from the Higgs
field — which is of zero mass in this limit — and produce bounded orbits. We remind the
reader that these forces can compensate [6] the repulsive magnetic ones between distant
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monopoles of equal charge. The cause of this confusion is the neglection of the coupling
to the Higgs field in Schechter’s work. We derive an equation of motion containing that
coupling too. This gives in fact forces of the same asymptotic form as the Y-M field
strength. Its solution in the nonrelativistic, large distance limit proves the existence of
bounded orbits. A system of units will be used, where the gauge coupling constant,
the velocity of light and the constant in the monopole solution are equal to unity.

2. Equation of motion for colored test particles

The Lagrangian in the Prasad-Sommerfield limit (with the usual definitions) is:
(6, u,v=0,..3)

= =3 (Fu, F*"g— (D¢, D*¢)g. (2.1)

Let [, 1; <, D& denote the Lie bracket and the Cartan—Killing form on the Lie algebra &
of the gauge group G. This field system can be regarded {7] as a pure Y-M field over
a five dimensional flat space-time M?, for which the corresponding connection is invariant
with respect to translations of the fifth coordinate x*. The five dimensional motion in this
pure Y-M field is governed by the following Wong equations:

d*x* _ D _ dx*
dSZ - —< a¢a Q(S»y ds ’
g dx* dx*
i [Q(S), A, 2 +¢ 73“] ,
d*x* dx* u dx*
FEal (F*, Q(s)e I +<{D"9, Q(S))gﬁﬂ (2.2

Here Q € % is the color charge (or isospin for SU(2)) of the test particle and s is an affine
parameter on the path in M5, We have used the 4, — ¢ correspondence. It is natural to
assume, that the projections of the orbits from M?* to the four space-time M* give the
motion in the Y-M-H system (2.1). Its causality is guaranteed if we regard only causal
curves in M?®, that is

dx® dx? dx*\?
gaﬂ—d's“ a5 + (_(78—) = —k* (oo = —1) 2.3)

In the proper time 7 of the projection curve the equations (2.2) obtain their final “physical”
form:

m?(1) = k?*+4%(7), (2.4a)

L3

9 (Db Oy (2.4b)
dt
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d d #
dQ [Q(T), -—_—t — ¢:| (2.4¢c)
2x“_ = dx" b >{W dx* dx* 5 4d
m T _< p9Q>@d <H¢Q€ZI d dT}. ( )
We have used (2.2-3) and the definitions:

dx* dt
g(7) = 5 m(t)y = — (s = s(7)). 2.5)

s ds

A new gradient force has appeared from the Higgs field beyond the usual Loreniz force
in (2.4d). As it is well known, the origin of ¢ in (2.1) as a component of a higher dimensional
Y-M potential is a very special case of geometrization [8, 9] of general Higgs fields with
symmetry breaking potential. So we think, that (2.4) is also a special case of an equation of
particle motion obtainable from geodesics [9] of a Kaluza-Klein theory, for which the dimen-
sional reduction gives Y-M-H and other fields, e.g. gravity, Brans-Dicke scalar For the

initial value problem of (2.4) ¢(t,), Q(70), x“(ro) dx (‘L’o) ((qa,, e (‘co) ('to) = — 1)

are to be given. In (2.4d) m(z) appears as the mass of the moving particle. ThlS is consistent
with its role in the angulr momentum conservation as it turns out soon. m(t) varies because
of the presence of the scalar field. If G = SU(2) then one can identify % with operations
[, 1, {; Do and the real three space endowed with the vector and scalar product. This is
convenient when we are going to deal with the Prasad-Sommerfield monopole field [3]:

Af L [1-K( )] K(r)
s = — & X, _— . r) = ,
P e " sinh r

=0 (ab,..,irj,...=1,2,3), (=<,

1
¢° = S %H(), H(r)=rcothr-1. (2:6)

3. Nonrelativistic, asymptotical motion in the monopole field

We consider only nonrelativistic motions here, that is in (2.4) substitute 7 by ¢ = x°
and drop out the equation for x°. Following Schechter, it is convenient to express the

. . L. . > w af. dr . - .
particle’s isospin in the r, w = rxv (v = =) z = rxw orthogonal moving frame
along the particle’s trajectory:

0 =ar+pw+yz,  (P+B+y? = Q). G-
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The hatted symbols denote the corresponding unit vectors, 0 = const. Let prime
and dot refer in the following to derivation with respect to r and t. Using (2.4), (2.6),
(3.1) our equations are:

m(t) = K2 +4*(1), (3.2)
. & - Wl ‘
g =~ <o) [rH -H]+HKy 5, (3:2b)
3 _ -1 - .. q H . =
6= Q + - = OxF, (3.2¢)
mp = .r%{ﬁ [rK'+2(1— K)]+ — [rH H(1+K)]}
-2; q (X(;, 5> 1] AT
+ 3 _{ [rH' - H(1+ KY] +<0. v>HK}
rm r
oXT 2 é q nE Qx'z; -
+ = {a(1-K)*} + 72—{; HA} 7 {2(1 - K)}
er (G, > [rK'+2(1 - K)]}. - (3:2d)

Since the monopole (2.6) 1s statlc and SO(3) invariant, the sum of the particle’s orbital
angular momenium T = mr x ¥ and the angular momentum of the total field of the particle-
-monopole system is conserved [10]. Thic total angular momentum

-

N=T+kd+ Za-Kr (3.3)
r

is in fact a constant of motion for (3.2). For simplicity, we investigate in the following
the motion at large distances from the monopolc. That is we neglect the exponentially
decreasing functions of r. (3.2b-d) give rise to:

. d(1 . o (34)
q—adt r)’ x=n '
H
p=2r S 2 (3.52)
m r m r
. Bo 1 gB H
j=_22 %7 (3.5b)
m r m r

- o - - - - >,
my = —g{rx v+ 31— [r+<r, Uﬁ]}- (3.6)
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In Schechter’s paper m is constant and only the first term appears in (3.6). Our extra forces
are produced by the particle-Higgs coupling. From (3.4) we see that & = a, and

o o
qg=qrt)=———+4qo 3.7
r Yo

and m(t) is given by (3.2a). Here the zero as index refers to the initial data. The asymptotical
real space motion (3.6) is decoupled from the isospin motion. The reader can easily verify
that [ = |I],

~

e =m¥*+1), [=I+a (3.8)
are constants of the “asymptotical motion™. The solutions of (3.4-6) can be regarded as
approximate ones to (3.2). We will see the physical effect of the test particle-Higgs field
coupling by giving the solution for (3.6). We assume j = || # 0; otherwise uniform motion
(or rest) on a radial straight line takes place. The motion takes place on one of the halves

. . - 33 a .
of a rotation cone with axis j, because of the constancy of j and {j, r) = —. This is why
J

it is natural to introduce spherical coordinates (r, 9, ¢), taking the polar axis parallel
to j. In these coordinates (3.6) and the constant of motion & give rise to

2 & q
—- - = —=[1+(#?*] =0, 3.
= 23 2 mz[ +(#)] (3.9a)
o
3=3;, cosfy=—, (3.9b)
J
. J
o=, (3.9¢)
mr
12
e =m? [1+(f)2+ -—2—2] (3.9d)
m'r

In the case of the pure radial motion / = 0 (3.9¢) does not appear of course. Using its
first integral ¢, (3.9a) can be regarded as a one dimensional potential problem for a point
particle of unit mass and ¢ plays the role of the total energy in this auxiliary problem.
Hence, the motion is described by (3.9¢) and the following first order, separable differential
equations obtained for r(¢) and for the path r(¢) from (3.9):

ar\>  T(r)  T(r)
(?17) - e (3.102)

2
(3_(;0) - = 7TO) (3.100)
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P(r) and T(r) are generally second order polynomials of r because of (3.7), (3.2a). P(r)
is positive and the motion is trivially restricted to the domain, where 7(r) > 0

() = (e—m*r2 =12, 3.1
We exclude the very special case, when the coefficient n of 72 in T(r)

€&
n=—
mZ,

2
—1, m =K+ (qo— 5) (3.12)

To
vanishes. It is easy to see, that T can be rewritten as follows:
T(r) = min(r—ry) (r+r, signn). (3.13)

Here ry, (sign n)r, are the roots of T, 0 < r, < r;, and the detailed form of the roots is:

1 a\2 2\2 1/2
, ~2
3 {Gt (‘IO_ ““) + [<a‘10+ "*) +(Foto ) ] } (3.14)
My Fo o

If n < O then the test particle moves between two meridian circles of the cone r, < r(f) <

This is surely the case when o = ((}'S Q) is large enough. Thxs means that the Hi ggs couphng
produces bounded orbits. If # > 0 (for example when v is large enough) then r(t) > ry,
the motion is unbounded. Note that in the special case of n = 0, that is when 7(r) is a first
order polynomial of r, an analysis of the same type leads trivially to bounded or unbounded
motion depending on the root and the shape of T(r). From (3.9¢) we see that ¢ increases
monotonically with the time and from (3.10), (3.13) we get:

{rh

r

t—t 1 J i [ Pl ]Uzd (3.15a)
-ty = — | sign ¢| - : Qs -1Ja
* T mgn? sign n(g—r,) (¢ +1, sign 1)

P—Po = / 172 J‘ P Slgn ¢ T 2 dQ (315b)
mlnl*'* ) elsign n(e—ry) (e+r; signn)]

ro

The sign in (3.15) changes when the particle reaches a turning point of its orbit at r, or
r,. From (3.15b) one monotonical piece of the path r(¢) is described by:

. . 2riry+(ry—radrg . 2rira+(r - "2)"
@— @o = sign Fy {arc sin —arc sin —— .

3.16
ro(ri+rz) r(ri+ "2) (3.16)

7!
For example if 7 < 0 and the particle starts at r, = r, then after a finite time and d¢ = >

it gets to r; and the motion takes place on a periodical, closed trajectory between r, and
ri. If # > 0,y > 0 then the particle escapes to infinity, during infinite time (3.15a) of
course, and scattering solution appears in the case of 7y < 0. For example if at £, = —
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ro = oo then the particle moves on a symmetrical scattering trajectory between r; and
infinity, and the scattering angle A (with r{(f = 0) = r,) is:

. rl_r
Adp = p(t = 0)—@(t = — ) = n—arcsin

: 3.17
oir, (3.17)

In tne case / = 0 tne purely radial motion is of course similarly eitner oscillating or un-
bounded, depending on theinitial data. Knowing r(¢) given by (3.15a), ¢(t) and the asympto-
tic isospin motion can be calculated from (3.9¢c) and (3.5) respectively. This calculation
would not, however, add new details to the effect of the test particle-Higgs field coupling
we were mainly interested in.

I would like to thank Z. Horvdth, P. T. Nagy and L. Palla for helpful comments
and pieces of advice.
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