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An approximaie model is constructed for a system of thiee Dirac particles of equal
masses interacting mutually through a universal static two-body potential. The introduced
approximation corresponds to characteristic features of the Lagrange exact solutions to the
classical three-body problem, where three dis.ances between three particles are kept equal
all the time, although they are, in general, varying. Wave equations are found for the internal
motion in the cases of spin 1/2 and spin 3/2. Radial equations are -derived.

PACS numbers: 11.10.Qr

1. Introduction

Theorists, sometimes, construct simplified models of “real problems” in order to
make their theory computable. The problem of three Dirac particles, as it appears for
instance in the quark theory of baryons, is so involved that its simplified calculable models
seem to be wanted. In this paper we propose such a model for a highly symmetrical con-
figuration of three Dirac particles. It is inspired by the Lagrange exact solutions to the
classical three-body problem.

In fact, since Lagrange’s time there arc known special solutions of the classical (non-
-relativistic) three-body problem with Newton gravitational attraction, where three mutually
interacting particles of arbitrary masses form throughout the motion an equilateral triangle,
in general, of varying orientation and size [1]. Then, in the centre-of-mass frame, the
particles describe three coplanar conics, all with the same eccentricity and one common
focus located at the centre of mass. If the conics are ellipses, the motion is periodic.

To some extent these solutions remind of the case of three mutually non-interacting
pamcles attracted by a fixed gravitational source, but now in the Lagrange case their

* On leave of absence from Institute of Theoretical Physics, Waisaw University, Warsaw, Poland.
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motion is correlated in space and time by the equilateral-triangle condition 7y, = ry3 = r3,
with r;; = i?i—?ji, In the case of equal masses m; = m, = mz(= m), this condition,
if supplemented by the dynamically necessary requirement of coplanarity of motion,
can be characterized in momentum space by the equations

Pi+P:+Ps =0, Pi=p;=p3 €8]
or cquivalently
P=0, p-n=0 p*=4%7% ()
where the centre-of-mass frame is used. Here,
P'—'E:‘*‘Ez"‘;s» E=‘§‘(253“E1_52): Ez%(il'ﬁz) 3

are the canonical momenta conjugate with the coordinates
ﬁ=é—(;,+r2+;3), ;=r3—%(;1+;2), Z)=r1——r2, (4)
respectively. In terms of these coordinates, the equilateral-triangle condition is: Feg=0

V3

and r = - o with r = l;l and ¢ = |g|. Note that the total orbital angular momentum

and kinetic energy are

L=ZriXpi=ﬁxﬁ+7xﬁ+§xﬁ &)
i
and
T *f P + 7 + 7 (6)
B 2m, 2M 2« @ 2u’
where

(my+my)my

M =mitmotmy=3m, Kk="—"p == im,
m
p= T, )
m1+m2
In the case of Eq. (1) or (2)
RxP=0, 7xp=gxm (8)

It is not difficult to see that in the case of equal masses the equilateral-triangle solutions
exist also for any static attraction or repulsion described by the potential

V = WV(ri2)+ V(rz3)+ V(rs1) ©



929

built additively from a universal two-body intzraction V(r;;). In fact, if in this case we put
3 : ,
ry; = rz3 = ry, (and consequently r = %—— 0) in the canonical equation of motion derived

from the hamiltonian H = T+ V, we get three consistent equations

smim - 25
—r
7
- v’ .
. B A CF (10)

the second and third of which being identical in form. This identity and the covariance
V3

of Eqgs. (10) under spatial rotations allow to satisfy the condition r = =5 candr-g =0

by the ansatz

(o]

3 0, -1, 0)
Q= —/—30"/21‘, 01:/2 =11, 0, 0], 1D
v , 0, 1

where the z-axis is chosen perpendicular to the plane of motion: r = (x, y, 0) and
¢ = (&, n,0). Since in Egs. (10) tne coordinaies R, 7 and g are separated, the three-body
problem is reduced in this special case to three one-body problems.

Note that the argument presented above does not work in the case of different masses,
except for the Newton gravitational attraction, where the two-body interaction V(r;;)
is proportional to mm,.

In the classical mechanics we can select solutions (as e.g. the equilateral-triangle
solutions) by imposing initial conditions on canonical variables. Such a possibility no
longer exists in the quantum mechanics, if we want to look for energy levels. However,
the high spatial symmetry of the classical equilateral-triangle solutions suggests that Eqgs.
(1) or (2), when applied to the quantum-mechanical hamiltonian, may provide a useful
approximate model for a three-body quantum system, as e.g. the nucleon or 4 baryon,
that possesses a high spatial symmetry.

In the present paper we exploit this idea to construct an approximate model for a sys-
tem of three Dirac particles of equal masses interacting mutually through a universal
static two-body potential. The model may be called the Lagrange triangle of Dirac particles
and hopefully it may be useful for three-quark configurations of high spatial symmetry
as those in nonstrange baryons (in particular, in the nucleon and 4 baryon). Such an appli-
cation is planned as a subject of another paper.
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2. The model

To begin with consider a system of tnree Dirac particles interacting mutually through
a universal static vector potential V{r;;). Then the wave equation is

[Y @ ptBimd+ Y V(riply = Ey, (12)
i i<j
where p, = —id/dr; and tne usual anticommutation and commutation relations hold

for the Dirac matrices. In order to constiuct our model we put m, = m, = m; (=m)
and eliminate six coordinates of the nine r,, r,, 75 by means of the condition (1) which
implies that

51 = Ozn/si;s 172 = 021:/317, 53 = Ea (13)
where
~1, —J3 0
Ors =+ V3, =1, 0], O3} =05 (14)
0, 0, 2

Here, three particles i = 1, 2, 3 are labelled anti-clock-wise in the plane of motion with the
z-axis chosen (for the sake of this argument) perpendicular to this plane: p = (p,, p,. 0)
Then

oy Pyt Pptoy- Py = (a) +a5+03)" P, (15)

where &, = 03,3, and &, = O,,33,. Since «; and &, satisfy the same anticommutation
and commutation relations as the original &, and o, (and are Hermitian and space-in-
dependent like the latter), we can drop their prime label. So we can write the following
wave equation for our Lagrange triangle of Dirac particles:

I, /2 L.
[(11 +oy+oz): p+(By+ B2+ B )m+3V (7? rﬂ y(r) = Ey(r) (16)
with p = —id/dr. Here, as usual, &; = y;o; with {y], §;} = 0 and [y, 6] = 0 = [B; 6,].

If mass m is not negligible, the configuration of three Dirac particles in Eq. (16)
depends much on the eigenvalues of matrices §; (equal to +1). So, in order to provide
high spatial symmetry of this configuration we will impose on our Lagrange triangle of
Dirac particles the additional condition

Bi =P =Bs(= P 17

and, consequently,
=73 =r3(=7") (18)

Then, the wave equation takes the form

[ys(ﬁl +8,+83) p+3pm+3V (\—/2—3- r)] w(r) = Ep(r) (19)
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which we will assume as the definition of our model. Of course, this equation is for internal
motion (in the centre-of-mass frame).

We should like to stress that it is hard to justify the simplifying assumption (17)
a priori. In its case the wave function v contains only the “large-large-large” and “small-
-small-small” components which introduce no difference between three particles as far
as their masses are concerned. (Of course, in the case of identical particles these com-
ponents do not modify the non-relativistic discussion of the overall symmetry of y (including
space, spin and internal degrees of freedom)). However, the assumption (17) is not simply
equivalent to neglecting in the wave equation (16) the mixed components ‘‘small-large-large”
and ‘“‘small-small-large” (and their permutations). It is so, because in the case of §, = f,
= B, and 9 = y3 = 73 there are in Eq. (16) (or now in Eq. (19)) direct transitions “large-
-large-large” «» “small-small-small”, which are absent in the case of different f§;,, when
they can occur only indirectly in three steps via mixed components. So, we can see that
our new “large-large-large” and “‘small-small-small’ components describe in a way the
effect of all previous components,

In the Dirac representation we can write

(1, 0 s _ {0, 1 _ (3, 0 (v
ﬂ - (0’ _1) H] Yy = (1, 0) ’ o; = (0, a_»?) ’ 1/) - (/y)- H (20)

whered = @ 1P 15,8 =1 01,8 =1"1"®d and1=1"Q1°® 1"
with @ and 1° being the usual 2 x 2 Pauli matrices. Then, the wave equation (19) can
be represented in the form

(EF3m—3V)p, =25F - py_, (21)
where
. L S0
S = 4(8,+6,+8;) = (0, S-’P) (22)

is the total spin. Its quantum number takes the values s = 1/2 and s = 3/2. The corre-
sponding projection operators can be written as follows:

Py =18 =5Y) = P+ 1 [1-1(3,+3,) 5,]P,,

Py = 3(S* =) = 1[2+1(8,+52) - 65]P,. (23)
Here,
Py = $(2-8"%%) = §(1-5,- 8,

P, =15992 2 1345, - 5,) (24)

are the projection operators corresponding to the values s;, = 0 and s5;, = 1 of the quan-
tum number related to the partial spin

SUD = 1(3,+6,). (25)
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Note the useful identities:

(31"'32) ' 33P3/2 = 2P3/2’ (51—32) ' 53P3/z =0 (26)
and
n . o o anra - ~2i(d,~3,)P, x a,
(61—G2)Po,, = P1,o(°’1—°'2),(0'1—°'z) [(0'1i0'2)P1,0 ’ a] = {4P0t§ ! 2Py 27
the last for any a, where + corresponds to 1, 0, respectively.
In terms of the wave-function components
+ L2 o
= Tt , 28
f \/2 1/’11,1_ ( )

representing ¥ in the van der Waerden representation where

s _ (1, 0 (0, 1 _ (&, 0 _ [
y'(o, 1) P=\a o) 9=\o &) Y=\u) (29)
we obtain from Eq. (19) or (21):
(E-3VF25°- p)ft = 3mf ¥, (30)
From the wave equation in this form we can derive directly the following second-order
equation:
2 P . 2 2 . P v + .
(E-3V)"—(28" - p)*—(3m)" £ 6iS, ar f==0, (31)
r

where S = 7 - §¥ with 7 = #/r. In the case of s = 1/2 we get here (2% - p)? = p? (cf. Eq.
(32) below).

3. Wave equations for s = 1/2 and s = 3/2

It is easily seen from the wave equation (19) or its forms (21) and (30) that S2 and 82,
are constants of motion. Thus, s and s,, are “good” quantum numbers and, consequently,
the wave equation splits into three independent parts with (s = 1/2, 5,5, = 0), (s = 1/2,
512 = ) and (s = 3/2, s,, = 1) corresponding to the projections with Py,,Py = Po, Py/2Py
and P;,P, = P;),, respectively. In these parts we can write

3° {% g% for s=1/2 (and s;, =0 or 1),

o 32
13% for s=23/2 (and sy, =1), (32)

1 We can see from Eq. (31) that the non-relativistic approximation applied to Eq. (19) leads to the
kinetic energy 3m-+ (28T - p)?/6m which gives 3(m+p2/2m) only in the state with equal three helicities (other-
wise giving 3m-+p2/2(3m), as for s = 1/2). On the other hand, the form 3(m +p2/2m) follows from the non-
-relativistic approximation applied to Eq. (16). So, the models based on Egs. (16) and (19) differ conside-
rably, at least in the non-relativistic limit.
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where
0, 1 0, —i 1 0
P __ ’ P= ] P >
A=) A0 o) 2l ) e
and [2]
0, \/3, 0, 0 0, —i\/§, 0, 0
o _|V3» 0 2 0 S LRV 0, —2i, 0
Yl o 2 o V3P T2 o 2i, 0, —iJ3)
0, 0, \/3, 0 0, 0, i\/§, 0
3, 0, 0, 0
0, 1 0 0
P _ ’ s s
2y = 0. 0, —1, ol (34)
0, 0, 0, -3

Note that in the case of 5, = 0 we get 3 = ;. It is not difficult to see that the components
s12 = 0 and s,, = 1 of the state s = 1/2 are spinors of the form

_}__(lTlD—IlTT)) 35)
NZANIRADE AT N
and
1< |m>+mr>—2m1>> 36)
- -1 +21UD )0

respectively. They belong, obviously, to two orthogonal mixed representations of the sym-
metric group of three elements [3] and are, respectively, antisymmetric and symmetric
under permutations of two elements / = 1, 2. In the quark theory of the nucleon these
mixed representations for spin are multiplied by the corresponding mixed representations
for isospin and then added together in order to form an overall symmetric representation
for spin and isospin.

We can conclude that in the case of s = 1/2 (like e.g. for the nucleon) the wave equation
(19) reduces to the Dirac equation (but now describing the internal motion):

- - 2
where
- N R & 0
i=1y%, &= (o, &,,> (38)

and f and y° are given in Eq. (20) or (29) with

T 1, 0
=1 _(0, 1). (39)

So, in this case we are meeting familiar calculatory problems.
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In particular, for a Coulombic attraction V(r;) = —a./r; such a Dirac equation
leads to energy levels described by the Sommerfeld formula
30, 2y-1/2
E =3m {1+ [ e 2] } (40)
n +(j+1/2) — Gorer)

with n, = 0,1,2, ...,j = 1/2,3/2, 5/2, ... and oy = «./3/2. Here, the critical value of
a, is a, = 2/3,/3 ~ 0.385. Thus, taking for example «, = 2a,/3 as in the case of one-
-gluon exchange between two quarks in the nucleon, we get for a«, the critical value
a, = 1//3 = 0.577. For such o, the ground-state energy (with n, = 0 and j = 1/2) would
become zero, independently of the mass m.

In the case of s = 3/2 (like e.g. for the 4 baryon) the wave equation (19) reduces to
a more complicated equation because of the higher-than-two dimension of E¥ matrices
given in Eq. (34). But, formally, it can be written down in the way analogical to Eq. (37):

- -y 2
I:A'p+3ﬁm+3V (373: r)] '(/)3/2 = E?IJ3/2, (41)
where
- = = (2P0
A=7%, I= (0 -ip) (42)

and B and y*® are given in Eq. (20) or (29) with

B

’ 43)

2

O -0 O
_—0 O O

i, O
0, 1
0, 0,
0, 0, O,

Of course, Eq. (41) can be represented as in Eq. (21) or (30) with 5 =3"° /2, when Eq.
(20) or (29) holds. But other representations of # and y* may be also used.

Sometimes in the case of s = 3/2 it may be convenient to operate with a new vector
® bispinor wave function 1;3/2 instead of the wave function y;,, = P;,,y being a spinor
® spinor ® bispinor reduced to s = 3/2:

(G +0,+83)p32 = f'l’s/z- (44)
The way of constructing such a wave function follows from the formula
(61—32)1)3/2 = P0(61—32)P3/2 (45)

being a consequence of the definition (23) of P/, and the first identity (27). Thus, the oper-
ator (45) acting on v makes it a scalar with respect to the spinor indices o, and «, of par-
ticles i = 1, 2, introducing instead a vector index. Then, in fact, the dependence of  on
the indices «, and «, factorizes out in the form of a constant matrix 2i(0;),,,, and so can
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be simply dropped or rather summed as Trl(io,)" 3 @.—36)vs ;2] (in the final equations,
where o, and o, become free). Hence

-

G,—30,
2

1;‘;3/2 = Y32 ('Ps/z = P3/2'P) (46)

is the new function, subject to the constraint
Gy Va2 = 0 C)

that follows from the second identity (26) and expresses the reduction to s = 3/2. Note
that the constraint (47) implies

1;‘;3/2 = id3 X 1;P’a/z (48)
due to the identity
a = 8,(85 - a)+id;xa (49)

valid for any a.
In order to obtain the wave equation for 1}33,2 we multiply Eq. (19) from the left
by 3 (6, —5,)P;;, and make use of the second identity (27) (with the upper sign):

(E=3Bm—3V —°83 " p)¥aa = 2i¥°Px Y32, (50)
where the constraint (47) holds. Here, using Eq. (48) we can write
ipx 1:"’3/2 = (35" 5)@3/2—33(5 : ‘};3/2)’ (51
so the wave equation (50) takes the following final form
E 5 1 = 2 S5z (.~
<? —pm—V —y°G5- P)»‘/’s/z = —37°63:(P" ¥3;2) (52)

with the constraint (47). Here,

. 7, 0
and B and y° are given in Eq. (20) or'(29) with
—_ 1P _ 13 0

1_1_(0’ L) (54)

but other representations may be also used.

The equations (52) and (47) for 1}33,2 are in an analogy with the Rarita-Schwinger
equations for spin s = 3/2 [4], but describe the internal motion. Formally, they differ
from the latter equations by the absence of time component of the wave function 9, j2 in
contrast to the Rarita-Schwinger wave function (being a four-vector ® bispinor) and also
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by the fact that the right-hand-side of Eq. (52) is # 0. Both facts are related to the absence
of explicit relativistic covariance of internal motion within a composite particle, in contrast
to its external motion (at least if the former is described by the conventional one-time
equation like (12)). In the conventional one-time description of internal motion there is
no relative time nor the corresponding energy (the energy E being connected with the usual
time measured in the centre-of-mass frame). On the other hand, the relative coordinates
and corresponding momenta appear, of course.

4. Separation of dangular coordinates for s = 3/2

While the separation of angular coordinates for s = 1/2 from Eq. (37) (baving the
Dirac form) is a familiar problem {5}, such a separation for s = 3/2 from Eq. (41) or (52)
(with the constraint (47) in the case of the latter equation) deserves a description. Here,
we will present such a separation from Eq. (52) (and Eq. (47)}, based on a multipole tech-
nique worked out previously in the case of Breit equation [6].

The method consists of two steps. Firstly, we expand the wave function ¢ into three

parts: “electric”, “longitudinal” and “magnetic” defined by means of three linearly in-
dependent (but not all normalized and Hermitian) vector operators:

- " - g 1 - R oy 1 (55)
= = — - T3, e = — X =337,
= AT Ty M or) 127
where
o8 & .0
P=-, —=rF-35—r—. (56)
r of or or

2 =1 ?6—0 0 522 A L (57
TR T a7 \a) T
and
0 . 0 - - i) 0 d -
PX — = —=1iL, #?xL=i{——-2F), — X —=IiL. 58
o Sl '(af ) P e (58)
Note that the contragradient operator basis is given by
“B “L 6 M a 5
e =p e % ¢ ( a?)v (59
since then
et ey =03 (4,B=EL M) (60)

due to the formulae

- - d . d
Et =p, ot = P 28, Mt = (?x ~—) ° (61)
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and Egs. (57) and (58). Thus, we can write

= Z EA’I’A, (62)
A
where
yi=¢e"""9 (4=ELM). (63)

Using the convenient representation where

1, o s o, i1* . (55 0
ﬁ”(o, —1")’ 4 ‘“(—il", 0 ) "3“(0, &
e A
7= (gi) = (zz) (64)

- 8 . ) -
vi=Fpy, yi= (— —2?)'%, vy = il(i‘x *)'%- (65)

we get

ar

Because of y° appearing in the definition of ey, all % have the same intrinsic parity equal
to +1, respectively. ‘

Secondly, we separate the angular coordinates r = (8, ¢) from the radial coordinate r
by the substitution

AT A ]-— € .
¥i(r) = vi() ?’1+ > im)s (66)
where the angular part is a Pauli spinor given by

F ‘/112+ 2+m l2m+é(?)

Pljjm
Pljrzjmy = 22 t+1

the upper/lower signs in Eq. (67) corresponding to j;, = j+ 31, respectively. Here, ¢ = +1
or —1 is determined by the total parity

P = (=1~ (68)

while j = 1/2,3/2,5/2, ... is the quantum number of total angular momentum

J=8+L=2L1(G,+5,+3)+L. (69)
This can be considered in two ways as either J = J42+15; or J = §424+J® with
JO» = §ADL T = LG, +6,)+L, TP =1a+L (70)

Note the important relations

J(IZ)eA = eALk, Jk.éA == EAJﬁs) (71)
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valid in the case of s;, = 1, where we can use the vector representation
Sy, = —ii Eum (k, L, m = 1,2,3). (72)
They follow from the rotation-group commutation relations
[Ly, EA] = isklm-{le/lm = “Sglz);m (73)

where the matrix multiplication

(S}‘IZ)EA)I = (silz))lme,{m = —igklmeAm (74)
is applied.
We can see from the substitution (66) (with (67)) that
72 4 ;s A . . £
L: =ju(e+Dy:  where  ji, =jF 2 (75)
(respectively), and
T2t = j(j+ 1y, (76)
From Eqs. (75) and (76) we infer via the relations (71) that
iy - £
J(u)zeﬂ/’i = j2(i2+ l)e,np'; where j,, =JjF 3 an
(respectively), and
Freay® = j(j+ ey, (78)

Thus, summing Eqs. (77) and (78) over 4 = E, L, M we can conclude that functions ¢
of the form given by Eqgs. (62), (64), (66) and (67) (or their components ¥ , in the represen-
tation (64)) are eigenfunctions of J2 (or J122) corresponding to the eigenvalues j(j+1)

&
(or J12{J12+1) where j,, = jF —2—> They are also eigenfunctions of J, and of the total

parity with the eigenvalues m and P, respectively. So, using ¥ of this form we can separate
out the angular coordinates r = (8, ¢) from the rotational covariant wave equation (52)
(and the constraint (47)), obtaining in this way a set of radial equations for y4(r) (4 = E,
L, M).

In practical calculations we are making use of the identity

o° ?’._5. _ I £
e\ PJF 5 im) = ?iJi 5 Jm 9

with 6%, = 7 - 5, which enables us to get the same angular parts in all terms of the wave
equation, and then drop these parts. Also useful is the well known formula [5]

or r r

. G, 1 A
as'p':‘ -ia3r<—'+’“_ﬁ'—), (80)
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where o3 = y53;, o3, = I - &3 = 7°03, and o3, = 7 - &3, whereas
A =B@; L+1) (81)
commutes with a3, (and «; * p) and gives the relations
J®* = A2-L, L[*= A(4-p). (82)
We can see from the first relation (82) and Eq. (76) that
Ayt = Ay, (83)
where j(j+1) = A2—%, while the second relation (82) and Eq. (75) show that j;,(j;»+1)
= AAF1) with j,, = jF %(respectively). Jointly, we get
A =e(j+3). (84)
We have also
Ly% =20F Dy, (@ L+Dyl = +iyt. (85)
Note that for norms we get

w512+ Iéwﬁf_lﬁ + v 112+ i?
MA=1) MA+1)

ii® = IS 1P+ ilyE 7+ (86)
due to Eqgs. (62), (55) and (85).

The multipole technique described above, when applied to the wave equation (52)
and the constraint (47) for (r) = v; ,2(?), leads after lengthy algebraic calculations to the
following set of eight radial equations for six radial functions y1(r) (4 = E, L, M):

E _{d Ax2 -
(—3— ?.m—V) yi=7F (2? + —r—-) v +3d (v),

E _ _(d i d _ A2 .
(—3 +m—V) v = F (—;i 7) wlii (_d—r + " )V’i+%(l+1)d;('ﬁ),

E T M —_ A M - lli2 E 2 =
+ —-3-+m—V vs=\F YeF —i_;“ y:+5(AEDd () 87
and
ALyl +e¥ =0, (88)

where the abbreviation

d i

di(p) = — 2V ey Lok 89
+(y) = dr+r Y r'l’ﬂ.: (89)
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denotes the radial part of the divergence ip - 94, while Eq. (88) is the radial part of the

constraint g5 + 9, = 0 (multiplied by — 1). Here, V = V(—\-/%— r). The set of radial equa-
tions (87) and (88) describes energy levels of our Lagrange triangle of Dirac particles with
total spin s = 3/2, total angular momentum j and total parity P = (— Y734 = e(j+).

The system of eight equations (87) and (88) for six unknown functions 4 must be
selfconsistent as it follows from its construction. Practically, this can be seen e.g. by adding
the second and third of Eqs. (87), what after taking into account Eq. (88) leads to the
first Eq. (87). So, only two of Egs. (87), e.g. the first and second, supplemented by Eq.
(88) are needed to solve the system.

5. Relaxing the simplification B, = f, = B3

We are aware of a simplifying (or oversimplifying?) character of the assumption
(17), though it makes practical the discussion of Lagrange triangle of Dirac particles,
reducing the original number 43 = 64 of Dirac wave-function components to 2 - 23 = 16
(what leads eventually to 2 +4 = 6independent radial components for s = 1/2and s = 3/2).
So, for future purposes, it may be interesting to write down some split forms of the wave
equation (16) before its simplification (17) is made, giving Eq. (19).

In the Dirac representation for three particles we can write

B, = BR1°®1°, B, = I°RFR1°, B, = 1°R1°Kp (90)

and analogically for 77, ; and 1 (and a; = 97, where §,7% @ and 1° (and « = 7°3)
are the usual 4 x4 Dirac matrices. We also have

. o, 0 1, 0 1!, 0 é, 0
RIS el w)=(0 %) s o

where &% = * @ 1° ® 1°, etc., with ° and 1% being the usual 2x2 Pauli matrices.
Splitting Eq. (16) in this representation and then combining the wave-function components
Vg8, Bi = *,i=1,2,3) into the new components

+ w**‘l‘siw-"ﬁs + w'*—ﬁsiw—*“ﬁs
T e B 92
f:{is \/2 85, \/2 4 ( )

we obtain the following representation of the wave equation (16) (where we add to
3V<—\—% r) the scalar mutual interaction (gjﬂ‘ﬁ DS ({/2—5— ) corresponding to ;jﬁiﬂj
S(r ij))i

[E—3V—S—(F - p+Bm)]lf* F(@£8D) - Bg* = 2m+:5)f 7,

[E-3V+S—(a; - p+Bsm)]g* F(B+55) - pf* =0, (93)
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+ +
e =)

are bispinors with respect to particle i = 3. Hence, for the wave-function components
ffu = P? ft and gsi12 = angi with definite spin s, =0 or s;, = 1 of particles

812

i = 1,2 we get three independent subsets of equations:

where

0
—_— pa— j— + - = ¥
(E=3V—-S~D))f; +{(a‘;—&‘; -pg{} 2(m+B3S)fs',
(E=3V+S—Djy)gr +(@—8%) pfy =0 95)
and
=P | =P\ T+
_ e + —(d;+63) " pg; - N £ F
(E-3V—S—Dyfi +{+(6$~_3§).ng} 2m+B3S)fis
(E=3V+S—Dy)g! —(8°+%) - pfi" =0,
(E—-3V+S—Dy)g; +(@—35) pfi =0 (96)
and
(E-3V+8-D;)gé =0. D)

Here, Dy = x5 * p+fsm is the Dirac kinetic energy of particle i = 3. Note that “large-
-large”” components with respect to particles i = 1, 2 are contained in f sin (and are absent
from g ). Thus, the subsets of equations (95) and (96), as involving fI, with s,, =0
and 5, = 1, respectively, describe in a relativistic way states with these spins.

Now, in place of the wave-function components f { and g, each of them being spinor
® spinor with respect to particles i = 1,2 reduced to s,;, = 1, we can introduce new
vector components given by

P P
- Cy1—0,
£t gt == (98)

- P
g5 —a5
2

j_—’:t

(for an analogy cf. Eq. (46)). In terms of these components the subsets of equations (95)
and (96) take the form

0
(E-3V—-S-D3)fs + {2; ) g—} = 2(m+B35)fo"»

(E-3V+S=Dj3)g” +2pfs =0 (99)
and

Pind g
(E-3V—-S—D,)f*+ { 2ipxg } = 2(m+BS)fF,
2pgo

(E-3V+S—Dy)g* —2ipxf* =0,
(E—3V+S—Dygs +2p-f =0, (100)
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respectively. Here, the wave-function components fg and g5 are both scalars with respect
to particles i = 1, 2 and bispinors with respect to particle i = 3, while the components
f * and g* are both vectors and bispinors (note that gq satisfying Eq. (97) is separated and
so can be put equal to zero). Altogether there are 4° = 64 components (minus 4).

To Eqs. (99) and (100) one can apply the multipole technique (described in Section 4)
in order to derive the corresponding sets of radial equations for s;, = 0 and s5,, = 1 (in
the sense of “large-large” components with respect to particles i = 1, 2).

APPENDIX

The problem of three Dirac particles in general

The wave equation (12) for a system of three Dirac particles without the equilateral-
-triangle constraint (1) can be written in the center-of-mass frame as follows:

Ayg+y o\ = o~ e - - I
[("‘ 2 +°‘3> “pH(a—ay) T+ (B +ﬂ2+ﬁ3)m+V] y(r, 0) = Ey(r, 0), (Al

where V = Y V(r;;) and it is assumed for simplicity that m;, = m, = ms(= m). Here,

i<j

p = —id)or and 7 = —id/dg, and the definitions (3) and (4) are used for the centre-of-mass
momenta and coordinates. In contrast to the case of Lagrange triangle of Dirac particles,
the wave function y depends now on two vectors 7 and g describing relative coordinates.
But its dependence on three Dirac bispinor indices is here not more general than that
discussed already in Section 5.

So, in the Dirac representation where v is described by the components y; 4.4,
B;= *,i=1,2,3), we can introduce (as via Eq. (92)) the components f,,f and g,
and build of them (as in Eq. (94)) the components f * and g* being bispinors with respect
to particle i = 3. Then, we obtain the following representation of the wave equation

DO P I 71 S :
[E-V—(a3 p+Bsm)]f™ = > cp—(G,FF) nlgt =2mf7,

[E-V—(z;- p+B:sm)]e* + [ - p—(@1 ¥ E]f* = 0. (A2)
Hence, for the components f,fz =Pr.f * and gsfz = P! g*, corresponding to definite
spin s;, = 0 or s, = 1 of particles i = 1, 2, we get this time an unsplit set of equations,
viz.:

+

gl_} = 2mf0;

1

(37-38%) -
<P P
%(0'1“’0'2 :

=AY
aQ

(E=V-Dyfs— {

N
E~V—D;)gt— { (6, -6, ff‘.} =0,
( 8o ‘;‘ (0'5"‘0'2) * pfy
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— (81 +83) - pg{ +(31-33) - ngg
+3 (81 —5%) ' pgo — (31 +33) - ng

~3@ 48 T H@E - ]
] =P g ] | De—-( = U
+3 (133 pfs — (@1 +5%5) - 2fy

(E~V—D,y)f{ - { } = 2mfF,

(E— V—Ds)gf—{ (A3)
Here, D, = o3 * p+fam.

Also in the present general case in place of the components f;* and g we can introduce
new vector components f * and §i given as in Eq. (98). In terms of these components the
set of -equations (A3) takes the form

2n-g*
(E—V—Dy)fi— { % g} = 2mf§F,

—ipxgt4+2ngs

_V_DJ)FE_ i creo U £7

-

(E—V—-Dyg*— = (. (A4)

| pfe —2inxf"
Here, the components f,;" and g7 are scalars with respect to particles i = 1, 2 and bispinors
with respect to particle i = 3, whilst the components f * and g* are vectors and bispinors.
The number of all components is 43 = 64.

Since each of these components depends on two vectors r and g, the multipole tech-
nique (presented in Section 4) cannot be applied directly to the separation of all angular
coordinates in this general case.

It may be convenient to note that there is a simple mnemonic of obtaining from Eqs
(A3) and (A4) the corresponding results for the Breit equation

[~ip xf++27?fo+}

[% - P+, po+(By+Bo)m+V]y = Ey (A5)
which in the centre-of-mass frame assumes the form
(@1 =22) - P+(Bs +B)m+ V() = Ep(P. (A6)
We can see, comparing Eqs. (A1) and (A6), that to this end it is enough to put
Dy;~»0, p—-0, w-p (A7)

in Eq. (A3) or (A4). Of course, in the case of Breit equation the multipole technique works
to separate angular coordinates [6].

Note also that in order to get the quark-diquark model of the nucleon with a closely
bounded diquark we may put approximately

7—0 (A8)
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in the wave equation (A1) as well as in its split form (A3) or (A4) [7]. In this case the mul-
tipole technique also works, leading to radial equations.

I am grateful to Professor R. Rodenberg for his warm hospitality extended to me and
for his careful reading the manuscript of this paper. I am also indebted to the Deutsche
Forschungsgemeinschaft for its financial support.
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