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DIRAC’S ELECTRIC MONOPOLE
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It is shown that an improper gauge transformation, similar to that applied by Dirac
in his theory of magnetic monopoles but performed in a null plane, produces a finite electric
charge provided the shape of the corresponding string is appropriately chosen.

PACS numbers: 14.80.Hv

1. The Dirac monopole

Dirac [1] made the famous observation that principles of quantum mechanics determine
a natural unit of a magnetic flux. This may be seen as follows. The quantity

eA,+0,S,

where e is the elementary charge, 4, is the electromagnetic vector potential and S is the
phase, is gauge invariant:

e5A,+8,58 = 0.

Performing an improper gauge transformation

2

x
0S = ¢ = arctg —
x
one has
5A“ = — ; aulp
and
2
§54,dx" = —

which is the natural unit of a magnetic flux.
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2. Alternative forms of the Dirac vector potential

The potential
|
A, = - ; 8"(7)
is equivalent to the potential

2n 1 2
A, = - O(x")0,0(x"),

where @ is the Heaviside step function; this is seen from the fact that both potentials give
the same field

2
Fiy = — 6(x")o(x?)
e

other components being zero.

Now, in the theory of relativity one has three kinds of planes, spacelike, timelike and
null; for example the Cartesian basis vectors ey, e, span a spacelike plane, the vectors e, e;
span a timelike plane, the vectors e, + €3, e, span a null plane. It is clear that an improper
gauge transformation similar to the Dirac one but performed in a timelike or null plane
gives a field physically different from that obtained in the spacelike case. This is seen in the
table below.

The Dirac potential for i The corresponding field

spacelike plane spanned by ey, e,

on 2n
4, = — 0(x9,0(") Fio = — 5(x")o(x?)

timelike plane spanned by e, e,

2 2
4, = 2 0(x9,0(x%) Fos = 1 5(x)5(x%)
e e

null plane spanned by e;+es, e,

2 2n
A, = — O(x*)0,0(x°—-x?%) Fo,o = F;, = — d(x)5(x° — x3)

3. The Dirac potential which has a finite charge

Let us put forward the question: is it possible to create a finite electric charge by means
of an improper gauge transformation similar to the Dirac one ? It is obvious that the answer
is negative in the spacelike case because a purely magnetic field cannot have an electric
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charge; it is also negative in the timelike case because, as seen from the table in the preceding
section, the field created has an infinitely small duration while charge is something which
has always an infinite duration.

In the null case, however, the answer is not obvious because the field created has
an electric part and an infinite duration. The charge density associated with the potential

A

2

L= -g O(x2)3,0(x° —x?)

1s
. 1 0 3v80 7.2
Jo = — —o(x" —x7)6'(x").

2e
The total charge
0= jj0d3x

must be put equal to zero on symmetry grounds; we shall see, however, that it is possible
to deform the line of singularity in such a way that the total charge is well defined and
finite.

Consider the potential

A, = - %;@[f(xl, x*)10,0(x° —x%).

The total charge within the sphere of radius r = v 2+ (x)2+(x3%)? is

, @
o) = dQré(x® —x*)o[ f(x!, x H 1 x ~£1 +Xx f ,
Ox 5x
where dQ is the measure of the solid angle on the sphere. Since the charge is conserved one
can integrate for x° = 0; introducing the cylindrical coordinates

x' =gcosp, x*= gsing,
one has
2r
1 of
Q = lim — | dpd[ f(e, pJo —.
e 2€ 0o

0

It is clear from this formula that the line f(g, ¢) = 0 must extend to infinity, otherwise
the charge vanishes. Investigating charges associated with simple lines like a straight line,
a parabola or a hyperbola one finds Q = 0 in each case. It is clear that a line
which approaches infinity in a simple way, like a parabola or a hyperbola, is equivalent,
as far as the total charge is concerned, to a straight line or a collection of straight lines and
therefore the total charge for such a line vanishes.

It turns out that the only line which gives a well defined and finite charge is the loga-~
rithmic spiral, the spira mirabilis of James Bernoulli [2]. This may be seen as follows.
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For the logarithmic spiral
@ = Qo€
where go and o are constants; hence

ln—g —ag = 0.
Qo

The function

1 Q @
> = t —-.-—i — —
fe, 9) g<2a nQO 2)

is a single valued, analytic function such that the equation

fle,p) =0

gives implicitly the logarithmic spiral in question. Putting the function f(g, ¢) into the
formula for the total charge we have

2n

1
Q = lim — |dg

0w dea

On the spiral g is an increasing function of ¢; therefore for a given ¢ there is only one ¢ such
that the argument of the Jd-function vanishes; hence ’

o1 1
0=1lm—=_—.
oo 200t 2ex

The calculation above shows that the charge is not only well defined and finite but,
moreover, it is concentrated on the null straight line x°—x3 = 0, x! = x2 = 0. In other
words the potential

2n Q @
A” = — —é_ (2 [tg (eQ In E—‘ - —2—)] 6“@(x°_x3)

[

is a potential of a point charge Q which moves with the velocity of light along the z-axis.
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